Project acronym 15CBOOKTRADE
Project The 15th-century Book Trade: An Evidence-based Assessment and Visualization of the Distribution, Sale, and Reception of Books in the Renaissance
Researcher (PI) Cristina Dondi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Summary
The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Max ERC Funding
1 999 172 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym A-FRO
Project Actively Frozen - contextual modulation of freezing and its neuronal basis
Researcher (PI) Marta de Aragão Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Consolidator Grant (CoG), LS5, ERC-2018-COG
Summary When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Summary
When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Max ERC Funding
1 969 750 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym Acclimatize
Project Hypothalamic mechanisms of thermal homeostasis and adaptation
Researcher (PI) Jan SIEMENS
Host Institution (HI) UNIVERSITATSKLINIKUM HEIDELBERG
Call Details Consolidator Grant (CoG), LS5, ERC-2017-COG
Summary Mammalian organisms possess the remarkable ability to maintain internal body temperature (Tcore) within a narrow range close to 37°C despite wide environmental temperature variations. The brain’s neural “thermostat” is made up by central circuits in the hypothalamic preoptic area (POA), which orchestrate peripheral thermoregulatory responses to maintain Tcore. Thermogenesis requires metabolic fuel, suggesting intricate connections between the thermoregulatory centre and hypothalamic circuits controlling energy balance. How the POA detects and integrates temperature and metabolic information to achieve thermal balance is largely unknown. A major question is whether this circuitry could be harnessed therapeutically to treat obesity.
We have recently identified the first known molecular temperature sensor in thermoregulatory neurons of the POA, transient receptor potential melastatin 2 (TRPM2), a thermo-sensitive ion channel. I aim to use TRPM2 as a molecular marker to gain access to and probe the function of thermoregulatory neurons in vivo. I propose a multidisciplinary approach, combining local, in vivo POA temperature stimulation with optogenetic circuit-mapping to uncover the molecular and cellular logic of the hypothalamic thermoregulatory centre and to assess its medical potential to counteract metabolic syndrome.
Acclimation is a beneficial adaptive process that fortifies thermal responses upon environmental temperature challenges. Thermoregulatory neuron plasticity is thought to mediate acclimation. Conversely, maladaptive thermoregulatory changes affect obesity. The cell-type-specific neuronal plasticity mechanisms underlying these changes within the POA, however, are unknown.
Using ex-vivo slice electrophysiology and in vivo imaging, I propose to characterize acclimation- and obesity-induced plasticity of thermoregulatory neurons. Ultimately, I aim to manipulate thermoregulatory neuron plasticity to test its potential counter-balancing effect on obesity.
Summary
Mammalian organisms possess the remarkable ability to maintain internal body temperature (Tcore) within a narrow range close to 37°C despite wide environmental temperature variations. The brain’s neural “thermostat” is made up by central circuits in the hypothalamic preoptic area (POA), which orchestrate peripheral thermoregulatory responses to maintain Tcore. Thermogenesis requires metabolic fuel, suggesting intricate connections between the thermoregulatory centre and hypothalamic circuits controlling energy balance. How the POA detects and integrates temperature and metabolic information to achieve thermal balance is largely unknown. A major question is whether this circuitry could be harnessed therapeutically to treat obesity.
We have recently identified the first known molecular temperature sensor in thermoregulatory neurons of the POA, transient receptor potential melastatin 2 (TRPM2), a thermo-sensitive ion channel. I aim to use TRPM2 as a molecular marker to gain access to and probe the function of thermoregulatory neurons in vivo. I propose a multidisciplinary approach, combining local, in vivo POA temperature stimulation with optogenetic circuit-mapping to uncover the molecular and cellular logic of the hypothalamic thermoregulatory centre and to assess its medical potential to counteract metabolic syndrome.
Acclimation is a beneficial adaptive process that fortifies thermal responses upon environmental temperature challenges. Thermoregulatory neuron plasticity is thought to mediate acclimation. Conversely, maladaptive thermoregulatory changes affect obesity. The cell-type-specific neuronal plasticity mechanisms underlying these changes within the POA, however, are unknown.
Using ex-vivo slice electrophysiology and in vivo imaging, I propose to characterize acclimation- and obesity-induced plasticity of thermoregulatory neurons. Ultimately, I aim to manipulate thermoregulatory neuron plasticity to test its potential counter-balancing effect on obesity.
Max ERC Funding
1 902 500 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ACoolTouch
Project Neural mechanisms of multisensory perceptual binding
Researcher (PI) James Francis Alexander Poulet
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Sensory perception involves the discrimination and binding of multiple modalities of sensory input. This is especially evident in the somatosensory system where different modalities of sensory input, including thermal and mechanosensory, are combined to generate a unified percept. The neural mechanisms of multisensory binding are unknown, in part because sensory perception is typically studied within a single modality in a single brain region. I propose a multi-level approach to investigate thermo-tactile processing in the mouse forepaw system from the primary sensory afferent neurons to thalamo-cortical circuits and behaviour.
The mouse forepaw system is the ideal system to investigate multisensory binding as the sensory afferent neurons are well investigated, cell type-specific lines are available, in vivo optogenetic manipulation is possible both in sensory afferent neurons and central circuits and we have developed high-resolution somatosensory perception behaviours. We have previously shown that mouse primary somatosensory forepaw cortical neurons respond to both tactile and thermal stimuli and are required for non-noxious cooling perception. With multimodal neurons how, then, is it possible to both discriminate and bind thermal and tactile stimuli?
I propose 3 objectives to address this question. We will first, perform functional mapping of the thermal and tactile pathways to cortex; second, investigate the neural mechanisms of thermo-tactile discrimination in behaving mice; and third, compare neural processing during two thermo-tactile binding tasks, the first using passively applied stimuli, and the second, active manipulation of thermal objects.
At each stage we will perform cell type-specific neural recordings and causal optogenetic manipulations in awake and behaving mice. Our multi-level approach will provide a comprehensive investigation into how the brain performs multisensory perceptual binding: a fundamental yet unsolved problem in neuroscience.
Summary
Sensory perception involves the discrimination and binding of multiple modalities of sensory input. This is especially evident in the somatosensory system where different modalities of sensory input, including thermal and mechanosensory, are combined to generate a unified percept. The neural mechanisms of multisensory binding are unknown, in part because sensory perception is typically studied within a single modality in a single brain region. I propose a multi-level approach to investigate thermo-tactile processing in the mouse forepaw system from the primary sensory afferent neurons to thalamo-cortical circuits and behaviour.
The mouse forepaw system is the ideal system to investigate multisensory binding as the sensory afferent neurons are well investigated, cell type-specific lines are available, in vivo optogenetic manipulation is possible both in sensory afferent neurons and central circuits and we have developed high-resolution somatosensory perception behaviours. We have previously shown that mouse primary somatosensory forepaw cortical neurons respond to both tactile and thermal stimuli and are required for non-noxious cooling perception. With multimodal neurons how, then, is it possible to both discriminate and bind thermal and tactile stimuli?
I propose 3 objectives to address this question. We will first, perform functional mapping of the thermal and tactile pathways to cortex; second, investigate the neural mechanisms of thermo-tactile discrimination in behaving mice; and third, compare neural processing during two thermo-tactile binding tasks, the first using passively applied stimuli, and the second, active manipulation of thermal objects.
At each stage we will perform cell type-specific neural recordings and causal optogenetic manipulations in awake and behaving mice. Our multi-level approach will provide a comprehensive investigation into how the brain performs multisensory perceptual binding: a fundamental yet unsolved problem in neuroscience.
Max ERC Funding
1 999 877 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ADaPt
Project Adaptation, Dispersals and Phenotype: understanding the roles of climate,
natural selection and energetics in shaping global hunter-gatherer adaptability
Researcher (PI) Jay Stock
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Summary
Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Max ERC Funding
1 911 485 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym ALFA
Project Shaping a European Scientific Scene : Alfonsine Astronomy
Researcher (PI) Matthieu Husson
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary Alfonsine astronomy is arguably among the first European scientific achievements. It shaped a scene for actors like Regiomontanus or Copernicus. There is however little detailed historical analysis encompassing its development in its full breadth. ALFA addresses this issue by studying tables, instruments, mathematical and theoretical texts in a methodologically innovative way relying on approaches from the history of manuscript cultures, history of mathematics, and history of astronomy.
ALFA integrates these approaches not only to benefit from different perspectives but also to build new questions from their interactions. For instance the analysis of mathematical practices in astral sciences manuscripts induces new ways to analyse the documents and to think about astronomical questions.
Relying on these approaches the main objectives of ALFA are thus to:
- Retrace the development of the corpus of Alfonsine texts from its origin in the second half of the 13th century to the end of the 15th century by following, on the manuscript level, the milieus fostering it;
- Analyse the Alfonsine astronomers’ practices, their relations to mathematics, to the natural world, to proofs and justification, their intellectual context and audiences;
- Build a meaningful narrative showing how astronomers in different milieus with diverse practices shaped, also from Arabic materials, an original scientific scene in Europe.
ALFA will shed new light on the intellectual history of the late medieval period as a whole and produce a better understanding of its relations to related scientific periods in Europe and beyond. It will also produce methodological breakthroughs impacting the ways history of knowledge is practiced outside the field of ancient and medieval sciences. Efforts will be devoted to bring these results not only to the relevant scholarly communities but also to a wider audience as a resource in the public debates around science, knowledge and culture.
Summary
Alfonsine astronomy is arguably among the first European scientific achievements. It shaped a scene for actors like Regiomontanus or Copernicus. There is however little detailed historical analysis encompassing its development in its full breadth. ALFA addresses this issue by studying tables, instruments, mathematical and theoretical texts in a methodologically innovative way relying on approaches from the history of manuscript cultures, history of mathematics, and history of astronomy.
ALFA integrates these approaches not only to benefit from different perspectives but also to build new questions from their interactions. For instance the analysis of mathematical practices in astral sciences manuscripts induces new ways to analyse the documents and to think about astronomical questions.
Relying on these approaches the main objectives of ALFA are thus to:
- Retrace the development of the corpus of Alfonsine texts from its origin in the second half of the 13th century to the end of the 15th century by following, on the manuscript level, the milieus fostering it;
- Analyse the Alfonsine astronomers’ practices, their relations to mathematics, to the natural world, to proofs and justification, their intellectual context and audiences;
- Build a meaningful narrative showing how astronomers in different milieus with diverse practices shaped, also from Arabic materials, an original scientific scene in Europe.
ALFA will shed new light on the intellectual history of the late medieval period as a whole and produce a better understanding of its relations to related scientific periods in Europe and beyond. It will also produce methodological breakthroughs impacting the ways history of knowledge is practiced outside the field of ancient and medieval sciences. Efforts will be devoted to bring these results not only to the relevant scholarly communities but also to a wider audience as a resource in the public debates around science, knowledge and culture.
Max ERC Funding
1 871 250 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ALS-Networks
Project Defining functional networks of genetic causes for ALS and related neurodegenerative disorders
Researcher (PI) Edor Kabashi
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Brain and spinal cord diseases affect 38% of the European population and cost over 800 billion € annually; representing by far the largest health challenge. ALS is a prevalent neurological disease caused by motor neuron death with an invariably fatal outcome. I contributed to ALS research with the groundbreaking discovery of TDP-43 mutations, functionally characterized these mutations in the first vertebrate model and demonstrated a genetic interaction with another major ALS gene FUS. Emerging evidence indicates that four major causative factors in ALS, C9orf72, TDP-43, FUS & SQSTM1, genetically interact and could function in common cellular mechanisms. Here, I will develop zebrafish transgenic lines for all four genes, using state of the art genomic editing tools to combine simultaneous gene knockout and expression of the mutant alleles. Using these innovative disease models I will study the functional interactions amongst these four genes and their converging effect on key ALS pathogenic mechanisms: autophagy degradation, stress granule formation and RNA regulation. These studies will permit to pinpoint the molecular cascades that underlie ALS-related neurodegeneration. We will further expand the current ALS network by proposing and validating novel genetic interactors, which will be further screened for disease-causing variants and as pathological markers in patient samples. The power of zebrafish as a vertebrate model amenable to high-content phenotype-based screens will enable discovery of bioactive compounds that are neuroprotective in multiple animal models of disease. This project will increase the fundamental understanding of the relevance of C9orf72, TDP-43, FUS and SQSTM1 by developing animal models to characterize common pathophysiological mechanisms. Furthermore, I will uncover novel genetic, disease-related and pharmacological modifiers to extend the ALS network that will facilitate development of therapeutic strategies for neurodegenerative disorders
Summary
Brain and spinal cord diseases affect 38% of the European population and cost over 800 billion € annually; representing by far the largest health challenge. ALS is a prevalent neurological disease caused by motor neuron death with an invariably fatal outcome. I contributed to ALS research with the groundbreaking discovery of TDP-43 mutations, functionally characterized these mutations in the first vertebrate model and demonstrated a genetic interaction with another major ALS gene FUS. Emerging evidence indicates that four major causative factors in ALS, C9orf72, TDP-43, FUS & SQSTM1, genetically interact and could function in common cellular mechanisms. Here, I will develop zebrafish transgenic lines for all four genes, using state of the art genomic editing tools to combine simultaneous gene knockout and expression of the mutant alleles. Using these innovative disease models I will study the functional interactions amongst these four genes and their converging effect on key ALS pathogenic mechanisms: autophagy degradation, stress granule formation and RNA regulation. These studies will permit to pinpoint the molecular cascades that underlie ALS-related neurodegeneration. We will further expand the current ALS network by proposing and validating novel genetic interactors, which will be further screened for disease-causing variants and as pathological markers in patient samples. The power of zebrafish as a vertebrate model amenable to high-content phenotype-based screens will enable discovery of bioactive compounds that are neuroprotective in multiple animal models of disease. This project will increase the fundamental understanding of the relevance of C9orf72, TDP-43, FUS and SQSTM1 by developing animal models to characterize common pathophysiological mechanisms. Furthermore, I will uncover novel genetic, disease-related and pharmacological modifiers to extend the ALS network that will facilitate development of therapeutic strategies for neurodegenerative disorders
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ALZSYN
Project Imaging synaptic contributors to dementia
Researcher (PI) Tara Spires-Jones
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Summary
Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym AnCon
Project A Comparative Anthropology of Conscience, Ethics and Human Rights
Researcher (PI) Tobias William Kelly
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Consolidator Grant (CoG), SH2, ERC-2014-CoG
Summary This project is a comparative anthropology of conscience, ethics and human rights. Numerous international human rights documents formally declare their commitment to protect freedom of conscience. But, what is conscience and how do we know it when we see it? How do we distinguish it from self-interest or fanaticism? And what happens when the concept, often associated with a distinct Christian or liberal history, travels across cultural boundaries? The project will examine the cultural conditions under which claims to conscience are made possible, and the types of claims that are most persuasive when doing so. The project addresses these issues through the comparative analysis of three case studies: British pacifists, Sri Lankan activists, and Soviet dissidents. These case studies have been carefully chosen to provide globally significant, but contrasting examples of contests over the implications of claims to conscience. If claims of conscience are often associated with a specifically liberal and Christian tradition, mid-twentieth century Britain can be said to stand at the centre of that tradition. Sri Lanka represents a particularly fraught post-colonial South Asian counterpoint, wracked by nationalist violence, and influenced by ethical traditions associated with forms of Hinduism and Buddhism. Soviet Russia represents a further contrast, a totalitarian regime, where atheism was the dominant ethical language. Finally, the project will return specifically to international human rights institutions, examining the history of the category of conscience in the UN human rights system. This project will be ground breaking, employing novel methods and analytical insights, in order to producing the first comparative analysis of the cultural and political salience of claims of conscience. In doing so, the research aims to transform our understandings of the limits and potentials of attempts to protect freedom of conscience.
Summary
This project is a comparative anthropology of conscience, ethics and human rights. Numerous international human rights documents formally declare their commitment to protect freedom of conscience. But, what is conscience and how do we know it when we see it? How do we distinguish it from self-interest or fanaticism? And what happens when the concept, often associated with a distinct Christian or liberal history, travels across cultural boundaries? The project will examine the cultural conditions under which claims to conscience are made possible, and the types of claims that are most persuasive when doing so. The project addresses these issues through the comparative analysis of three case studies: British pacifists, Sri Lankan activists, and Soviet dissidents. These case studies have been carefully chosen to provide globally significant, but contrasting examples of contests over the implications of claims to conscience. If claims of conscience are often associated with a specifically liberal and Christian tradition, mid-twentieth century Britain can be said to stand at the centre of that tradition. Sri Lanka represents a particularly fraught post-colonial South Asian counterpoint, wracked by nationalist violence, and influenced by ethical traditions associated with forms of Hinduism and Buddhism. Soviet Russia represents a further contrast, a totalitarian regime, where atheism was the dominant ethical language. Finally, the project will return specifically to international human rights institutions, examining the history of the category of conscience in the UN human rights system. This project will be ground breaking, employing novel methods and analytical insights, in order to producing the first comparative analysis of the cultural and political salience of claims of conscience. In doing so, the research aims to transform our understandings of the limits and potentials of attempts to protect freedom of conscience.
Max ERC Funding
1 457 869 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym APOLOGY
Project Political Apologies across Cultures
Researcher (PI) Juliëtte Schaafsma
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT BRABANT
Call Details Consolidator Grant (CoG), SH2, ERC-2015-CoG
Summary In the past decades, there has been a considerable rise in the number of apologies offered by states for injustices and human rights violations. Among transitional justice scholars, there is significant debate about how useful such apologies are. Whereas some have applauded these gestures as an important step in peacemaking processes, others have argued that they may not fit in all cultures and may even be a risky tool for peacemaking. Unfortunately, theorizing and research in the field of transitional justice is still in its infancy and has not systematically addressed questions of cross-cultural variability yet. So, at present, we do not know whether political apologies are a universally viable way to restore justice and harmony. My project addresses this challenge. Using an innovative, interdisciplinary, and multi-method approach with in-depth interviews, (experimental) surveys, and content analyses of apologies, I analyze whether there are universals in how political apologies are valued, expressed, and interpreted or whether this varies as a function of cross-cultural differences in key values (collectivism and individualism) and norms (face and honor). Based on these findings, I build a theoretical framework that will fundamentally advance our understanding of the potential value and role of apologies in transitional justice processes. This project breaks new ground because it is the first to take the difficult step to collect cross-cultural data to examine whether key assumptions regarding political apologies hold across cultures. It is also the first in this area to use a multi-method approach, which makes it possible to take into account the complex reality of political apologies. Combining insights from transitional justice, cross-cultural psychology and anthropology, this project places theorizing on transitional justice on a much firmer footing and paves the way to more cross-culturally valid models to restore justice and promote reconciliation.
Summary
In the past decades, there has been a considerable rise in the number of apologies offered by states for injustices and human rights violations. Among transitional justice scholars, there is significant debate about how useful such apologies are. Whereas some have applauded these gestures as an important step in peacemaking processes, others have argued that they may not fit in all cultures and may even be a risky tool for peacemaking. Unfortunately, theorizing and research in the field of transitional justice is still in its infancy and has not systematically addressed questions of cross-cultural variability yet. So, at present, we do not know whether political apologies are a universally viable way to restore justice and harmony. My project addresses this challenge. Using an innovative, interdisciplinary, and multi-method approach with in-depth interviews, (experimental) surveys, and content analyses of apologies, I analyze whether there are universals in how political apologies are valued, expressed, and interpreted or whether this varies as a function of cross-cultural differences in key values (collectivism and individualism) and norms (face and honor). Based on these findings, I build a theoretical framework that will fundamentally advance our understanding of the potential value and role of apologies in transitional justice processes. This project breaks new ground because it is the first to take the difficult step to collect cross-cultural data to examine whether key assumptions regarding political apologies hold across cultures. It is also the first in this area to use a multi-method approach, which makes it possible to take into account the complex reality of political apologies. Combining insights from transitional justice, cross-cultural psychology and anthropology, this project places theorizing on transitional justice on a much firmer footing and paves the way to more cross-culturally valid models to restore justice and promote reconciliation.
Max ERC Funding
1 917 713 €
Duration
Start date: 2016-09-01, End date: 2021-08-31