Project acronym 5HT-OPTOGENETICS
Project Optogenetic Analysis of Serotonin Function in the Mammalian Brain
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Summary
Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Max ERC Funding
2 318 636 €
Duration
Start date: 2010-07-01, End date: 2015-12-31
Project acronym 5HTCircuits
Project Modulation of cortical circuits and predictive neural coding by serotonin
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2014-ADG
Summary Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Summary
Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Max ERC Funding
2 486 074 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym DAMONA
Project Mutation and Recombination in the Cattle Germline: Genomic Analysis and Impact on Fertility
Researcher (PI) Michel Alphonse Julien Georges
Host Institution (HI) UNIVERSITE DE LIEGE
Call Details Advanced Grant (AdG), LS2, ERC-2012-ADG_20120314
Summary "Mutation and recombination are fundamental biological processes that determine adaptability of populations. The mutation rate reflects the equilibrium between the need to adapt, the burden of mutation load, the “cost of fidelity”, and random drift that determines a lower limit in achievable fidelity. Recombination fulfills an essential mechanistic role during meiosis, ensuring proper chromosomal segregation. Recombination affects the rate of creation and loss of favorable haplotypes, imposing 2nd-order selection pressure on modifiers of recombination.
It is becoming apparent that recombination and mutation rates vary between individuals, and that these differences are in part inherited. Both processes are therefore “evolvable”, and amenable to genomic analysis. Identifying genetic determinants underlying these differences will provide insights in the regulation of mutation and recombination. The mutational load, and in particular the number of lethal equivalents per individual, remains poorly defined as epidemiological and molecular data yield estimates that differ by one order of magnitude. A relationship between recombination and fertility has been reported in women but awaits confirmation.
Population structure (small effective population size; large harems), phenotypic data collection (systematic recording of > 50 traits on millions of cows), and large-scale SNP genotyping (for genomic selection), make cattle populations uniquely suited for genetic analysis. DAMONA proposes to exploit these unique resources, combined with recent advances in next generation sequencing and genotyping, to:
(i) quantify and characterize inter-individual variation in male and female mutation and recombination rates,
(ii) map, fine-map and identify causative genes underlying QTL for these four phenotypes,
(iii) test the effect of loss-of-function variants on >50 traits including fertility, and
(iv) study the effect of variation in recombination on fertility."
Summary
"Mutation and recombination are fundamental biological processes that determine adaptability of populations. The mutation rate reflects the equilibrium between the need to adapt, the burden of mutation load, the “cost of fidelity”, and random drift that determines a lower limit in achievable fidelity. Recombination fulfills an essential mechanistic role during meiosis, ensuring proper chromosomal segregation. Recombination affects the rate of creation and loss of favorable haplotypes, imposing 2nd-order selection pressure on modifiers of recombination.
It is becoming apparent that recombination and mutation rates vary between individuals, and that these differences are in part inherited. Both processes are therefore “evolvable”, and amenable to genomic analysis. Identifying genetic determinants underlying these differences will provide insights in the regulation of mutation and recombination. The mutational load, and in particular the number of lethal equivalents per individual, remains poorly defined as epidemiological and molecular data yield estimates that differ by one order of magnitude. A relationship between recombination and fertility has been reported in women but awaits confirmation.
Population structure (small effective population size; large harems), phenotypic data collection (systematic recording of > 50 traits on millions of cows), and large-scale SNP genotyping (for genomic selection), make cattle populations uniquely suited for genetic analysis. DAMONA proposes to exploit these unique resources, combined with recent advances in next generation sequencing and genotyping, to:
(i) quantify and characterize inter-individual variation in male and female mutation and recombination rates,
(ii) map, fine-map and identify causative genes underlying QTL for these four phenotypes,
(iii) test the effect of loss-of-function variants on >50 traits including fertility, and
(iv) study the effect of variation in recombination on fertility."
Max ERC Funding
2 258 000 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym DOUBLE-UP
Project The importance of gene and genome duplications for natural and artificial organism populations
Researcher (PI) Yves Eddy Philomena Van De Peer
Host Institution (HI) VIB
Call Details Advanced Grant (AdG), LS2, ERC-2012-ADG_20120314
Summary The long-term establishment of ancient organisms that have undergone whole genome duplications has been exceedingly rare. On the other hand, tens of thousands of now-living species are polyploid and contain multiple copies of their genome. The paucity of ancient genome duplications and the existence of so many species that are currently polyploid provide an interesting and fascinating enigma. A question that remains is whether these older genome duplications have survived by coincidence or because they did occur at very specific times, for instance during major ecological upheavals and periods of extinction. It has indeed been proposed that chromosome doubling conveys greater stress tolerance by fostering slower development, delayed reproduction and longer life span. Furthermore, polyploids have also been considered to have greater ability to colonize new or disturbed habitats. If polyploidy allowed many plant lineages to survive and adapt during global changes, as suggested, we might wonder whether polyploidy will confer a similar advantage in the current period of global warming and general ecological pressure caused by the human race. Given predictions that species extinction is now occurring at as high rates as during previous mass extinctions, will the presumed extra adaptability of polyploid plants mean they will become the dominant species? In the current proposal, we hope to address these questions at different levels through 1) the analysis of whole plant genome sequence data and 2) the in silico modelling of artificial gene regulatory networks to mimic the genomic consequences of genome doubling and how this may affect network structure and dosage balance. Furthermore, we aim at using simulated robotic models running on artificial gene regulatory networks in complex environments to evaluate how both natural and artificial organism populations can potentially benefit from gene and genome duplications for adaptation, survival, and evolution in general.
Summary
The long-term establishment of ancient organisms that have undergone whole genome duplications has been exceedingly rare. On the other hand, tens of thousands of now-living species are polyploid and contain multiple copies of their genome. The paucity of ancient genome duplications and the existence of so many species that are currently polyploid provide an interesting and fascinating enigma. A question that remains is whether these older genome duplications have survived by coincidence or because they did occur at very specific times, for instance during major ecological upheavals and periods of extinction. It has indeed been proposed that chromosome doubling conveys greater stress tolerance by fostering slower development, delayed reproduction and longer life span. Furthermore, polyploids have also been considered to have greater ability to colonize new or disturbed habitats. If polyploidy allowed many plant lineages to survive and adapt during global changes, as suggested, we might wonder whether polyploidy will confer a similar advantage in the current period of global warming and general ecological pressure caused by the human race. Given predictions that species extinction is now occurring at as high rates as during previous mass extinctions, will the presumed extra adaptability of polyploid plants mean they will become the dominant species? In the current proposal, we hope to address these questions at different levels through 1) the analysis of whole plant genome sequence data and 2) the in silico modelling of artificial gene regulatory networks to mimic the genomic consequences of genome doubling and how this may affect network structure and dosage balance. Furthermore, we aim at using simulated robotic models running on artificial gene regulatory networks in complex environments to evaluate how both natural and artificial organism populations can potentially benefit from gene and genome duplications for adaptation, survival, and evolution in general.
Max ERC Funding
2 217 525 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym ECMETABOLISM
Project Targeting endothelial metabolism: a novel anti-angiogenic therapy
Researcher (PI) Peter Frans Martha Carmeliet
Host Institution (HI) VIB
Call Details Advanced Grant (AdG), LS2, ERC-2010-AdG_20100317
Summary Current anti-angiogenesis based anti-tumor therapy relies on starving tumors by blocking their vascular supply via inhibition of growth factors. However, limitations such as resistance and toxicity, mandate conceptually distinct approaches. We will explore an entirely novel and long-overlooked strategy to discover additional anti-angiogenic candidates, based on the following innovative concept: ¿rather than STARVING TUMORS BY BLOCKING THEIR VASCULAR SUPPLY, we intend TO STARVE BLOOD VESSELS BY BLOCKING THEIR METABOLIC ENERGY SUPPLY¿, so that new vessels cannot form and nourish the growing tumor. This project is a completely new research avenue in our group, but we expect that it will offer refreshing long-term research and translational opportunities for the field.
Because so little is known on endothelial cell (EC) metabolism, we will (i) via a multi-disciplinary systems-biology approach of transcriptomics, proteomics, computational network modeling, metabolomics and flux-omics, draw an endothelio-metabolic map in angiogenesis. This will allow us to identify metabolic regulators of angiogenesis, which will be further validated and characterized in (ii) loss and gain-of-function studies in various angiogenesis models in vitro and (iii) in vivo in zebrafish (knockdown; zinc finger nuclease mediated knockout), providing prescreen data to select the most promising candidates. (iv) EC-specific down-regulation (miR RNAi) or knockout studies of selected candidates in mice will confirm their relevance for angiogenic phenotypes in a preclinical model; and ultimately (v) a translational study evaluating EC metabolism-targeted anti-angiogenic strategies (pharmacological inhibitors, antibodies, small molecular compounds) will be performed in tumor models in the mouse.
Summary
Current anti-angiogenesis based anti-tumor therapy relies on starving tumors by blocking their vascular supply via inhibition of growth factors. However, limitations such as resistance and toxicity, mandate conceptually distinct approaches. We will explore an entirely novel and long-overlooked strategy to discover additional anti-angiogenic candidates, based on the following innovative concept: ¿rather than STARVING TUMORS BY BLOCKING THEIR VASCULAR SUPPLY, we intend TO STARVE BLOOD VESSELS BY BLOCKING THEIR METABOLIC ENERGY SUPPLY¿, so that new vessels cannot form and nourish the growing tumor. This project is a completely new research avenue in our group, but we expect that it will offer refreshing long-term research and translational opportunities for the field.
Because so little is known on endothelial cell (EC) metabolism, we will (i) via a multi-disciplinary systems-biology approach of transcriptomics, proteomics, computational network modeling, metabolomics and flux-omics, draw an endothelio-metabolic map in angiogenesis. This will allow us to identify metabolic regulators of angiogenesis, which will be further validated and characterized in (ii) loss and gain-of-function studies in various angiogenesis models in vitro and (iii) in vivo in zebrafish (knockdown; zinc finger nuclease mediated knockout), providing prescreen data to select the most promising candidates. (iv) EC-specific down-regulation (miR RNAi) or knockout studies of selected candidates in mice will confirm their relevance for angiogenic phenotypes in a preclinical model; and ultimately (v) a translational study evaluating EC metabolism-targeted anti-angiogenic strategies (pharmacological inhibitors, antibodies, small molecular compounds) will be performed in tumor models in the mouse.
Max ERC Funding
2 365 224 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym FLUOROCODE
Project FLUOROCODE: a super-resolution optical map of DNA
Researcher (PI) Johan M. V. Hofkens
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary "There has been an immense investment of time, effort and resources in the development of the technologies that enable DNA sequencing in the past 10 years. Despite the significant advances made, all of the current genomic sequencing technologies suffer from two important shortcomings. Firstly, sample preparation is time-consuming and expensive, and requiring a full day for sample preparation for next-generation sequencing experiments. Secondly, sequence information is delivered in short fragments, which are then assembled into a complete genome. Assembly is time-consuming and often results in a highly fragmented genomic sequence and the loss of important information on large-scale structural variation within the genome.
We recently developed a super-resolution DNA mapping technology, which allows us to uniquely study genetic-scale features in genomic length DNA molecules. Labelling the DNA with fluorescent molecules at specific sequences and using high-resolution fluorescence microscopy enabled us to produce a map of a genomic DNA sequence with unparalleled resolution, the so called FLUOROCODE. In this project we aim to extend our methodology to map longer DNA molecules and to include a multi-colour version of the FLUOROCODE that will allow us to read genomic DNA molecules like a barcode and probe DNA methylation status. The sample preparation, DNA labelling and deposition for imaging will be integrated to allow rapid mapping of DNA molecules. At the same time nanopores will be explored as a route to high-throughput DNA mapping.
FLUOROCODE will develop technology that aims to complement the information derived from current DNA sequencing platforms. The technology developed by FLUOROCODE will enable DNA mapping at unprecedented speed and for a fraction of the cost of a typical DNA sequencing project. We aniticipate that our method will find applications in the rapid identification of pathogens and in producing genomic scaffolds to improve genome sequence assembly."
Summary
"There has been an immense investment of time, effort and resources in the development of the technologies that enable DNA sequencing in the past 10 years. Despite the significant advances made, all of the current genomic sequencing technologies suffer from two important shortcomings. Firstly, sample preparation is time-consuming and expensive, and requiring a full day for sample preparation for next-generation sequencing experiments. Secondly, sequence information is delivered in short fragments, which are then assembled into a complete genome. Assembly is time-consuming and often results in a highly fragmented genomic sequence and the loss of important information on large-scale structural variation within the genome.
We recently developed a super-resolution DNA mapping technology, which allows us to uniquely study genetic-scale features in genomic length DNA molecules. Labelling the DNA with fluorescent molecules at specific sequences and using high-resolution fluorescence microscopy enabled us to produce a map of a genomic DNA sequence with unparalleled resolution, the so called FLUOROCODE. In this project we aim to extend our methodology to map longer DNA molecules and to include a multi-colour version of the FLUOROCODE that will allow us to read genomic DNA molecules like a barcode and probe DNA methylation status. The sample preparation, DNA labelling and deposition for imaging will be integrated to allow rapid mapping of DNA molecules. At the same time nanopores will be explored as a route to high-throughput DNA mapping.
FLUOROCODE will develop technology that aims to complement the information derived from current DNA sequencing platforms. The technology developed by FLUOROCODE will enable DNA mapping at unprecedented speed and for a fraction of the cost of a typical DNA sequencing project. We aniticipate that our method will find applications in the rapid identification of pathogens and in producing genomic scaffolds to improve genome sequence assembly."
Max ERC Funding
2 423 160 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym GENDEVOCORTEX
Project Genetic links between development and evolution of the human cerebral cortex
Researcher (PI) Pierre Vanderhaeghen
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Advanced Grant (AdG), LS5, ERC-2013-ADG
Summary "The mechanisms underlying the evolution of the human brain constitute one of the most fascinating unresolved questions of biology. The cerebral cortex has evolved rapidly in size and complexity in the hominid lineage, which is likely linked to quantitative and qualitative divergence in patterns of cortical development.
On the other hand, comparative genomics has revealed recently the existence of a number of ""hominid-specific"" genes, which constitute attractive candidates to underlie critical aspects of human brain evolution, but their function remains essentially unexplored, mostly because of the lack of appropriate experimental systems.
Here we propose to test a simple and radical hypothesis: that key species-specific features of the development of the human cerebral cortex, in particular the generation and differentiation of pyramidal neurons, are linked functionally to the emergence of hominid-specific (HS) genes controlling corticogenesis.
To achieve this high risk / high gain goal, we will first determine which HS genes are expressed in the human developing cortex in vivo, using a combination of genome-wide and in situ gene detection analyses, in order to select those most likely to impact corticogenesis.
The function of candidate HS genes will be determined using innovative models of human corticogenesis based on pluripotent stem cells, developed recently in our laboratory, as well as ex vivo cultures of human fetal cortex. In addition, the developmental and evolutionary impact of HS genes will be examined in a non-hominid context, the mouse embryonic cortex.
By identifying the function of hominid-specific genes in cortical developpment, we will uncover specific genetic mechanisms linking functionally the development and evolution of the human brain, with broad implications in neurobiology, developmental and evolutionary biology."
Summary
"The mechanisms underlying the evolution of the human brain constitute one of the most fascinating unresolved questions of biology. The cerebral cortex has evolved rapidly in size and complexity in the hominid lineage, which is likely linked to quantitative and qualitative divergence in patterns of cortical development.
On the other hand, comparative genomics has revealed recently the existence of a number of ""hominid-specific"" genes, which constitute attractive candidates to underlie critical aspects of human brain evolution, but their function remains essentially unexplored, mostly because of the lack of appropriate experimental systems.
Here we propose to test a simple and radical hypothesis: that key species-specific features of the development of the human cerebral cortex, in particular the generation and differentiation of pyramidal neurons, are linked functionally to the emergence of hominid-specific (HS) genes controlling corticogenesis.
To achieve this high risk / high gain goal, we will first determine which HS genes are expressed in the human developing cortex in vivo, using a combination of genome-wide and in situ gene detection analyses, in order to select those most likely to impact corticogenesis.
The function of candidate HS genes will be determined using innovative models of human corticogenesis based on pluripotent stem cells, developed recently in our laboratory, as well as ex vivo cultures of human fetal cortex. In addition, the developmental and evolutionary impact of HS genes will be examined in a non-hominid context, the mouse embryonic cortex.
By identifying the function of hominid-specific genes in cortical developpment, we will uncover specific genetic mechanisms linking functionally the development and evolution of the human brain, with broad implications in neurobiology, developmental and evolutionary biology."
Max ERC Funding
2 473 937 €
Duration
Start date: 2014-08-01, End date: 2019-07-31
Project acronym MIRNA_AD
Project Role of microRNA dysregulation in Alzheimers Disease
Researcher (PI) Bart Geert Alfons Paul De Strooper
Host Institution (HI) VIB
Call Details Advanced Grant (AdG), LS5, ERC-2010-AdG_20100317
Summary Alzheimer's Disease (AD) is a major health problem in aging societies. Remarkable progress in the study of the rare genetic forms of the disease has lead to the identification of several key players like APP and the secretases, but the molecular basis of sporadic AD remains largely unresolved. The convergence of several factors (multicausality) has to be considered. miRNAs are crucially involved in normal brain functioning and integrity. Evidence obtained from analyzing a limited number of brains indicates that miRNA expression is affected in sporadic AD. We propose the hypothesis that such changes can affect normal functioning of neurons increasing their susceptibility to AD. We will document in 3 brain regions in >100 sporadic AD patients and in >100 controls alterations in miRNA expression and explore whether similar alterations can be detected in cerebrospinal fluid. This part of the study will firmly establish which miRNAs are altered in AD. We will then investigate the functional relevance of those miRNAs by gain and loss of function experiments in brains of zebra fish and mice. We will determine the target genes of the miRNA with genetic and proteomic approaches, and establish the functional networks controlled by those miRNA. We anticipate that this will lead to complete novel insights in the role of miRNAs in AD and in maintenance of brain integrity. Our work is likely to have diagnostic relevance for AD and will identify novel drug targets for the disease.
Summary
Alzheimer's Disease (AD) is a major health problem in aging societies. Remarkable progress in the study of the rare genetic forms of the disease has lead to the identification of several key players like APP and the secretases, but the molecular basis of sporadic AD remains largely unresolved. The convergence of several factors (multicausality) has to be considered. miRNAs are crucially involved in normal brain functioning and integrity. Evidence obtained from analyzing a limited number of brains indicates that miRNA expression is affected in sporadic AD. We propose the hypothesis that such changes can affect normal functioning of neurons increasing their susceptibility to AD. We will document in 3 brain regions in >100 sporadic AD patients and in >100 controls alterations in miRNA expression and explore whether similar alterations can be detected in cerebrospinal fluid. This part of the study will firmly establish which miRNAs are altered in AD. We will then investigate the functional relevance of those miRNAs by gain and loss of function experiments in brains of zebra fish and mice. We will determine the target genes of the miRNA with genetic and proteomic approaches, and establish the functional networks controlled by those miRNA. We anticipate that this will lead to complete novel insights in the role of miRNAs in AD and in maintenance of brain integrity. Our work is likely to have diagnostic relevance for AD and will identify novel drug targets for the disease.
Max ERC Funding
2 500 000 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym ModifALS
Project From zebrafish to man
Modifying amyotrophic lateral sclerosis (ALS): translation of biology into therapy
Researcher (PI) Wim Robberecht
Host Institution (HI) VIB
Call Details Advanced Grant (AdG), LS5, ERC-2013-ADG
Summary Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor neurons. As for other neurodegenerative disorders, translation of newly acquired biological insights into therapies has been difficult. In the current project we intend to contribute to the development of therapeutic approaches for ALS. We want to generate novel models, identify new therapeutic targets for intervention, and translate these into validated options for drug development in ALS. This will be done by establishing a continuous line of research from the (unbiased) screening for targets in a small animal model (zebrafish), to the exploration of their therapeutic potential, and the validation in patients. In addition, by exploring the significance of some of the findings for other neurodegenerative disorders, we hope to demonstrate this approach to be valid for the field of neurodegenerative disorders in general. This research will be performed bases on 6 work packages (WP): 1.screening of a zebrafish model for ALS to identify therapeutic targets; 2. validation of these targets in larger vertebrate ALS models; 3. investigation of the mechanism of action of these targets in order to establish approaches to interfere with them; 4. validation of these targets in human ALS; 5. generation of preclinical data on these targets; 6. exploration of the possible role of these targets in other neurodegenerative diseases.
Results from WP1 will be used for further research in WP2, results from WP2 in WP3, etc. We have gathered a large set of data in preparatory work in zebrafish, enabling us to start all WPs from the beginning of the project on.
This project involves collaborations with several other groups, national and international, which all have been established. Furthermore, all transgenic mice needed to initiate all these WPs have been generated and available to us.
Summary
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor neurons. As for other neurodegenerative disorders, translation of newly acquired biological insights into therapies has been difficult. In the current project we intend to contribute to the development of therapeutic approaches for ALS. We want to generate novel models, identify new therapeutic targets for intervention, and translate these into validated options for drug development in ALS. This will be done by establishing a continuous line of research from the (unbiased) screening for targets in a small animal model (zebrafish), to the exploration of their therapeutic potential, and the validation in patients. In addition, by exploring the significance of some of the findings for other neurodegenerative disorders, we hope to demonstrate this approach to be valid for the field of neurodegenerative disorders in general. This research will be performed bases on 6 work packages (WP): 1.screening of a zebrafish model for ALS to identify therapeutic targets; 2. validation of these targets in larger vertebrate ALS models; 3. investigation of the mechanism of action of these targets in order to establish approaches to interfere with them; 4. validation of these targets in human ALS; 5. generation of preclinical data on these targets; 6. exploration of the possible role of these targets in other neurodegenerative diseases.
Results from WP1 will be used for further research in WP2, results from WP2 in WP3, etc. We have gathered a large set of data in preparatory work in zebrafish, enabling us to start all WPs from the beginning of the project on.
This project involves collaborations with several other groups, national and international, which all have been established. Furthermore, all transgenic mice needed to initiate all these WPs have been generated and available to us.
Max ERC Funding
2 467 990 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym NANOGRAPH@LSI
Project Nanostructuring graphene and graphitic substrates for controlled and reproducible functionalization
Researcher (PI) Steven De Feyter
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary "Graphene is a new class of promising material with exceptional properties and thus warrants a plethora of potential applications in various domains of science and technology. However, due to intrinsic zero bandgap and inherently low solubility, a prerequisite for the use of graphene in several applications is its controlled and reproducible functionalization in a nanostructured fashion. Being a ‘surface-only’ nanomaterial, its properties are extremely sensitive not only to chemical modification but also to noncovalent interactions with simple organic molecules. A systematic knowledge base for targeted functionalization of graphene still eludes the scientific community. The present experimental protocols suffer from important shortcomings. Firstly, graphene functionalization occurs randomly in solution based methods and there is scarcity of methods that can exert precise control over how and where the reactions/interactions occur. Secondly, due to random functionalization, producing reproducible samples of structurally uniform graphene and graphitic materials remains a major challenge. Lastly, a molecular level understanding of the functionalization process is still lacking which precludes systematic strategies for manipulation of graphene and graphitic materials.
NANOGRAPH@LSI aims to develop systematic experimental protocols for controlled and reproducible (covalent, non-covalent as well as the combination of both) functionalization of graphene and graphitic materials in a nanostructured fashion at the liquid-solid interface (LSI), along with the implementation of new nanoscale characterisation tools, targeting a broad range of applications in the fields of electronics, i.e. graphene bandgap engineering, sensing, and separation. Supramolecular self-assembly of organic building blocks at the liquid-solid interface will be employed as a basic strategy. In view of the above mentioned applications, also upscaling protocols will be developed and implemented."
Summary
"Graphene is a new class of promising material with exceptional properties and thus warrants a plethora of potential applications in various domains of science and technology. However, due to intrinsic zero bandgap and inherently low solubility, a prerequisite for the use of graphene in several applications is its controlled and reproducible functionalization in a nanostructured fashion. Being a ‘surface-only’ nanomaterial, its properties are extremely sensitive not only to chemical modification but also to noncovalent interactions with simple organic molecules. A systematic knowledge base for targeted functionalization of graphene still eludes the scientific community. The present experimental protocols suffer from important shortcomings. Firstly, graphene functionalization occurs randomly in solution based methods and there is scarcity of methods that can exert precise control over how and where the reactions/interactions occur. Secondly, due to random functionalization, producing reproducible samples of structurally uniform graphene and graphitic materials remains a major challenge. Lastly, a molecular level understanding of the functionalization process is still lacking which precludes systematic strategies for manipulation of graphene and graphitic materials.
NANOGRAPH@LSI aims to develop systematic experimental protocols for controlled and reproducible (covalent, non-covalent as well as the combination of both) functionalization of graphene and graphitic materials in a nanostructured fashion at the liquid-solid interface (LSI), along with the implementation of new nanoscale characterisation tools, targeting a broad range of applications in the fields of electronics, i.e. graphene bandgap engineering, sensing, and separation. Supramolecular self-assembly of organic building blocks at the liquid-solid interface will be employed as a basic strategy. In view of the above mentioned applications, also upscaling protocols will be developed and implemented."
Max ERC Funding
2 495 740 €
Duration
Start date: 2013-11-01, End date: 2018-10-31