Project acronym 2-3-AUT
Project Surfaces, 3-manifolds and automorphism groups
Researcher (PI) Nathalie Wahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Summary
The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Max ERC Funding
724 992 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym Active-DNA
Project Computationally Active DNA Nanostructures
Researcher (PI) Damien WOODS
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Summary
During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Max ERC Funding
2 349 603 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym ATOMICAR
Project ATOMic Insight Cavity Array Reactor
Researcher (PI) Peter Christian Kjærgaard VESBORG
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis:
Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Summary
The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis:
Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Max ERC Funding
1 496 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym BODY-UI
Project Using Embodied Cognition to Create the Next Generations of Body-based User Interfaces
Researcher (PI) Kasper Anders Soren Hornbæk
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Consolidator Grant (CoG), PE6, ERC-2014-CoG
Summary Recent advances in user interfaces (UIs) allow users to interact with computers using only their body, so-called body-based UIs. Instead of moving a mouse or tapping a touch surface, people can use whole-body movements to navigate in games, gesture in mid-air to interact with large displays, or scratch their forearm to control a mobile phone. Body-based UIs are attractive because they free users from having to hold or touch a device and because they allow always-on, eyes-free interaction. Currently, however, research on body-based UIs proceeds in an ad hoc fashion and when body-based UIs are compared to device-based alternatives, they perform poorly. This is likely because little is known about the body as a user interface and because it is unclear whether theory and design principles from human-computer interaction (HCI) can be applied to body-based UIs. While body-based UIs may well be the next interaction paradigm for HCI, results so far are mixed.
This project aims at establishing the scientific foundation for the next generations of body-based UIs. The main novelty in my approach is to use results and methods from research on embodied cognition. Embodied cognition suggest that thinking (including reasoning, memory, and emotion) is shaped by our bodies, and conversely, that our bodies reflect thinking. We use embodied cognition to study how body-based UIs affect users, and to increase our understanding of similarities and differences to device-based input. From those studies we develop new body-based UIs, both for input (e.g., gestures in mid-air) and output (e.g., stimulating users’ muscles to move their fingers), and evaluate users’ experience of interacting through their bodies. We also show how models, evaluation criteria, and design principles in HCI need to be adapted for embodied cognition and body-based UIs. If successful, the project will show how to create body-based UIs that are usable and orders of magnitude better than current UIs.
Summary
Recent advances in user interfaces (UIs) allow users to interact with computers using only their body, so-called body-based UIs. Instead of moving a mouse or tapping a touch surface, people can use whole-body movements to navigate in games, gesture in mid-air to interact with large displays, or scratch their forearm to control a mobile phone. Body-based UIs are attractive because they free users from having to hold or touch a device and because they allow always-on, eyes-free interaction. Currently, however, research on body-based UIs proceeds in an ad hoc fashion and when body-based UIs are compared to device-based alternatives, they perform poorly. This is likely because little is known about the body as a user interface and because it is unclear whether theory and design principles from human-computer interaction (HCI) can be applied to body-based UIs. While body-based UIs may well be the next interaction paradigm for HCI, results so far are mixed.
This project aims at establishing the scientific foundation for the next generations of body-based UIs. The main novelty in my approach is to use results and methods from research on embodied cognition. Embodied cognition suggest that thinking (including reasoning, memory, and emotion) is shaped by our bodies, and conversely, that our bodies reflect thinking. We use embodied cognition to study how body-based UIs affect users, and to increase our understanding of similarities and differences to device-based input. From those studies we develop new body-based UIs, both for input (e.g., gestures in mid-air) and output (e.g., stimulating users’ muscles to move their fingers), and evaluate users’ experience of interacting through their bodies. We also show how models, evaluation criteria, and design principles in HCI need to be adapted for embodied cognition and body-based UIs. If successful, the project will show how to create body-based UIs that are usable and orders of magnitude better than current UIs.
Max ERC Funding
1 853 158 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym BRiCPT
Project Basic Research in Cryptographic Protocol Theory
Researcher (PI) Jesper Buus Nielsen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary In cryptographic protocol theory, we consider a situation where a number of entities want to solve some problem over a computer network. Each entity has some secret data it does not want the other entities to learn, yet, they all want to learn something about the common set of data. In an electronic election, they want to know the number of yes-votes without revealing who voted what. For instance, in an electronic auction, they want to find the winner without leaking the bids of the losers.
A main focus of the project is to develop new techniques for solving such protocol problems. We are in particular interested in techniques which can automatically construct a protocol solving a problem given only a description of what the problem is. My focus will be theoretical basic research, but I believe that advancing the theory of secure protocol compilers will have an immense impact on the practice of developing secure protocols for practice.
When one develops complex protocols, it is important to be able to verify their correctness before they are deployed, in particular so, when the purpose of the protocols is to protect information. If and when an error is found and corrected, the sensitive data will possibly already be compromised. Therefore, cryptographic protocol theory develops models of what it means for a protocol to be secure, and techniques for analyzing whether a given protocol is secure or not.
A main focuses of the project is to develop better security models, as existing security models either suffer from the problem that it is possible to prove some protocols secure which are not secure in practice, or they suffer from the problem that it is impossible to prove security of some protocol which are believed to be secure in practice. My focus will again be on theoretical basic research, but I believe that better security models are important for advancing a practice where protocols are verified as secure before deployed.
Summary
In cryptographic protocol theory, we consider a situation where a number of entities want to solve some problem over a computer network. Each entity has some secret data it does not want the other entities to learn, yet, they all want to learn something about the common set of data. In an electronic election, they want to know the number of yes-votes without revealing who voted what. For instance, in an electronic auction, they want to find the winner without leaking the bids of the losers.
A main focus of the project is to develop new techniques for solving such protocol problems. We are in particular interested in techniques which can automatically construct a protocol solving a problem given only a description of what the problem is. My focus will be theoretical basic research, but I believe that advancing the theory of secure protocol compilers will have an immense impact on the practice of developing secure protocols for practice.
When one develops complex protocols, it is important to be able to verify their correctness before they are deployed, in particular so, when the purpose of the protocols is to protect information. If and when an error is found and corrected, the sensitive data will possibly already be compromised. Therefore, cryptographic protocol theory develops models of what it means for a protocol to be secure, and techniques for analyzing whether a given protocol is secure or not.
A main focuses of the project is to develop better security models, as existing security models either suffer from the problem that it is possible to prove some protocols secure which are not secure in practice, or they suffer from the problem that it is impossible to prove security of some protocol which are believed to be secure in practice. My focus will again be on theoretical basic research, but I believe that better security models are important for advancing a practice where protocols are verified as secure before deployed.
Max ERC Funding
1 171 019 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym CARBENZYMES
Project Probing the relevance of carbene binding motifs in enzyme reactivity
Researcher (PI) Martin Albrecht
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Histidine (His) is an ubiquitous ligand in the active site of metalloenzymes that is assumed by default to bind the metal center through one of its nitrogen atoms. However, protonation of His, which is likely to occur in locally slightly acidic environment, gives imidazolium sites that can bind a metal in a carbene-type structure as found in N-heterocyclic carbene complexes. Such carbene bonding has a dramatic effect on the properties of the metal center and may provide a rational for the mode of action of metalloenzymes that are still lacking a solid understanding. Up to now, the possibility of carbene bonding has been completely overlooked. Hence, any evidence for such His coordination via carbon will induce a shift of paradigm in classical peptide chemistry and will be directly included in basic textbooks. Moreover, this unprecedented bonding mode will provide access to unique and hitherto unknown reactivity patterns for artificial enzyme mimics. Undoubtedly, such a break-through will set a new stage in modern metalloenzyme research. A multicentered approach is proposed to identify for the first time carbene bonding in enzymes. This approach unconventionally combines the current frontiers of organometallic and biochemical knowledge and hence crosses traditional boarders. Specifically, we aim at probing carbene bonding of His by identifying reactivity patterns that are selective for metal-carbenes but not for metal-imine complexes. This will allow for efficient screening of large classes of metalloenzymes. In parallel, active site models will be constructed in which the His ligand is substituted by a heterocyclic carbene as a rigidly C-bonding His analog. For this purpose chemical synthesis will be considered as well as enzyme mutagenesis and subsequent carbene coordination. While such new bioorganometallic entities will be highly attractive to probe the influence of C-bound His on the metal site, they also provide conceputally new types of versatile catalysts.
Summary
Histidine (His) is an ubiquitous ligand in the active site of metalloenzymes that is assumed by default to bind the metal center through one of its nitrogen atoms. However, protonation of His, which is likely to occur in locally slightly acidic environment, gives imidazolium sites that can bind a metal in a carbene-type structure as found in N-heterocyclic carbene complexes. Such carbene bonding has a dramatic effect on the properties of the metal center and may provide a rational for the mode of action of metalloenzymes that are still lacking a solid understanding. Up to now, the possibility of carbene bonding has been completely overlooked. Hence, any evidence for such His coordination via carbon will induce a shift of paradigm in classical peptide chemistry and will be directly included in basic textbooks. Moreover, this unprecedented bonding mode will provide access to unique and hitherto unknown reactivity patterns for artificial enzyme mimics. Undoubtedly, such a break-through will set a new stage in modern metalloenzyme research. A multicentered approach is proposed to identify for the first time carbene bonding in enzymes. This approach unconventionally combines the current frontiers of organometallic and biochemical knowledge and hence crosses traditional boarders. Specifically, we aim at probing carbene bonding of His by identifying reactivity patterns that are selective for metal-carbenes but not for metal-imine complexes. This will allow for efficient screening of large classes of metalloenzymes. In parallel, active site models will be constructed in which the His ligand is substituted by a heterocyclic carbene as a rigidly C-bonding His analog. For this purpose chemical synthesis will be considered as well as enzyme mutagenesis and subsequent carbene coordination. While such new bioorganometallic entities will be highly attractive to probe the influence of C-bound His on the metal site, they also provide conceputally new types of versatile catalysts.
Max ERC Funding
1 249 808 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ChemEpigen
Project The chemical understanding of biomolecular recognition in epigenetics
Researcher (PI) Jasmin MECINOVIC
Host Institution (HI) SYDDANSK UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The ultimate aim of this ERC project is to provide a comprehensive and complete understanding, at the atomic-level of sophistication, of genuinely important biomolecular recognition processes in epigenetics that play key roles in human health and disease. At the biochemical level, epigenetics refers to mechanisms, such as enzymatic modifications of DNA and posttranslational modifications of the associated histone proteins, that regulate the activity of human genes. The proposed work aims to address epigenetics using the physical-organic chemistry approach that enables the elucidation of the elemental processes with unprecedented molecular/atomic detail. The project will experimentally and computationally examine non-covalent interactions between three essential constituents of the epigenetic biomolecular system, namely epigenetic proteins, histones and water, at the level of short histone peptides, intact histone proteins, the nucleosome assembly and nucleosome arrays. Our programme, built on synergistic thermodynamic, structural and computational studies, aims to unravel i) the underlying chemical origin of methyllysine-containing histones in epigenetics, ii) the chemical basis for the recognition of methylarginine-containing histones in epigenetic processes, and iii) the role of unstructured histone tails in biomolecular recognition, which together form the three main structural elements found in the epigenetic framework. Results from this work will be important from both a fundamental molecular perspective as well as from the biomedical perspective, because proteins involved in epigenetic regulation processes are currently regarded as important targets for numerous therapeutic interventions, most notably for cancer treatment.
Summary
The ultimate aim of this ERC project is to provide a comprehensive and complete understanding, at the atomic-level of sophistication, of genuinely important biomolecular recognition processes in epigenetics that play key roles in human health and disease. At the biochemical level, epigenetics refers to mechanisms, such as enzymatic modifications of DNA and posttranslational modifications of the associated histone proteins, that regulate the activity of human genes. The proposed work aims to address epigenetics using the physical-organic chemistry approach that enables the elucidation of the elemental processes with unprecedented molecular/atomic detail. The project will experimentally and computationally examine non-covalent interactions between three essential constituents of the epigenetic biomolecular system, namely epigenetic proteins, histones and water, at the level of short histone peptides, intact histone proteins, the nucleosome assembly and nucleosome arrays. Our programme, built on synergistic thermodynamic, structural and computational studies, aims to unravel i) the underlying chemical origin of methyllysine-containing histones in epigenetics, ii) the chemical basis for the recognition of methylarginine-containing histones in epigenetic processes, and iii) the role of unstructured histone tails in biomolecular recognition, which together form the three main structural elements found in the epigenetic framework. Results from this work will be important from both a fundamental molecular perspective as well as from the biomedical perspective, because proteins involved in epigenetic regulation processes are currently regarded as important targets for numerous therapeutic interventions, most notably for cancer treatment.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym CHEMHEAT
Project Chemical Control of Heating and Cooling in Molecular Junctions: Optimizing Function and Stability
Researcher (PI) Gemma Solomon
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Summary
Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Max ERC Funding
1 499 999 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym ChemLife
Project Artificial micro-vehicles with life-like behaviour
Researcher (PI) Larisa FLOREA
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary One of the most interesting properties of living organisms is the way in which they can sense and respond to changes by moving. Movement has been essential to the survival of all life; even units as small as cells can react to different chemicals through movement. This is a phenomenon known as chemotaxis. Bacteria use chemotaxis to find sources of food, while white blood cells use chemotaxis to follow a chemical trail left by a virus, then find it and destroy it. Throughout areas of science, from robotics to drug delivery, if we could mimic a fraction of this fascinating complexity, the possibilities would be endless.
Imagine micro-structured vehicles, which could ‘navigate’ through complex fluidic environments, and could effectively ‘recognise’, ‘sense’, ‘diagnose’ and ‘treat’ a variety of conditions. This is exactly what this proposed project, ChemLife, will explore. I will make smart droplets which travel through complicated mazes by chemotaxis, communicate with each other, and move to find their partners or locate and neutralise a ‘droplet intruder’. Other biological systems have much more complicated means of movement, such as swimming, crawling or gliding along surfaces. In an attempt to replicate this, I will fabricate ‘swimmers’ and ‘crawlers’, from soft materials which will move independently and travel through liquids or at the bottom of fluidic channels. Not only will these micro-vehicles be able to travel inside fluids, but they will also be able to detect molecules, signal to other vehicles, and repair problems which they encounter. They underpin a key ambition of ChemLife: the realisation of a Biomimetic Toolbox, a library of adaptable vehicles, which can be demonstrated in a wide range of scenarios. The assembly of these micro-vehicles in to ‘smart’ societies which can perform complicated tasks would be a really exciting achievement, with the potential to become a disruptive foundational breakthrough for movement and transport at the micro-scale.
Summary
One of the most interesting properties of living organisms is the way in which they can sense and respond to changes by moving. Movement has been essential to the survival of all life; even units as small as cells can react to different chemicals through movement. This is a phenomenon known as chemotaxis. Bacteria use chemotaxis to find sources of food, while white blood cells use chemotaxis to follow a chemical trail left by a virus, then find it and destroy it. Throughout areas of science, from robotics to drug delivery, if we could mimic a fraction of this fascinating complexity, the possibilities would be endless.
Imagine micro-structured vehicles, which could ‘navigate’ through complex fluidic environments, and could effectively ‘recognise’, ‘sense’, ‘diagnose’ and ‘treat’ a variety of conditions. This is exactly what this proposed project, ChemLife, will explore. I will make smart droplets which travel through complicated mazes by chemotaxis, communicate with each other, and move to find their partners or locate and neutralise a ‘droplet intruder’. Other biological systems have much more complicated means of movement, such as swimming, crawling or gliding along surfaces. In an attempt to replicate this, I will fabricate ‘swimmers’ and ‘crawlers’, from soft materials which will move independently and travel through liquids or at the bottom of fluidic channels. Not only will these micro-vehicles be able to travel inside fluids, but they will also be able to detect molecules, signal to other vehicles, and repair problems which they encounter. They underpin a key ambition of ChemLife: the realisation of a Biomimetic Toolbox, a library of adaptable vehicles, which can be demonstrated in a wide range of scenarios. The assembly of these micro-vehicles in to ‘smart’ societies which can perform complicated tasks would be a really exciting achievement, with the potential to become a disruptive foundational breakthrough for movement and transport at the micro-scale.
Max ERC Funding
1 499 887 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym CIO
Project Common Interactive Objects
Researcher (PI) Susanne Bødker
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), PE6, ERC-2016-ADG
Summary In CIO, common interactive objects are developed and explored to extend human control over the technological environment by human beings, both individually and together. CIO leads to a coherent framework of user interfaces to be applied in interaction design. Common interactive objects will provide a useful frame for furthering human computer interaction (HCI) theory, development of interaction design methods and the underlying technical platforms. Common interactive objects will empower users to better understand and develop the technologies they use.
When carried through, the project offers new ways for people to construct and configure human physical and virtual environments, together, over time and within communities.
The main objectives of CIO are to
1. develop the conception of common interactive objects in order to offer a new understanding of human-computer interaction, focusing on human control.
2. develop support for building user interfaces in a coherent and unified framework.
3. make common interactive objects that will empower users to better understand and develop the technologies they use.
4. carry out ground-breaking research regarding the technological basis of common interactive objects with focus on malleability, control and shareability over time.
CIO is methodologically rooted in HCI. CIO’s research methods combine empirical, analytical, theoretical, and design approaches, all with focus on the relationship between common interactive objects and their human users.
CIO presents the idea that common interactive objects may radically innovate our understanding of use and building user interfaces. The gains of CIO will be a coherent new, high-impact way of understanding and building HCI across physical and virtual structures, bringing control back to the users. The risks are in delivering this alternative in a manner that is able to confront the current strong commercial interests in the Internet-of-Things and the 'new' Artificial Intelligence
Summary
In CIO, common interactive objects are developed and explored to extend human control over the technological environment by human beings, both individually and together. CIO leads to a coherent framework of user interfaces to be applied in interaction design. Common interactive objects will provide a useful frame for furthering human computer interaction (HCI) theory, development of interaction design methods and the underlying technical platforms. Common interactive objects will empower users to better understand and develop the technologies they use.
When carried through, the project offers new ways for people to construct and configure human physical and virtual environments, together, over time and within communities.
The main objectives of CIO are to
1. develop the conception of common interactive objects in order to offer a new understanding of human-computer interaction, focusing on human control.
2. develop support for building user interfaces in a coherent and unified framework.
3. make common interactive objects that will empower users to better understand and develop the technologies they use.
4. carry out ground-breaking research regarding the technological basis of common interactive objects with focus on malleability, control and shareability over time.
CIO is methodologically rooted in HCI. CIO’s research methods combine empirical, analytical, theoretical, and design approaches, all with focus on the relationship between common interactive objects and their human users.
CIO presents the idea that common interactive objects may radically innovate our understanding of use and building user interfaces. The gains of CIO will be a coherent new, high-impact way of understanding and building HCI across physical and virtual structures, bringing control back to the users. The risks are in delivering this alternative in a manner that is able to confront the current strong commercial interests in the Internet-of-Things and the 'new' Artificial Intelligence
Max ERC Funding
2 398 993 €
Duration
Start date: 2017-12-01, End date: 2022-11-30