Project acronym 2-3-AUT
Project Surfaces, 3-manifolds and automorphism groups
Researcher (PI) Nathalie Wahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Summary
The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Max ERC Funding
724 992 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym aCROBAT
Project Circadian Regulation Of Brown Adipose Thermogenesis
Researcher (PI) Zachary Philip Gerhart-Hines
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Summary
Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Max ERC Funding
1 497 008 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym BTVI
Project First Biodegradable Biocatalytic VascularTherapeutic Implants
Researcher (PI) Alexander Zelikin
Host Institution (HI) AARHUS UNIVERSITET
Call Details Consolidator Grant (CoG), PE8, ERC-2013-CoG
Summary "We aim to perform academic development of a novel biomedical opportunity: localized synthesis of drugs within biocatalytic therapeutic vascular implants (BVI) for site-specific drug delivery to target organs and tissues. Primary envisioned targets for therapeutic intervention using BVI are atherosclerosis, viral hepatitis, and hepatocellular carcinoma: three of the most prevalent and debilitating conditions which affect hundreds of millions worldwide and which continue to increase in their importance in the era of increasingly aging population. For hepatic applications, we aim to develop drug eluting beads which are equipped with tools of enzyme-prodrug therapy (EPT) and are administered to the liver via trans-arterial catheter embolization. Therein, the beads perform localized synthesis of drugs and imaging reagents for anticancer combination therapy and theranostics, antiviral and anti-inflammatory agents for the treatment of hepatitis. Further, we conceive vascular therapeutic inserts (VTI) as a novel type of implantable biomaterials for treatment of atherosclerosis and re-endothelialization of vascular stents and grafts. Using EPT, inserts will tame “the guardian of cardiovascular grafts”, nitric oxide, for which localized, site specific synthesis and delivery spell success of therapeutic intervention and/or aided tissue regeneration. This proposal is positioned on the forefront of biomedical engineering and its success requires excellence in polymer chemistry, materials design, medicinal chemistry, and translational medicine. Each part of this proposal - design of novel types of vascular implants, engineering novel biomaterials, developing innovative fabrication and characterization techniques – is of high value for fundamental biomedical sciences. The project is target-oriented and once successful, will be of highest practical value and contribute to increased quality of life of millions of people worldwide."
Summary
"We aim to perform academic development of a novel biomedical opportunity: localized synthesis of drugs within biocatalytic therapeutic vascular implants (BVI) for site-specific drug delivery to target organs and tissues. Primary envisioned targets for therapeutic intervention using BVI are atherosclerosis, viral hepatitis, and hepatocellular carcinoma: three of the most prevalent and debilitating conditions which affect hundreds of millions worldwide and which continue to increase in their importance in the era of increasingly aging population. For hepatic applications, we aim to develop drug eluting beads which are equipped with tools of enzyme-prodrug therapy (EPT) and are administered to the liver via trans-arterial catheter embolization. Therein, the beads perform localized synthesis of drugs and imaging reagents for anticancer combination therapy and theranostics, antiviral and anti-inflammatory agents for the treatment of hepatitis. Further, we conceive vascular therapeutic inserts (VTI) as a novel type of implantable biomaterials for treatment of atherosclerosis and re-endothelialization of vascular stents and grafts. Using EPT, inserts will tame “the guardian of cardiovascular grafts”, nitric oxide, for which localized, site specific synthesis and delivery spell success of therapeutic intervention and/or aided tissue regeneration. This proposal is positioned on the forefront of biomedical engineering and its success requires excellence in polymer chemistry, materials design, medicinal chemistry, and translational medicine. Each part of this proposal - design of novel types of vascular implants, engineering novel biomaterials, developing innovative fabrication and characterization techniques – is of high value for fundamental biomedical sciences. The project is target-oriented and once successful, will be of highest practical value and contribute to increased quality of life of millions of people worldwide."
Max ERC Funding
1 996 126 €
Duration
Start date: 2014-04-01, End date: 2019-09-30
Project acronym BYPASSWITHOUTSURGERY
Project Reaching the effects of gastric bypass on diabetes and obesity without surgery
Researcher (PI) Jens Juul Holst
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), LS4, ERC-2015-AdG
Summary Gastric bypass surgery results in massive weight loss and diabetes remission. The effect is superior to intensive medical treatment, showing that there are mechanisms within the body that can cure diabetes and obesity. Revealing the nature of these mechanisms could lead to new, cost-efficient, similarly effective, non-invasive treatments of these conditions. The hypothesis is that hyper-secretion of a number of gut hormones mediates the effect of surgery, as indicated by a series of our recent studies, demonstrating that hypersecretion of GLP-1, a hormone discovered in my laboratory and basis for the antidiabetic medication of millions of patients, is essential for the improved insulin secretion and glucose tolerance. But what are the mechanisms behind the up to 30-fold elevations in secretion of these hormones following surgery? Constantly with a translational scope, all elements involved in these responses will be addressed in this project, from detailed analysis of food items responsible for hormone secretion, to identification of the responsible regions of the gut, and to the molecular mechanisms leading to hypersecretion. Novel approaches for studies of human gut hormone secreting cells, including specific expression analysis, are combined with our advanced and unique isolated perfused gut preparations, the only tool that can provide physiologically relevant results with a translational potential regarding regulation of hormone secretion in the gut. This will lead to further groundbreaking experimental attempts to mimic and engage the identified mechanisms, creating similar hypersecretion and obtaining similar improvements as the operations in patients with obesity and diabetes. Based on our profound knowledge of gut hormone biology accumulated through decades of intensive and successful research and our successful elucidation of the antidiabetic actions of gastric bypass surgery, we are in a unique position to reach this ambitious goal.
Summary
Gastric bypass surgery results in massive weight loss and diabetes remission. The effect is superior to intensive medical treatment, showing that there are mechanisms within the body that can cure diabetes and obesity. Revealing the nature of these mechanisms could lead to new, cost-efficient, similarly effective, non-invasive treatments of these conditions. The hypothesis is that hyper-secretion of a number of gut hormones mediates the effect of surgery, as indicated by a series of our recent studies, demonstrating that hypersecretion of GLP-1, a hormone discovered in my laboratory and basis for the antidiabetic medication of millions of patients, is essential for the improved insulin secretion and glucose tolerance. But what are the mechanisms behind the up to 30-fold elevations in secretion of these hormones following surgery? Constantly with a translational scope, all elements involved in these responses will be addressed in this project, from detailed analysis of food items responsible for hormone secretion, to identification of the responsible regions of the gut, and to the molecular mechanisms leading to hypersecretion. Novel approaches for studies of human gut hormone secreting cells, including specific expression analysis, are combined with our advanced and unique isolated perfused gut preparations, the only tool that can provide physiologically relevant results with a translational potential regarding regulation of hormone secretion in the gut. This will lead to further groundbreaking experimental attempts to mimic and engage the identified mechanisms, creating similar hypersecretion and obtaining similar improvements as the operations in patients with obesity and diabetes. Based on our profound knowledge of gut hormone biology accumulated through decades of intensive and successful research and our successful elucidation of the antidiabetic actions of gastric bypass surgery, we are in a unique position to reach this ambitious goal.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym C-MORPH
Project Noninvasive cell specific morphometry in neuroinflammation and degeneration
Researcher (PI) Henrik LUNDELL
Host Institution (HI) REGION HOVEDSTADEN
Call Details Starting Grant (StG), LS7, ERC-2018-STG
Summary Brain structure determines function. Disentangling regional microstructural properties and understanding how these properties constitute brain function is a central goal of neuroimaging of the human brain and a key prerequisite for a mechanistic understanding of brain diseases and their treatment. Using magnetic resonance (MR) imaging, previous research has established links between regional brain microstructure and inter-individual variation in brain function, but this line of research has been limited by the non-specificity of MR-derived markers. This hampers the application of MR imaging as a tool to identify specific fingerprints of the underlying disease process.
Exploiting state-of-the-art ultra-high field MR imaging techniques, I have recently developed two independent spectroscopic MR methods that have the potential to tackle this challenge: Powder averaged diffusion weighted spectroscopy (PADWS) can provide an unbiased marker for cell specific structural degeneration, and Spectrally tuned gradient trajectories (STGT) can isolate cell shape and size. In this project, I will harness these innovations for MR-based precision medicine. I will advance PADWS and STGT methodology on state-of-the-art MR hardware and harvest the synergy of these methods to realize Cell-specific in-vivo MORPHOMETRY (C-MORPH) of the intact human brain. I will establish novel MR read-outs and analyses to derive cell-type specific tissue properties in the healthy and diseased brain and validate them with the help of a strong translational experimental framework, including histological validation. Once validated, the experimental methods and analyses will be simplified and adapted to provide clinically applicable tools. This will push the frontiers of MR-based personalized medicine, guiding therapeutic decisions by providing sensitive probes of cell-specific microstructural changes caused by inflammation, neurodegeneration or treatment response.
Summary
Brain structure determines function. Disentangling regional microstructural properties and understanding how these properties constitute brain function is a central goal of neuroimaging of the human brain and a key prerequisite for a mechanistic understanding of brain diseases and their treatment. Using magnetic resonance (MR) imaging, previous research has established links between regional brain microstructure and inter-individual variation in brain function, but this line of research has been limited by the non-specificity of MR-derived markers. This hampers the application of MR imaging as a tool to identify specific fingerprints of the underlying disease process.
Exploiting state-of-the-art ultra-high field MR imaging techniques, I have recently developed two independent spectroscopic MR methods that have the potential to tackle this challenge: Powder averaged diffusion weighted spectroscopy (PADWS) can provide an unbiased marker for cell specific structural degeneration, and Spectrally tuned gradient trajectories (STGT) can isolate cell shape and size. In this project, I will harness these innovations for MR-based precision medicine. I will advance PADWS and STGT methodology on state-of-the-art MR hardware and harvest the synergy of these methods to realize Cell-specific in-vivo MORPHOMETRY (C-MORPH) of the intact human brain. I will establish novel MR read-outs and analyses to derive cell-type specific tissue properties in the healthy and diseased brain and validate them with the help of a strong translational experimental framework, including histological validation. Once validated, the experimental methods and analyses will be simplified and adapted to provide clinically applicable tools. This will push the frontiers of MR-based personalized medicine, guiding therapeutic decisions by providing sensitive probes of cell-specific microstructural changes caused by inflammation, neurodegeneration or treatment response.
Max ERC Funding
1 498 811 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym CABUM
Project An investigation of the mechanisms at the interaction between cavitation bubbles and contaminants
Researcher (PI) Matevz DULAR
Host Institution (HI) UNIVERZA V LJUBLJANI
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary A sudden decrease in pressure triggers the formation of vapour and gas bubbles inside a liquid medium (also called cavitation). This leads to many (key) engineering problems: material loss, noise and vibration of hydraulic machinery. On the other hand, cavitation is a potentially a useful phenomenon: the extreme conditions are increasingly used for a wide variety of applications such as surface cleaning, enhanced chemistry, and waste water treatment (bacteria eradication and virus inactivation).
Despite this significant progress a large gap persists between the understanding of the mechanisms that contribute to the effects of cavitation and its application. Although engineers are already commercializing devices that employ cavitation, we are still not able to answer the fundamental question: What precisely are the mechanisms how bubbles can clean, disinfect, kill bacteria and enhance chemical activity? The overall objective of the project is to understand and determine the fundamental physics of the interaction of cavitation bubbles with different contaminants. To address this issue, the CABUM project will investigate the physical background of cavitation from physical, biological and engineering perspective on three complexity scales: i) on single bubble level, ii) on organised and iii) on random bubble clusters, producing a progressive multidisciplinary synergetic effect.
The proposed synergetic approach builds on the PI's preliminary research and employs novel experimental and numerical methodologies, some of which have been developed by the PI and his research group, to explore the physics of cavitation behaviour in interaction with bacteria and viruses.
Understanding the fundamental physical background of cavitation in interaction with contaminants will have a ground-breaking implications in various scientific fields (engineering, chemistry and biology) and will, in the future, enable the exploitation of cavitation in water and soil treatment processes.
Summary
A sudden decrease in pressure triggers the formation of vapour and gas bubbles inside a liquid medium (also called cavitation). This leads to many (key) engineering problems: material loss, noise and vibration of hydraulic machinery. On the other hand, cavitation is a potentially a useful phenomenon: the extreme conditions are increasingly used for a wide variety of applications such as surface cleaning, enhanced chemistry, and waste water treatment (bacteria eradication and virus inactivation).
Despite this significant progress a large gap persists between the understanding of the mechanisms that contribute to the effects of cavitation and its application. Although engineers are already commercializing devices that employ cavitation, we are still not able to answer the fundamental question: What precisely are the mechanisms how bubbles can clean, disinfect, kill bacteria and enhance chemical activity? The overall objective of the project is to understand and determine the fundamental physics of the interaction of cavitation bubbles with different contaminants. To address this issue, the CABUM project will investigate the physical background of cavitation from physical, biological and engineering perspective on three complexity scales: i) on single bubble level, ii) on organised and iii) on random bubble clusters, producing a progressive multidisciplinary synergetic effect.
The proposed synergetic approach builds on the PI's preliminary research and employs novel experimental and numerical methodologies, some of which have been developed by the PI and his research group, to explore the physics of cavitation behaviour in interaction with bacteria and viruses.
Understanding the fundamental physical background of cavitation in interaction with contaminants will have a ground-breaking implications in various scientific fields (engineering, chemistry and biology) and will, in the future, enable the exploitation of cavitation in water and soil treatment processes.
Max ERC Funding
1 904 565 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym CFS modelling
Project Chromosomal Common Fragile Sites: Unravelling their biological functions and the basis of their instability
Researcher (PI) Andres Joaquin Lopez-Contreras
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary Cancer and other diseases are driven by genomic alterations initiated by DNA breaks. Within our genomes, some regions are particularly prone to breakage, and these are known as common fragile sites (CFSs). CFSs are present in every person and are frequently sites of oncogenic chromosomal rearrangements. Intriguingly, despite their fragility, many CFSs are well conserved through evolution, suggesting that these regions have important physiological functions that remain elusive. My previous background in genome editing, proteomics and replication-born DNA damage has given me the tools to propose an ambitious and comprehensive plan that tackles fundamental questions on the biology of CFSs. First, we will perform a systematic analysis of the function of CFSs. Most of the CFSs contain very large genes, which has made technically difficult to dissect whether the CFS role is due to the locus itself or to the encoded gene product. However, the emergence of the CRISPR/Cas9 technology now enables the study of CFSs on a more systematic basis. We will pioneer the engineering of mammalian models harbouring large deletions at CFS loci to investigate their physiological functions at the cellular and organism levels. For those CFSs that contain genes, the cDNAs will be re-introduced at a distal locus. Using this strategy, we will be able to achieve the first comprehensive characterization of CFS roles. Second, we will develop novel targeted approaches to interrogate the chromatin-bound proteome of CFSs and its dynamics during DNA replication. Finally, and given that CFS fragility is influenced both by cell cycle checkpoints and dNTP availability, we will use mouse models to study the impact of ATR/CHK1 pathway and dNTP levels on CFS instability and cancer. Taken together, I propose an ambitious, yet feasible, project to functionally annotate and characterise these poorly understood regions of the human genome, with important potential implications for improving human health.
Summary
Cancer and other diseases are driven by genomic alterations initiated by DNA breaks. Within our genomes, some regions are particularly prone to breakage, and these are known as common fragile sites (CFSs). CFSs are present in every person and are frequently sites of oncogenic chromosomal rearrangements. Intriguingly, despite their fragility, many CFSs are well conserved through evolution, suggesting that these regions have important physiological functions that remain elusive. My previous background in genome editing, proteomics and replication-born DNA damage has given me the tools to propose an ambitious and comprehensive plan that tackles fundamental questions on the biology of CFSs. First, we will perform a systematic analysis of the function of CFSs. Most of the CFSs contain very large genes, which has made technically difficult to dissect whether the CFS role is due to the locus itself or to the encoded gene product. However, the emergence of the CRISPR/Cas9 technology now enables the study of CFSs on a more systematic basis. We will pioneer the engineering of mammalian models harbouring large deletions at CFS loci to investigate their physiological functions at the cellular and organism levels. For those CFSs that contain genes, the cDNAs will be re-introduced at a distal locus. Using this strategy, we will be able to achieve the first comprehensive characterization of CFS roles. Second, we will develop novel targeted approaches to interrogate the chromatin-bound proteome of CFSs and its dynamics during DNA replication. Finally, and given that CFS fragility is influenced both by cell cycle checkpoints and dNTP availability, we will use mouse models to study the impact of ATR/CHK1 pathway and dNTP levels on CFS instability and cancer. Taken together, I propose an ambitious, yet feasible, project to functionally annotate and characterise these poorly understood regions of the human genome, with important potential implications for improving human health.
Max ERC Funding
1 499 711 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym ChemEpigen
Project The chemical understanding of biomolecular recognition in epigenetics
Researcher (PI) Jasmin MECINOVIC
Host Institution (HI) SYDDANSK UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The ultimate aim of this ERC project is to provide a comprehensive and complete understanding, at the atomic-level of sophistication, of genuinely important biomolecular recognition processes in epigenetics that play key roles in human health and disease. At the biochemical level, epigenetics refers to mechanisms, such as enzymatic modifications of DNA and posttranslational modifications of the associated histone proteins, that regulate the activity of human genes. The proposed work aims to address epigenetics using the physical-organic chemistry approach that enables the elucidation of the elemental processes with unprecedented molecular/atomic detail. The project will experimentally and computationally examine non-covalent interactions between three essential constituents of the epigenetic biomolecular system, namely epigenetic proteins, histones and water, at the level of short histone peptides, intact histone proteins, the nucleosome assembly and nucleosome arrays. Our programme, built on synergistic thermodynamic, structural and computational studies, aims to unravel i) the underlying chemical origin of methyllysine-containing histones in epigenetics, ii) the chemical basis for the recognition of methylarginine-containing histones in epigenetic processes, and iii) the role of unstructured histone tails in biomolecular recognition, which together form the three main structural elements found in the epigenetic framework. Results from this work will be important from both a fundamental molecular perspective as well as from the biomedical perspective, because proteins involved in epigenetic regulation processes are currently regarded as important targets for numerous therapeutic interventions, most notably for cancer treatment.
Summary
The ultimate aim of this ERC project is to provide a comprehensive and complete understanding, at the atomic-level of sophistication, of genuinely important biomolecular recognition processes in epigenetics that play key roles in human health and disease. At the biochemical level, epigenetics refers to mechanisms, such as enzymatic modifications of DNA and posttranslational modifications of the associated histone proteins, that regulate the activity of human genes. The proposed work aims to address epigenetics using the physical-organic chemistry approach that enables the elucidation of the elemental processes with unprecedented molecular/atomic detail. The project will experimentally and computationally examine non-covalent interactions between three essential constituents of the epigenetic biomolecular system, namely epigenetic proteins, histones and water, at the level of short histone peptides, intact histone proteins, the nucleosome assembly and nucleosome arrays. Our programme, built on synergistic thermodynamic, structural and computational studies, aims to unravel i) the underlying chemical origin of methyllysine-containing histones in epigenetics, ii) the chemical basis for the recognition of methylarginine-containing histones in epigenetic processes, and iii) the role of unstructured histone tails in biomolecular recognition, which together form the three main structural elements found in the epigenetic framework. Results from this work will be important from both a fundamental molecular perspective as well as from the biomedical perspective, because proteins involved in epigenetic regulation processes are currently regarded as important targets for numerous therapeutic interventions, most notably for cancer treatment.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym CHILDGROWTH2CANCER
Project Childhood body size, growth and pubertal timing and the risk of cancer in adulthood
Researcher (PI) Jennifer Lyn Baker
Host Institution (HI) REGION HOVEDSTADEN
Call Details Starting Grant (StG), LS7, ERC-2011-StG_20101109
Summary The goal of the proposed research is to examine how the independent and combined effects of childhood adiposity (assessed by body mass index [BMI]; kg/m2) height, change in BMI and height, and pubertal timing from the ages of 7 to 13 years are associated with the risk of cancer incidence in adulthood. Greater body size (adipose tissue and different types of lean tissue) reflecting past or ongoing growth may increase the risk of cancer in individuals as greater numbers of proliferating cells increase the risk that mutations leading to the subsequent development of cancer occur. As childhood is a period of growth, it is plausible that it is of particular relevance for the early establishment of the risk of cancer.
Data from the Copenhagen School Health Records Register, which is based on a population of schoolchildren born between 1930-1983 and contains computerised weight and height measurements on >350.000 boys and girls in the capital city of Denmark, as well as data from other cohorts will be used. Survival analysis techniques and the newly developed Dynamic Path Analysis model will be used to examine how body size (BMI and height) at each age from 7 to 13 years as well as change in body size during this period is associated with the risk of multiple forms of cancer in adulthood with a simultaneous exploration of the effects of birth weight and pubertal timing. Additionally, potential effects of childhood and adult health and social circumstances will be investigated in sub-cohorts with this information available.
Results from this research will demonstrate if childhood is a critical period for the establishment of the risk for cancer in adulthood and will lead into mechanistic explorations of the associations at the biological level, investigations into associations between childhood body size and mortality and contribute to developing improved definitions of childhood overweight and obesity that are based upon long-term health outcomes.
Summary
The goal of the proposed research is to examine how the independent and combined effects of childhood adiposity (assessed by body mass index [BMI]; kg/m2) height, change in BMI and height, and pubertal timing from the ages of 7 to 13 years are associated with the risk of cancer incidence in adulthood. Greater body size (adipose tissue and different types of lean tissue) reflecting past or ongoing growth may increase the risk of cancer in individuals as greater numbers of proliferating cells increase the risk that mutations leading to the subsequent development of cancer occur. As childhood is a period of growth, it is plausible that it is of particular relevance for the early establishment of the risk of cancer.
Data from the Copenhagen School Health Records Register, which is based on a population of schoolchildren born between 1930-1983 and contains computerised weight and height measurements on >350.000 boys and girls in the capital city of Denmark, as well as data from other cohorts will be used. Survival analysis techniques and the newly developed Dynamic Path Analysis model will be used to examine how body size (BMI and height) at each age from 7 to 13 years as well as change in body size during this period is associated with the risk of multiple forms of cancer in adulthood with a simultaneous exploration of the effects of birth weight and pubertal timing. Additionally, potential effects of childhood and adult health and social circumstances will be investigated in sub-cohorts with this information available.
Results from this research will demonstrate if childhood is a critical period for the establishment of the risk for cancer in adulthood and will lead into mechanistic explorations of the associations at the biological level, investigations into associations between childhood body size and mortality and contribute to developing improved definitions of childhood overweight and obesity that are based upon long-term health outcomes.
Max ERC Funding
1 199 998 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym CHILIC
Project Child health intervention interactions in low-income countries
Researcher (PI) Christine Benn
Host Institution (HI) STATENS SERUM INSTITUT
Call Details Starting Grant (StG), LS7, ERC-2009-StG
Summary Vitamin A supplementation (VAS) and vaccines are the most powerful tools to reduce child mortality in low-income countries. However, we may not use these interventions optimally because we disregard that the interventions may have immunomodulatory effects which differ for boys and girls and which may interact with the effects of other interventions. I have proposed the hypothesis that VAS and vaccines interact. This hypothesis is supported by randomised and observational studies showing that the combination of VAS and DTP may be harmful. I have furthermore proposed that VAS has sex-differential effects. VAS seems beneficial for boys but may not carry any benefits for girls. These findings challenge the current understanding that VAS and vaccines have only targeted effects and can be given together without considering interactions. This is of outmost importance for policy makers. The global trend is to combine health interventions for logistic reasons. My research suggests that this may not always be a good idea. Furthermore, the concept of sex-differential response to our common health interventions opens up for a completely new understanding of the immunology of the two sexes and may imply that we need to treat the two sexes differently in order to treat them optimally possibly also in high-income countries. In the present proposal I outline a series of inter-disciplinary epidemiological and immunological studies, which will serve to determine the overall and sex-differential effects of VAS and vaccines, the mechanisms behind these effects, and the basis for the immunological difference between boys and girls. If my hypotheses are true we can use the existing tools in a more optimal way to reduce child mortality without increasing costs. Thus, the results could lead to shifts in policy as well as paradigms.
Summary
Vitamin A supplementation (VAS) and vaccines are the most powerful tools to reduce child mortality in low-income countries. However, we may not use these interventions optimally because we disregard that the interventions may have immunomodulatory effects which differ for boys and girls and which may interact with the effects of other interventions. I have proposed the hypothesis that VAS and vaccines interact. This hypothesis is supported by randomised and observational studies showing that the combination of VAS and DTP may be harmful. I have furthermore proposed that VAS has sex-differential effects. VAS seems beneficial for boys but may not carry any benefits for girls. These findings challenge the current understanding that VAS and vaccines have only targeted effects and can be given together without considering interactions. This is of outmost importance for policy makers. The global trend is to combine health interventions for logistic reasons. My research suggests that this may not always be a good idea. Furthermore, the concept of sex-differential response to our common health interventions opens up for a completely new understanding of the immunology of the two sexes and may imply that we need to treat the two sexes differently in order to treat them optimally possibly also in high-income countries. In the present proposal I outline a series of inter-disciplinary epidemiological and immunological studies, which will serve to determine the overall and sex-differential effects of VAS and vaccines, the mechanisms behind these effects, and the basis for the immunological difference between boys and girls. If my hypotheses are true we can use the existing tools in a more optimal way to reduce child mortality without increasing costs. Thus, the results could lead to shifts in policy as well as paradigms.
Max ERC Funding
1 686 043 €
Duration
Start date: 2010-01-01, End date: 2014-12-31