Project acronym C8
Project Consistent computation of the chemistry-cloud continuum and climate change in Cyprus
Researcher (PI) Johannes Lelieveld
Host Institution (HI) THE CYPRUS RESEARCH AND EDUCATIONAL FOUNDATION
Call Details Advanced Grant (AdG), PE10, ERC-2008-AdG
Summary We have developed a new numerical method to consistently compute atmospheric trace gas and aerosol chemistry and cloud processes. The method is computationally efficient so that it can be used in climate models. For the first time cloud droplet formation on multi-component particles can be represented based on first principles rather than parameterisations. This allows for a direct coupling in models between aerosol chemical composition and the continuum between hazes and clouds as a function of ambient relative humidity. We will apply the method in a new nested global-limited area model system to study atmospheric chemistry climate interactions and anthropogenic influences. We will focus on the Mediterranean region because it is a hot spot in climate change exposed to drying and air pollution. The limited area model will also be applied as cloud-resolving model to study aerosol influences on precipitation and storm development. By simulating realistic meteorological conditions at high spatial resolution our method can be straightforwardly tested against observations. Central questions are: - How does the simulated haze-cloud continuum compare with remote sensing measurements and what is the consequence of abandoning the traditional and artificial distinction between aerosols and clouds? - How are cloud and precipitation formation influenced by atmospheric chemical composition changes? - To what extent do haze and cloud formation in polluted air exert forcings of synoptic meteorological conditions and climate? - Can aerosol pollution in the Mediterranean region exacerbate the predicted and observed drying in a changing climate? The model system is user-friendly and will facilitate air quality and climate studies by regional scientists. The project will be part of the Energy, Environment and Water Centre of the newly founded Cyprus Institute, provide input to climate impact assessments and contribute to a regional outreach programme.
Summary
We have developed a new numerical method to consistently compute atmospheric trace gas and aerosol chemistry and cloud processes. The method is computationally efficient so that it can be used in climate models. For the first time cloud droplet formation on multi-component particles can be represented based on first principles rather than parameterisations. This allows for a direct coupling in models between aerosol chemical composition and the continuum between hazes and clouds as a function of ambient relative humidity. We will apply the method in a new nested global-limited area model system to study atmospheric chemistry climate interactions and anthropogenic influences. We will focus on the Mediterranean region because it is a hot spot in climate change exposed to drying and air pollution. The limited area model will also be applied as cloud-resolving model to study aerosol influences on precipitation and storm development. By simulating realistic meteorological conditions at high spatial resolution our method can be straightforwardly tested against observations. Central questions are: - How does the simulated haze-cloud continuum compare with remote sensing measurements and what is the consequence of abandoning the traditional and artificial distinction between aerosols and clouds? - How are cloud and precipitation formation influenced by atmospheric chemical composition changes? - To what extent do haze and cloud formation in polluted air exert forcings of synoptic meteorological conditions and climate? - Can aerosol pollution in the Mediterranean region exacerbate the predicted and observed drying in a changing climate? The model system is user-friendly and will facilitate air quality and climate studies by regional scientists. The project will be part of the Energy, Environment and Water Centre of the newly founded Cyprus Institute, provide input to climate impact assessments and contribute to a regional outreach programme.
Max ERC Funding
2 196 000 €
Duration
Start date: 2009-01-01, End date: 2014-12-31
Project acronym ReEngineeringCancer
Project Re-engineering the tumor microenvironment to alleviate mechanical stresses and improve chemotherapy
Researcher (PI) Triantafyllos Stylianopoulos
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary Current chemotherapeutic agents are potent enough to kill cancer cells. Nonetheless, failure of chemotherapies for many cancers (e.g. breast and pancreatic cancers and various sarcomas) is primarily because these agents cannot reach cancer cells in amounts sufficient to cause complete cure. The abnormal microenvironment of these tumors drastically reduces perfusion and results in insufficient delivery of therapeutic agents. Tumor structural abnormalities is in large part an effect of mechanical stresses developed within the tumor due to unchecked cancer cell proliferation that strains the tumor microenvironment. Alleviation of these stresses has the potential to normalize the tumor, enhance delivery of drugs and improve treatment efficacy. Here, I propose to test the hypothesis that re-engineering the tumor microenvironment with stress-alleviating drugs has the potential to enhance chemotherapy. To explore this hypothesis, I will make use of a mixture of cutting-edge computational and experimental techniques. I will develop sophisticated models for the biomechanical response of tumors to analyze how stresses are generated and transmitted during tumor progression. Subsequently, I will perform animal studies to validate model predictions and indentify the drug that more effectively alleviates stress levels, normalizes the tumor microenvironment and improves chemotherapy. Successful completion of this research will reveal the mechanisms for stress generation and storage in tumors and will lead to new strategies for the use of chemotherapy.
Summary
Current chemotherapeutic agents are potent enough to kill cancer cells. Nonetheless, failure of chemotherapies for many cancers (e.g. breast and pancreatic cancers and various sarcomas) is primarily because these agents cannot reach cancer cells in amounts sufficient to cause complete cure. The abnormal microenvironment of these tumors drastically reduces perfusion and results in insufficient delivery of therapeutic agents. Tumor structural abnormalities is in large part an effect of mechanical stresses developed within the tumor due to unchecked cancer cell proliferation that strains the tumor microenvironment. Alleviation of these stresses has the potential to normalize the tumor, enhance delivery of drugs and improve treatment efficacy. Here, I propose to test the hypothesis that re-engineering the tumor microenvironment with stress-alleviating drugs has the potential to enhance chemotherapy. To explore this hypothesis, I will make use of a mixture of cutting-edge computational and experimental techniques. I will develop sophisticated models for the biomechanical response of tumors to analyze how stresses are generated and transmitted during tumor progression. Subsequently, I will perform animal studies to validate model predictions and indentify the drug that more effectively alleviates stress levels, normalizes the tumor microenvironment and improves chemotherapy. Successful completion of this research will reveal the mechanisms for stress generation and storage in tumors and will lead to new strategies for the use of chemotherapy.
Max ERC Funding
1 440 360 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym Sol-Pro
Project Solution Processed Next Generation Photovoltaics
Researcher (PI) Stylianos (Stelios) Choulis
Host Institution (HI) TECHNOLOGIKO PANEPISTIMIO KYPROU
Call Details Consolidator Grant (CoG), PE8, ERC-2014-CoG
Summary The profound advantages of printed photovoltaics (PVs), such as their light weight, mechanical flexibility in addition to the small energy demand, and low cost equipment requirements for roll-to-roll mass production, characterise them as a dominant candidate source for future electrical power. Over the last few years, the discovery of novel solution processed electronic materials and device structures boosted PV power conversion efficiency values. Despite that, power conversion efficiency is not a 'stand-alone' product development target for next generation PVs. Lifetime, cost, flexibility and non-toxicity have to be equally considered, regarding the technological progress of solution processed PVs. The ambit of the Sol-Pro research programme is to re-design solution processed PV components relevant to the above product development targets. Based on this, processing specifications as a function of the electronic material properties will be established and provide valuable input for flexible PV applications. Adjusting the material characteristics and device design is crucial to achieve the proposed high performance PV targets. As a consequence, a number of high-level objectives concerning processing/materials/electrodes/interfaces, relevant to product development targets of next generation solution processed PVs, are aimed for within the proposed ERC programme.
Summary
The profound advantages of printed photovoltaics (PVs), such as their light weight, mechanical flexibility in addition to the small energy demand, and low cost equipment requirements for roll-to-roll mass production, characterise them as a dominant candidate source for future electrical power. Over the last few years, the discovery of novel solution processed electronic materials and device structures boosted PV power conversion efficiency values. Despite that, power conversion efficiency is not a 'stand-alone' product development target for next generation PVs. Lifetime, cost, flexibility and non-toxicity have to be equally considered, regarding the technological progress of solution processed PVs. The ambit of the Sol-Pro research programme is to re-design solution processed PV components relevant to the above product development targets. Based on this, processing specifications as a function of the electronic material properties will be established and provide valuable input for flexible PV applications. Adjusting the material characteristics and device design is crucial to achieve the proposed high performance PV targets. As a consequence, a number of high-level objectives concerning processing/materials/electrodes/interfaces, relevant to product development targets of next generation solution processed PVs, are aimed for within the proposed ERC programme.
Max ERC Funding
1 840 940 €
Duration
Start date: 2015-07-01, End date: 2020-06-30