Project acronym AFRICA-GHG
Project AFRICA-GHG: The role of African tropical forests on the Greenhouse Gases balance of the atmosphere
Researcher (PI) Riccardo Valentini
Host Institution (HI) FONDAZIONE CENTRO EURO-MEDITERRANEOSUI CAMBIAMENTI CLIMATICI
Call Details Advanced Grant (AdG), PE10, ERC-2009-AdG
Summary The role of the African continent in the global carbon cycle, and therefore in climate change, is increasingly recognised. Despite the increasingly acknowledged importance of Africa in the global carbon cycle and its high vulnerability to climate change there is still a lack of studies on the carbon cycle in representative African ecosystems (in particular tropical forests), and on the effects of climate on ecosystem-atmosphere exchange. In the present proposal we want to focus on these spoecifc objectives : 1. Understand the role of African tropical rainforest on the GHG balance of the atmosphere and revise their role on the global methane and N2O emissions. 2. Determine the carbon source/sink strength of African tropical rainforest in the pre-industrial versus the XXth century by temporal reconstruction of biomass growth with biogeochemical markers 3. Understand and quantify carbon and GHG fluxes variability across African tropical forests (west east equatorial belt) 4.Analyse the impact of forest degradation and deforestation on carbon and other GHG emissions
Summary
The role of the African continent in the global carbon cycle, and therefore in climate change, is increasingly recognised. Despite the increasingly acknowledged importance of Africa in the global carbon cycle and its high vulnerability to climate change there is still a lack of studies on the carbon cycle in representative African ecosystems (in particular tropical forests), and on the effects of climate on ecosystem-atmosphere exchange. In the present proposal we want to focus on these spoecifc objectives : 1. Understand the role of African tropical rainforest on the GHG balance of the atmosphere and revise their role on the global methane and N2O emissions. 2. Determine the carbon source/sink strength of African tropical rainforest in the pre-industrial versus the XXth century by temporal reconstruction of biomass growth with biogeochemical markers 3. Understand and quantify carbon and GHG fluxes variability across African tropical forests (west east equatorial belt) 4.Analyse the impact of forest degradation and deforestation on carbon and other GHG emissions
Max ERC Funding
2 406 950 €
Duration
Start date: 2010-04-01, End date: 2014-12-31
Project acronym ASC3
Project Asymmetric Cluster Catalysis & Chemistry
Researcher (PI) Ulrich Kaspar Heiz
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE4, ERC-2009-AdG
Summary The objective of the present scientific proposal is the implementation of a novel approach in selective and asymmetric heterogeneous catalysis. We aim to exploit the structure and chirality of small, supported metal and bimetal clusters for triggering selective and enantioselective reactions. Our Ansatz is beyond doubt of fundamental nature. Although chemistry and in particular catalysis evolved on a largely empirical basis in the past, we strongly believe the complexity of the challenges at hand to make this a less ideal approach. In consequence, developing selective and asymmetric cluster catalysis will be based on a detailed molecular understanding and will not only require intense methodological developments for the synthesis and characterization of asymmetric catalysts and the detection of chiral and isomeric product molecules but also make use of innovative basic science in the fields of surface chemistry, cluster science, spectroscopy and kinetics. As complex as the involved challenges are, we aim at mastering the following ground-breaking steps: (a) development of cutting-edge spectroscopic methodologies for the isomer and enantiomer sensitive in situ detection of product molecules. (b) preparation and characterization of isomer- and enantioselective heterogeneous catalysts based on chiral metal clusters or molecule-cluster-complexes. (c) investigations of the selectivity and enantioselectivity of cluster based heterogeneous catalysts and formulation of concepts for understanding the observed selective and asymmetric chemistry.
Besides the importance of the science carried out within this proposal, the proposed experimental methodology will also open up opportunities in other fields of chemistry like catalysis, analytical chemistry, spectroscopy, surface science, and nanomaterials.
Summary
The objective of the present scientific proposal is the implementation of a novel approach in selective and asymmetric heterogeneous catalysis. We aim to exploit the structure and chirality of small, supported metal and bimetal clusters for triggering selective and enantioselective reactions. Our Ansatz is beyond doubt of fundamental nature. Although chemistry and in particular catalysis evolved on a largely empirical basis in the past, we strongly believe the complexity of the challenges at hand to make this a less ideal approach. In consequence, developing selective and asymmetric cluster catalysis will be based on a detailed molecular understanding and will not only require intense methodological developments for the synthesis and characterization of asymmetric catalysts and the detection of chiral and isomeric product molecules but also make use of innovative basic science in the fields of surface chemistry, cluster science, spectroscopy and kinetics. As complex as the involved challenges are, we aim at mastering the following ground-breaking steps: (a) development of cutting-edge spectroscopic methodologies for the isomer and enantiomer sensitive in situ detection of product molecules. (b) preparation and characterization of isomer- and enantioselective heterogeneous catalysts based on chiral metal clusters or molecule-cluster-complexes. (c) investigations of the selectivity and enantioselectivity of cluster based heterogeneous catalysts and formulation of concepts for understanding the observed selective and asymmetric chemistry.
Besides the importance of the science carried out within this proposal, the proposed experimental methodology will also open up opportunities in other fields of chemistry like catalysis, analytical chemistry, spectroscopy, surface science, and nanomaterials.
Max ERC Funding
2 301 600 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym CCMP
Project Physics Of Magma Propagation and Emplacement: a multi-methodological Investigation
Researcher (PI) Eleonora Rivalta
Host Institution (HI) HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ
Call Details Starting Grant (StG), PE10, ERC-2009-StG
Summary Dikes and sills are large sheet-like intrusions transporting and storing magma in the Earth’s crust.
When propagating, they generate seismicity and deformation and may lead to volcanic eruption. The physics of magma-filled structures is similar to that of any fluid-filled reservoir, such as oil fields and CO2 reservoirs created by sequestration. This project aims to address old and new unresolved challenging questions related to dike propagation, sill emplacement and in general to the dynamics of fluid and gas-filled reservoirs. I propose to focus on crustal deformation, induced seismicity and external stress fields to study the signals dikes
and sills produce, how they grow and why they reactivate after years of non-detected activity. I will combine experimental, numerical and analytical techniques, in close cooperation with volcano observatories providing us with the data necessary to validate our models. In the lab, I will simulate magma propagation injecting fluid into solidified gelatin. I will also contribute to a project, currently under evaluation, on the monitoring of a CO2
sequestration site. At the same time, I will address theoretical aspects, extending static models to dynamic cases and eventually developing a comprehensive picture of the multi faceted interaction between external stress field,
magma and rock properties, crustal deformation and seismicity. I also plan, besides presenting my team’s work in the major national and international geophysical conferences, to produce, with technical support from the media services of DKRZ (Deutsches Klimarechenzentrum), an audiovisual teaching DVD illustrating scientific advances and unresolved issues in magma dynamics, in the prediction of eruptive activity and in the physics of reservoirs.
Summary
Dikes and sills are large sheet-like intrusions transporting and storing magma in the Earth’s crust.
When propagating, they generate seismicity and deformation and may lead to volcanic eruption. The physics of magma-filled structures is similar to that of any fluid-filled reservoir, such as oil fields and CO2 reservoirs created by sequestration. This project aims to address old and new unresolved challenging questions related to dike propagation, sill emplacement and in general to the dynamics of fluid and gas-filled reservoirs. I propose to focus on crustal deformation, induced seismicity and external stress fields to study the signals dikes
and sills produce, how they grow and why they reactivate after years of non-detected activity. I will combine experimental, numerical and analytical techniques, in close cooperation with volcano observatories providing us with the data necessary to validate our models. In the lab, I will simulate magma propagation injecting fluid into solidified gelatin. I will also contribute to a project, currently under evaluation, on the monitoring of a CO2
sequestration site. At the same time, I will address theoretical aspects, extending static models to dynamic cases and eventually developing a comprehensive picture of the multi faceted interaction between external stress field,
magma and rock properties, crustal deformation and seismicity. I also plan, besides presenting my team’s work in the major national and international geophysical conferences, to produce, with technical support from the media services of DKRZ (Deutsches Klimarechenzentrum), an audiovisual teaching DVD illustrating scientific advances and unresolved issues in magma dynamics, in the prediction of eruptive activity and in the physics of reservoirs.
Max ERC Funding
1 507 679 €
Duration
Start date: 2010-07-01, End date: 2015-06-30
Project acronym COGSYSTEMS
Project Understanding actions and intentions of others
Researcher (PI) Giacomo Rizzolatti
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PARMA
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary How do we understand the actions and intentions of others? Hereby we intend to address this issue by using a multidisciplinary approach. Our project is subdivided into four parts. In the first part we investigate the neural organization of monkey area F5, an area deeply involved in motor act understanding. By using a new set of electrodes we will describe the columnar organization of the area F5, establish the temporal relationships between the activity of F5 mirror and motor neurons, and correlate the activity of mirror neurons coding the observed motor acts in peripersonal and extrapersonal space with the activity of motor neurons in the same cortical column. In the second part we will assess the neural mechanism underlying the understanding of the intention of complex actions , i.e. actions formed by a sequence of two (or more) individual actions. The focus will be on the neurons located in ventrolateral prefrontal cortex, an area involved in the organization of high-order motor behavior. The rational of the experiment is that, while the organization of single actions and the understanding of intention behind them is function of parietal neurons, that of complex actions relies on the activity of the prefrontal lobe. In the third and fourth parts of the project we will delimit the cortical areas involved in understanding the goal (the what) and the intention (the why) of the observed actions in individuals with typical development (TD) and in children with autism and will establish the time relation between these two processes. Our hypothesis is that the chained organization of intentional motor acts is impaired in children with autism and this impairment prevents them from organizing normally their actions and from understanding others intentions.
Summary
How do we understand the actions and intentions of others? Hereby we intend to address this issue by using a multidisciplinary approach. Our project is subdivided into four parts. In the first part we investigate the neural organization of monkey area F5, an area deeply involved in motor act understanding. By using a new set of electrodes we will describe the columnar organization of the area F5, establish the temporal relationships between the activity of F5 mirror and motor neurons, and correlate the activity of mirror neurons coding the observed motor acts in peripersonal and extrapersonal space with the activity of motor neurons in the same cortical column. In the second part we will assess the neural mechanism underlying the understanding of the intention of complex actions , i.e. actions formed by a sequence of two (or more) individual actions. The focus will be on the neurons located in ventrolateral prefrontal cortex, an area involved in the organization of high-order motor behavior. The rational of the experiment is that, while the organization of single actions and the understanding of intention behind them is function of parietal neurons, that of complex actions relies on the activity of the prefrontal lobe. In the third and fourth parts of the project we will delimit the cortical areas involved in understanding the goal (the what) and the intention (the why) of the observed actions in individuals with typical development (TD) and in children with autism and will establish the time relation between these two processes. Our hypothesis is that the chained organization of intentional motor acts is impaired in children with autism and this impairment prevents them from organizing normally their actions and from understanding others intentions.
Max ERC Funding
1 992 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym COMBOS
Project Collective phenomena in quantum and classical many body systems
Researcher (PI) Alessandro Giuliani
Host Institution (HI) UNIVERSITA DEGLI STUDI ROMA TRE
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The collective behavior of quantum and classical many body systems such as ultracold atomic gases, nanowires, cuprates and micromagnets are currently subject of an intense experimental and theoretical research worldwide. Understanding the fascinating phenomena of Bose-Einstein condensation, Luttinger liquid vs non-Luttinger liquid behavior, high temperature superconductivity, and spontaneous formation of periodic patterns in magnetic systems, is an exciting challenge for theoreticians. Most of these phenomena are still far from being fully understood, even from a heuristic point of view. Unveiling the exotic properties of such systems by rigorous mathematical analysis is an important and difficult challenge for mathematical physics. In the last two decades, substantial progress has been made on various aspects of many-body theory, including Fermi liquids, Luttinger liquids, perturbed Ising models at criticality, bosonization, trapped Bose gases and spontaneous formation of periodic patterns. The techniques successfully employed in this field are diverse, and range from constructive renormalization group to functional variational estimates. In this research project we propose to investigate a number of statistical mechanics models by a combination of different mathematical methods. The objective is, on the one hand, to understand crossover phenomena, phase transitions and low-temperature states with broken symmetry, which are of interest in the theory of condensed matter and that we believe to be accessible to the currently available methods; on the other, to develop new techiques combining different and complementary methods, such as multiscale analysis and localization bounds, or reflection positivity and cluster expansion, which may be useful to further progress on important open problems, such as Bose-Einstein condensation, conformal invariance in non-integrable models, existence of magnetic or superconducting long range order.
Summary
The collective behavior of quantum and classical many body systems such as ultracold atomic gases, nanowires, cuprates and micromagnets are currently subject of an intense experimental and theoretical research worldwide. Understanding the fascinating phenomena of Bose-Einstein condensation, Luttinger liquid vs non-Luttinger liquid behavior, high temperature superconductivity, and spontaneous formation of periodic patterns in magnetic systems, is an exciting challenge for theoreticians. Most of these phenomena are still far from being fully understood, even from a heuristic point of view. Unveiling the exotic properties of such systems by rigorous mathematical analysis is an important and difficult challenge for mathematical physics. In the last two decades, substantial progress has been made on various aspects of many-body theory, including Fermi liquids, Luttinger liquids, perturbed Ising models at criticality, bosonization, trapped Bose gases and spontaneous formation of periodic patterns. The techniques successfully employed in this field are diverse, and range from constructive renormalization group to functional variational estimates. In this research project we propose to investigate a number of statistical mechanics models by a combination of different mathematical methods. The objective is, on the one hand, to understand crossover phenomena, phase transitions and low-temperature states with broken symmetry, which are of interest in the theory of condensed matter and that we believe to be accessible to the currently available methods; on the other, to develop new techiques combining different and complementary methods, such as multiscale analysis and localization bounds, or reflection positivity and cluster expansion, which may be useful to further progress on important open problems, such as Bose-Einstein condensation, conformal invariance in non-integrable models, existence of magnetic or superconducting long range order.
Max ERC Funding
650 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym CONLAWS
Project Hyperbolic Systems of Conservation Laws: singular limits, properties of solutions and control problems
Researcher (PI) Stefano Bianchini
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The research program concerns various theoretic aspects of hyperbolic conservation laws. In first place we plan to study the existence and uniqueness of solutions to systems of equations of mathematical physics with physic viscosity. This is one of the main open problems within the theory of conservation laws in one space dimension, which cannot be tackled relying on the techniques developed in the case where the viscosity matrix is the identity. Furthermore, this represents a first step toward the analysis of more complex relaxation and kinetic models with a finite number of velocities as for Broadwell equation, or with a continuous distribution of velocities as for Boltzmann equation. A second research topic concerns the study of conservation laws with large data. Even in this case the basic model is provided by fluidodynamic equations. We wish to extend the results of existence, uniqueness and continuous dependence of solutions to the case of large (in BV or in L^infty) data, at least for the simplest systems of mathematical physics such as the isentropic gas dynamics. A third research topic that we wish to pursue concerns the analysis of fine properties of solutions to conservation laws. Many of such properties depend on the existence of one or more entropies of the system. In particular, we have in mind to study the regularity and the concentration of the dissipativity measure for an entropic solution of a system of conservation laws. Finally, we wish to continue the study of hyperbolic equations from the control theory point of view along two directions: (i) the analysis of controllability and asymptotic stabilizability properties; (ii) the study of optimal control problems related to hyperbolic systems.
Summary
The research program concerns various theoretic aspects of hyperbolic conservation laws. In first place we plan to study the existence and uniqueness of solutions to systems of equations of mathematical physics with physic viscosity. This is one of the main open problems within the theory of conservation laws in one space dimension, which cannot be tackled relying on the techniques developed in the case where the viscosity matrix is the identity. Furthermore, this represents a first step toward the analysis of more complex relaxation and kinetic models with a finite number of velocities as for Broadwell equation, or with a continuous distribution of velocities as for Boltzmann equation. A second research topic concerns the study of conservation laws with large data. Even in this case the basic model is provided by fluidodynamic equations. We wish to extend the results of existence, uniqueness and continuous dependence of solutions to the case of large (in BV or in L^infty) data, at least for the simplest systems of mathematical physics such as the isentropic gas dynamics. A third research topic that we wish to pursue concerns the analysis of fine properties of solutions to conservation laws. Many of such properties depend on the existence of one or more entropies of the system. In particular, we have in mind to study the regularity and the concentration of the dissipativity measure for an entropic solution of a system of conservation laws. Finally, we wish to continue the study of hyperbolic equations from the control theory point of view along two directions: (i) the analysis of controllability and asymptotic stabilizability properties; (ii) the study of optimal control problems related to hyperbolic systems.
Max ERC Funding
422 000 €
Duration
Start date: 2009-11-01, End date: 2013-10-31
Project acronym CONVEXVISION
Project Convex Optimization Methods for Computer Vision and Image Analysis
Researcher (PI) Daniel Cremers
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE6, ERC-2009-StG
Summary Optimization methods have become an established paradigm to address most Computer Vision challenges including the
reconstruction of three-dimensional objects from multiple images, or the tracking of a deformable shape over time. Yet, it has
been largely overlooked that optimization approaches are practically useless if they do not come with efficient algorithms to
compute minimizers of respective energies. Most existing formulations give rise to non-convex energies. As a consequence,
solutions highly depend on the choice of minimization scheme and implementational (initialization, time step sizes, etc.), with
little or no guarantees regarding the quality of computed solutions and their robustness to perturbations of the input data.
In the proposed research project, we plan to develop optimization methods for Computer Vision which allow to efficiently
compute globally optimal solutions. Preliminary results indicate that this will drastically leverage the power of optimization
methods and their applicability in a substantially broader context. Specifically we will focus on three lines of research: 1) We
will develop convex formulations for a variety of challenges. While convex formulations are currently being developed for
low-level problems such as image segmentation, our main effort will focus on carrying convex optimization to higher level
problems of image understanding and scene interpretation. 2) We will investigate alternative strategies of global optimization
by means of discrete graph theoretic methods. We will characterize advantages and drawbacks of continuous and discrete
methods and thereby develop novel algorithms combining the advantages of both approaches. 3) We will go beyond convex
formulations, developing relaxation schemes that compute near-optimal solutions for problems that cannot be expressed by
convex functionals.
Summary
Optimization methods have become an established paradigm to address most Computer Vision challenges including the
reconstruction of three-dimensional objects from multiple images, or the tracking of a deformable shape over time. Yet, it has
been largely overlooked that optimization approaches are practically useless if they do not come with efficient algorithms to
compute minimizers of respective energies. Most existing formulations give rise to non-convex energies. As a consequence,
solutions highly depend on the choice of minimization scheme and implementational (initialization, time step sizes, etc.), with
little or no guarantees regarding the quality of computed solutions and their robustness to perturbations of the input data.
In the proposed research project, we plan to develop optimization methods for Computer Vision which allow to efficiently
compute globally optimal solutions. Preliminary results indicate that this will drastically leverage the power of optimization
methods and their applicability in a substantially broader context. Specifically we will focus on three lines of research: 1) We
will develop convex formulations for a variety of challenges. While convex formulations are currently being developed for
low-level problems such as image segmentation, our main effort will focus on carrying convex optimization to higher level
problems of image understanding and scene interpretation. 2) We will investigate alternative strategies of global optimization
by means of discrete graph theoretic methods. We will characterize advantages and drawbacks of continuous and discrete
methods and thereby develop novel algorithms combining the advantages of both approaches. 3) We will go beyond convex
formulations, developing relaxation schemes that compute near-optimal solutions for problems that cannot be expressed by
convex functionals.
Max ERC Funding
1 985 400 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym CRITICALBRAINCHANGES
Project Development and plasticity of multisensory functions to study the principles of age dependent learning plasticity in humans
Researcher (PI) Brigitte Roeder
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Advanced Grant (AdG), SH4, ERC-2009-AdG
Summary Proposal summary: The present project will investigate the main principles of development and neuroplasticity in humans in the domain of multisensory processes (the interplay between sensory systems). It will be tested how learning plasticity of the human brain changes from childhood to adulthood and how early experience constraints neuroplasticity at later developmental stages as well as in adults. The project is based upon animal findings in sensory development and plasticity. Both a prospective (studies in children) and a retrospective (studies in people with a history of visual or auditory deprivation) approach are employed. Behavioural paradigms from experimental psychology addressing multisensory processes are combined with electroencephalographic recordings (EEG). First, we investigate the functional principles and neural correlates of multisensory development. Second, we investigate multisensory processes in people who suffered from a transient phase of sensory deprivation after birth: (a) in people who were born with bilateral dense cataracts that were removed later, and (b) in congenitally deaf individuals, who were equipped with a cochlear implant to restore hearing. This line of research will reveal the critical contribution of single sensory systems as well as the synchronized input across modalities with regard to the emergence of successful multisensory binding. Third, we will investigate whether it is possible to alleviate neural changes demarcating the end of sensitive phases or critical periods by implementing an incremental training procedure. Last, we will look at whether experimentally induced transient sensory deprivation increases neuroplasticity loss during a sensitive phase or critical period. We are convinced that basic research, such as the present, will reveal important principles of development and neuroplasticity which will be useful in applied setting to improve education, the rehabilitation of individuals with sensory defects and the treatment of developmental disorders.
Summary
Proposal summary: The present project will investigate the main principles of development and neuroplasticity in humans in the domain of multisensory processes (the interplay between sensory systems). It will be tested how learning plasticity of the human brain changes from childhood to adulthood and how early experience constraints neuroplasticity at later developmental stages as well as in adults. The project is based upon animal findings in sensory development and plasticity. Both a prospective (studies in children) and a retrospective (studies in people with a history of visual or auditory deprivation) approach are employed. Behavioural paradigms from experimental psychology addressing multisensory processes are combined with electroencephalographic recordings (EEG). First, we investigate the functional principles and neural correlates of multisensory development. Second, we investigate multisensory processes in people who suffered from a transient phase of sensory deprivation after birth: (a) in people who were born with bilateral dense cataracts that were removed later, and (b) in congenitally deaf individuals, who were equipped with a cochlear implant to restore hearing. This line of research will reveal the critical contribution of single sensory systems as well as the synchronized input across modalities with regard to the emergence of successful multisensory binding. Third, we will investigate whether it is possible to alleviate neural changes demarcating the end of sensitive phases or critical periods by implementing an incremental training procedure. Last, we will look at whether experimentally induced transient sensory deprivation increases neuroplasticity loss during a sensitive phase or critical period. We are convinced that basic research, such as the present, will reveal important principles of development and neuroplasticity which will be useful in applied setting to improve education, the rehabilitation of individuals with sensory defects and the treatment of developmental disorders.
Max ERC Funding
2 396 640 €
Duration
Start date: 2010-12-01, End date: 2016-11-30
Project acronym DARCLIFE
Project Deep subsurface Archaea: carbon cycle, life strategies, and role in sedimentary ecosystems
Researcher (PI) Kai-Uwe Hinrichs
Host Institution (HI) UNIVERSITAET BREMEN
Call Details Advanced Grant (AdG), PE10, ERC-2009-AdG
Summary Archaea are increasingly recognized as globally abundant organisms that mediate important processes controlling greenhouse gases and nutrients. Our latest work, published in PNAS and Nature, suggests that Archaea dominate the biomass in the subseafloor. Their unique ability to cope with extreme energy starvation appears to be a selecting factor. Marine sediments are of crucial importance to the redox balance and climate of our planet but the regulating role of the deep biosphere remains one of the great puzzles in biogeochemistry. The unique and diverse sedimentary Archaea with no cultured representatives, so-called benthic archaea, are key to understanding this system. Their presumed ability to degrade complex recalcitrant organic residues highlights their relevance for the carbon cycle and as potential targets for biotechnology. I propose to study the role of benthic archaea in the carbon cycle and in the deep biosphere and to explore their life strategies. This task requires an interdisciplinary frontier research approach at the scale of an ERC grant, involving biogeochemistry, earth sciences, and microbiology. Central to my research strategy is the information contained in structural and isotopic properties of membrane lipids from benthic archaea, an area of research spearheaded by my lab. In-depth geochemical examination of their habitat will elucidate processes they mediate. Metagenomic analysis will provide a phylogenetic framework and further insights on metabolism. At the Archaeenzentrum in Regensburg, we will grow model Archaea under a set of environmental conditions and examine the impact on cellular lipid distributions in order to develop the full potential of lipids as proxies for studying nearly inaccessible microbial life. Attempts to enrich benthic archaea from sediments will complement this approach. This frontier research will constrain the role of benthic archaea in the Earth system and examine the fundamental properties of life at minimum energy.
Summary
Archaea are increasingly recognized as globally abundant organisms that mediate important processes controlling greenhouse gases and nutrients. Our latest work, published in PNAS and Nature, suggests that Archaea dominate the biomass in the subseafloor. Their unique ability to cope with extreme energy starvation appears to be a selecting factor. Marine sediments are of crucial importance to the redox balance and climate of our planet but the regulating role of the deep biosphere remains one of the great puzzles in biogeochemistry. The unique and diverse sedimentary Archaea with no cultured representatives, so-called benthic archaea, are key to understanding this system. Their presumed ability to degrade complex recalcitrant organic residues highlights their relevance for the carbon cycle and as potential targets for biotechnology. I propose to study the role of benthic archaea in the carbon cycle and in the deep biosphere and to explore their life strategies. This task requires an interdisciplinary frontier research approach at the scale of an ERC grant, involving biogeochemistry, earth sciences, and microbiology. Central to my research strategy is the information contained in structural and isotopic properties of membrane lipids from benthic archaea, an area of research spearheaded by my lab. In-depth geochemical examination of their habitat will elucidate processes they mediate. Metagenomic analysis will provide a phylogenetic framework and further insights on metabolism. At the Archaeenzentrum in Regensburg, we will grow model Archaea under a set of environmental conditions and examine the impact on cellular lipid distributions in order to develop the full potential of lipids as proxies for studying nearly inaccessible microbial life. Attempts to enrich benthic archaea from sediments will complement this approach. This frontier research will constrain the role of benthic archaea in the Earth system and examine the fundamental properties of life at minimum energy.
Max ERC Funding
2 908 590 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym DODECIN
Project Construction of a Molecular Crane Based on the Flavoprotein Dodecin
Researcher (PI) Gilbert Nöll
Host Institution (HI) UNIVERSITAET SIEGEN
Call Details Starting Grant (StG), PE4, ERC-2009-StG
Summary The flavoprotein dodecin from the halophilic organism Halobacterium salinarum binds not only native but also artificial flavins with high affinities in their oxidized state. Reduction of the flavins induces the dissociation of the holocomplex into apododecin and free flavin. Based on these unique binding characteristics, a molecular crane shall be developed that is able to pick up and to release molecular objects through a switch of the electric potential. For this purpose, a single flavin has to be linked to the conductive tip of an atomic force microscope via a molecular wire-like subunit (flavin molecular wire AFM tip/electrode). On the basis of such an electrochemically switchable molecular crane, it will be possible to bind and release single molecules of dodecin apoprotein or even larger molecular assemblies attached to apododecin serving as molecular junction. While the construction of a molecular crane for the transport of single molecules is the main goal, the successful realization of this project fundamentally depends on the synthesis and characterization of molecular wire-like subunits, which can be used to attach redox-active proteins to surfaces in an electrochemically switchable state. Thus, functionalized single-walled carbon nanotubes or organic p-electron systems will be examined with respect to their ability to serve as molecular wire. Surface modification protocols have to be developed and modified surfaces will be investigated by a combination of atomic force microscopy, surface plasmon resonance spectroscopy, and electrochemical methods. The results of these studies will be of general interest for the construction of molecular switches, devices, and transport systems, and for the development of amperometric biosensors and biofuel cells.
Summary
The flavoprotein dodecin from the halophilic organism Halobacterium salinarum binds not only native but also artificial flavins with high affinities in their oxidized state. Reduction of the flavins induces the dissociation of the holocomplex into apododecin and free flavin. Based on these unique binding characteristics, a molecular crane shall be developed that is able to pick up and to release molecular objects through a switch of the electric potential. For this purpose, a single flavin has to be linked to the conductive tip of an atomic force microscope via a molecular wire-like subunit (flavin molecular wire AFM tip/electrode). On the basis of such an electrochemically switchable molecular crane, it will be possible to bind and release single molecules of dodecin apoprotein or even larger molecular assemblies attached to apododecin serving as molecular junction. While the construction of a molecular crane for the transport of single molecules is the main goal, the successful realization of this project fundamentally depends on the synthesis and characterization of molecular wire-like subunits, which can be used to attach redox-active proteins to surfaces in an electrochemically switchable state. Thus, functionalized single-walled carbon nanotubes or organic p-electron systems will be examined with respect to their ability to serve as molecular wire. Surface modification protocols have to be developed and modified surfaces will be investigated by a combination of atomic force microscopy, surface plasmon resonance spectroscopy, and electrochemical methods. The results of these studies will be of general interest for the construction of molecular switches, devices, and transport systems, and for the development of amperometric biosensors and biofuel cells.
Max ERC Funding
1 100 000 €
Duration
Start date: 2009-11-01, End date: 2015-10-31