Project acronym 15CBOOKTRADE
Project The 15th-century Book Trade: An Evidence-based Assessment and Visualization of the Distribution, Sale, and Reception of Books in the Renaissance
Researcher (PI) Cristina Dondi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Summary
The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Max ERC Funding
1 999 172 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym 5COFM
Project Five Centuries of Marriages
Researcher (PI) Anna Cabré
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Advanced Grant (AdG), SH6, ERC-2010-AdG_20100407
Summary This long-term research project is based on the data-mining of the Llibres d'Esposalles conserved at the Archives of the Barcelona Cathedral, an extraordinary data source comprising 244 books of marriage licenses records. It covers about 550.000 unions from over 250 parishes of the Diocese between 1451 and 1905. Its impeccable conservation is a miracle in a region where parish archives have undergone massive destruction. The books include data on the tax posed on each couple depending on their social class, on an eight-tiered scale. These data allow for research on multiple aspects of demographic research, especially on the very long run, such as: population estimates, marriage dynamics, cycles, and indirect estimations for fertility, migration and survival, as well as socio-economic studies related to social homogamy, social mobility, and transmission of social and occupational position. Being continuous over five centuries, the source constitutes a unique instrument to study the dynamics of population distribution, the expansion of the city of Barcelona and the constitution of its metropolitan area, as well as the chronology and the geography in the constitution of new social classes.
To this end, a digital library and a database, the Barcelona Historical Marriages Database (BHiMaD), are to be created and completed. An ERC-AG will help doing so while undertaking the research analysis of the database in parallel.
The research team, at the U. Autònoma de Barcelona, involves researchers from the Center for Demo-graphic Studies and the Computer Vision Center experts in historical databases and computer-aided recognition of ancient manuscripts. 5CofM will serve the preservation of the original “Llibres d’Esposalles” and unlock the full potential embedded in the collection.
Summary
This long-term research project is based on the data-mining of the Llibres d'Esposalles conserved at the Archives of the Barcelona Cathedral, an extraordinary data source comprising 244 books of marriage licenses records. It covers about 550.000 unions from over 250 parishes of the Diocese between 1451 and 1905. Its impeccable conservation is a miracle in a region where parish archives have undergone massive destruction. The books include data on the tax posed on each couple depending on their social class, on an eight-tiered scale. These data allow for research on multiple aspects of demographic research, especially on the very long run, such as: population estimates, marriage dynamics, cycles, and indirect estimations for fertility, migration and survival, as well as socio-economic studies related to social homogamy, social mobility, and transmission of social and occupational position. Being continuous over five centuries, the source constitutes a unique instrument to study the dynamics of population distribution, the expansion of the city of Barcelona and the constitution of its metropolitan area, as well as the chronology and the geography in the constitution of new social classes.
To this end, a digital library and a database, the Barcelona Historical Marriages Database (BHiMaD), are to be created and completed. An ERC-AG will help doing so while undertaking the research analysis of the database in parallel.
The research team, at the U. Autònoma de Barcelona, involves researchers from the Center for Demo-graphic Studies and the Computer Vision Center experts in historical databases and computer-aided recognition of ancient manuscripts. 5CofM will serve the preservation of the original “Llibres d’Esposalles” and unlock the full potential embedded in the collection.
Max ERC Funding
1 847 400 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym AAREA
Project The Archaeology of Agricultural Resilience in Eastern Africa
Researcher (PI) Daryl Stump
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Summary
"The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Max ERC Funding
1 196 701 €
Duration
Start date: 2014-02-01, End date: 2018-01-31
Project acronym ABEL
Project "Alpha-helical Barrels: Exploring, Understanding and Exploiting a New Class of Protein Structure"
Researcher (PI) Derek Neil Woolfson
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary "Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Summary
"Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Max ERC Funding
2 467 844 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ACCORD
Project Algorithms for Complex Collective Decisions on Structured Domains
Researcher (PI) Edith Elkind
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE6, ERC-2014-STG
Summary Algorithms for Complex Collective Decisions on Structured Domains.
The aim of this proposal is to substantially advance the field of Computational Social Choice, by developing new tools and methodologies that can be used for making complex group decisions in rich and structured environments. We consider settings where each member of a decision-making body has preferences over a finite set of alternatives, and the goal is to synthesise a collective preference over these alternatives, which may take the form of a partial order over the set of alternatives with a predefined structure: examples include selecting a fixed-size set of alternatives, a ranking of the alternatives, a winner and up to two runner-ups, etc. We will formulate desiderata that apply to such preference aggregation procedures, design specific procedures that satisfy as many of these desiderata as possible, and develop efficient algorithms for computing them. As the latter step may be infeasible on general preference domains, we will focus on identifying the least restrictive domains that enable efficient computation, and use real-life preference data to verify whether the associated restrictions are likely to be satisfied in realistic preference aggregation scenarios. Also, we will determine whether our preference aggregation procedures are computationally resistant to malicious behavior. To lower the cognitive burden on the decision-makers, we will extend our procedures to accept partial rankings as inputs. Finally, to further contribute towards bridging the gap between theory and practice of collective decision making, we will provide open-source software implementations of our procedures, and reach out to the potential users to obtain feedback on their practical applicability.
Summary
Algorithms for Complex Collective Decisions on Structured Domains.
The aim of this proposal is to substantially advance the field of Computational Social Choice, by developing new tools and methodologies that can be used for making complex group decisions in rich and structured environments. We consider settings where each member of a decision-making body has preferences over a finite set of alternatives, and the goal is to synthesise a collective preference over these alternatives, which may take the form of a partial order over the set of alternatives with a predefined structure: examples include selecting a fixed-size set of alternatives, a ranking of the alternatives, a winner and up to two runner-ups, etc. We will formulate desiderata that apply to such preference aggregation procedures, design specific procedures that satisfy as many of these desiderata as possible, and develop efficient algorithms for computing them. As the latter step may be infeasible on general preference domains, we will focus on identifying the least restrictive domains that enable efficient computation, and use real-life preference data to verify whether the associated restrictions are likely to be satisfied in realistic preference aggregation scenarios. Also, we will determine whether our preference aggregation procedures are computationally resistant to malicious behavior. To lower the cognitive burden on the decision-makers, we will extend our procedures to accept partial rankings as inputs. Finally, to further contribute towards bridging the gap between theory and practice of collective decision making, we will provide open-source software implementations of our procedures, and reach out to the potential users to obtain feedback on their practical applicability.
Max ERC Funding
1 395 933 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym ACHILLES-HEEL
Project Crop resistance improvement by mining natural and induced variation in host accessibility factors
Researcher (PI) Sebastian Schornack
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Increasing crop yield to feed the world is a grand challenge of the 21st century but it is hampered by diseases caused by filamentous plant pathogens. The arms race between pathogen and plant demands constant adjustment of crop germplasm to tackle emerging pathogen races with new virulence features. To date, most crop disease resistance has relied on specific resistance genes that are effective only against a subset of races. We cannot solely rely on classical resistance genes to keep ahead of the pathogens. There is an urgent need to develop approaches based on knowledge of the pathogen’s Achilles heel: core plant processes that are required for pathogen colonization.
Our hypothesis is that disease resistance based on manipulation of host accessibility processes has a higher probability for durability, and is best identified using a broad host-range pathogen. I will employ the filamentous pathogen Phytophthora palmivora to mine plant alleles and unravel host processes providing microbial access in roots and leaves of monocot and dicot plants.
In Aim 1 I will utilize plant symbiosis mutants and allelic variation to elucidate general mechanisms of colonization by filamentous microbes. Importantly, allelic variation will be studied in economically relevant barley and wheat to allow immediate translation into breeding programs.
In Aim 2 I will perform a comparative study of microbial colonization in monocot and dicot roots and leaves. Transcriptional profiling of pathogen and plant will highlight common and contrasting principles and illustrate the impact of differential plant anatomies.
We will challenge our findings by testing beneficial fungi to assess commonalities and differences between mutualist and pathogen colonization. We will use genetics, cell biology and genomics to find suitable resistance alleles highly relevant to crop production and global food security. At the completion of the project, I expect to have a set of genes for resistance breeding.
Summary
Increasing crop yield to feed the world is a grand challenge of the 21st century but it is hampered by diseases caused by filamentous plant pathogens. The arms race between pathogen and plant demands constant adjustment of crop germplasm to tackle emerging pathogen races with new virulence features. To date, most crop disease resistance has relied on specific resistance genes that are effective only against a subset of races. We cannot solely rely on classical resistance genes to keep ahead of the pathogens. There is an urgent need to develop approaches based on knowledge of the pathogen’s Achilles heel: core plant processes that are required for pathogen colonization.
Our hypothesis is that disease resistance based on manipulation of host accessibility processes has a higher probability for durability, and is best identified using a broad host-range pathogen. I will employ the filamentous pathogen Phytophthora palmivora to mine plant alleles and unravel host processes providing microbial access in roots and leaves of monocot and dicot plants.
In Aim 1 I will utilize plant symbiosis mutants and allelic variation to elucidate general mechanisms of colonization by filamentous microbes. Importantly, allelic variation will be studied in economically relevant barley and wheat to allow immediate translation into breeding programs.
In Aim 2 I will perform a comparative study of microbial colonization in monocot and dicot roots and leaves. Transcriptional profiling of pathogen and plant will highlight common and contrasting principles and illustrate the impact of differential plant anatomies.
We will challenge our findings by testing beneficial fungi to assess commonalities and differences between mutualist and pathogen colonization. We will use genetics, cell biology and genomics to find suitable resistance alleles highly relevant to crop production and global food security. At the completion of the project, I expect to have a set of genes for resistance breeding.
Max ERC Funding
1 991 054 €
Duration
Start date: 2015-09-01, End date: 2021-08-31
Project acronym ACROSS
Project Australasian Colonization Research: Origins of Seafaring to Sahul
Researcher (PI) Rosemary Helen FARR
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary One of the most exciting research questions within archaeology is that of the peopling of Australasia by at least c.50,000 years ago. This represents some of the earliest evidence of modern human colonization outside Africa, yet, even at the greatest sea-level lowstand, this migration would have involved seafaring. It is the maritime nature of this dispersal which makes it so important to questions of technological, cognitive and social human development. These issues have traditionally been the preserve of archaeologists, but with a multidisciplinary approach that embraces cutting-edge marine geophysical, hydrodynamic and archaeogenetic analyses, we now have the opportunity to examine the When, Where, Who and How of the earliest seafaring in world history.
The voyage from Sunda (South East Asia) to Sahul (Australasia) provides evidence for the earliest ‘open water’ crossing in the world. A combination of the sparse number of early archaeological finds and the significant changes in the palaeolandscape and submergence of the broad north western Australian continental shelf, mean that little is known about the routes taken and what these crossings may have entailed.
This project will combine research of the submerged palaeolandscape of the continental shelf to refine our knowledge of the onshore/offshore environment, identify potential submerged prehistoric sites and enhance our understanding of the palaeoshoreline and tidal regime. This will be combined with archaeogenetic research targeting mtDNA and Y-chromosome data to resolve questions of demography and dating.
For the first time this project takes a truly multidisciplinary approach to address the colonization of Sahul, providing an unique opportunity to tackle some of the most important questions about human origins, the relationship between humans and the changing environment, population dynamics and migration, seafaring technology, social organisation and cognition.
Summary
One of the most exciting research questions within archaeology is that of the peopling of Australasia by at least c.50,000 years ago. This represents some of the earliest evidence of modern human colonization outside Africa, yet, even at the greatest sea-level lowstand, this migration would have involved seafaring. It is the maritime nature of this dispersal which makes it so important to questions of technological, cognitive and social human development. These issues have traditionally been the preserve of archaeologists, but with a multidisciplinary approach that embraces cutting-edge marine geophysical, hydrodynamic and archaeogenetic analyses, we now have the opportunity to examine the When, Where, Who and How of the earliest seafaring in world history.
The voyage from Sunda (South East Asia) to Sahul (Australasia) provides evidence for the earliest ‘open water’ crossing in the world. A combination of the sparse number of early archaeological finds and the significant changes in the palaeolandscape and submergence of the broad north western Australian continental shelf, mean that little is known about the routes taken and what these crossings may have entailed.
This project will combine research of the submerged palaeolandscape of the continental shelf to refine our knowledge of the onshore/offshore environment, identify potential submerged prehistoric sites and enhance our understanding of the palaeoshoreline and tidal regime. This will be combined with archaeogenetic research targeting mtDNA and Y-chromosome data to resolve questions of demography and dating.
For the first time this project takes a truly multidisciplinary approach to address the colonization of Sahul, providing an unique opportunity to tackle some of the most important questions about human origins, the relationship between humans and the changing environment, population dynamics and migration, seafaring technology, social organisation and cognition.
Max ERC Funding
1 134 928 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ADAPT
Project Life in a cold climate: the adaptation of cereals to new environments and the establishment of agriculture in Europe
Researcher (PI) Terence Austen Brown
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Advanced Grant (AdG), SH6, ERC-2013-ADG
Summary "This project explores the concept of agricultural spread as analogous to enforced climate change and asks how cereals adapted to new environments when agriculture was introduced into Europe. Archaeologists have long recognized that the ecological pressures placed on crops would have had an impact on the spread and subsequent development of agriculture, but previously there has been no means of directly assessing the scale and nature of this impact. Recent work that I have directed has shown how such a study could be carried out, and the purpose of this project is to exploit these breakthroughs with the goal of assessing the influence of environmental adaptation on the spread of agriculture, its adoption as the primary subsistence strategy, and the subsequent establishment of farming in different parts of Europe. This will correct the current imbalance between our understanding of the human and environmental dimensions to the domestication of Europe. I will use methods from population genomics to identify loci within the barley and wheat genomes that have undergone selection since the beginning of cereal cultivation in Europe. I will then use ecological modelling to identify those loci whose patterns of selection are associated with ecogeographical variables and hence represent adaptations to local environmental conditions. I will assign dates to the periods when adaptations occurred by sequencing ancient DNA from archaeobotanical assemblages and by computer methods that enable the temporal order of adaptations to be deduced. I will then synthesise the information on environmental adaptations with dating evidence for the spread of agriculture in Europe, which reveals pauses that might be linked to environmental adaptation, with demographic data that indicate regions where Neolithic populations declined, possibly due to inadequate crop productivity, and with an archaeobotanical database showing changes in the prevalence of individual cereals in different regions."
Summary
"This project explores the concept of agricultural spread as analogous to enforced climate change and asks how cereals adapted to new environments when agriculture was introduced into Europe. Archaeologists have long recognized that the ecological pressures placed on crops would have had an impact on the spread and subsequent development of agriculture, but previously there has been no means of directly assessing the scale and nature of this impact. Recent work that I have directed has shown how such a study could be carried out, and the purpose of this project is to exploit these breakthroughs with the goal of assessing the influence of environmental adaptation on the spread of agriculture, its adoption as the primary subsistence strategy, and the subsequent establishment of farming in different parts of Europe. This will correct the current imbalance between our understanding of the human and environmental dimensions to the domestication of Europe. I will use methods from population genomics to identify loci within the barley and wheat genomes that have undergone selection since the beginning of cereal cultivation in Europe. I will then use ecological modelling to identify those loci whose patterns of selection are associated with ecogeographical variables and hence represent adaptations to local environmental conditions. I will assign dates to the periods when adaptations occurred by sequencing ancient DNA from archaeobotanical assemblages and by computer methods that enable the temporal order of adaptations to be deduced. I will then synthesise the information on environmental adaptations with dating evidence for the spread of agriculture in Europe, which reveals pauses that might be linked to environmental adaptation, with demographic data that indicate regions where Neolithic populations declined, possibly due to inadequate crop productivity, and with an archaeobotanical database showing changes in the prevalence of individual cereals in different regions."
Max ERC Funding
2 492 964 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ADaPt
Project Adaptation, Dispersals and Phenotype: understanding the roles of climate,
natural selection and energetics in shaping global hunter-gatherer adaptability
Researcher (PI) Jay Stock
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Summary
Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Max ERC Funding
1 911 485 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym ADREEM
Project Adding Another Dimension – Arrays of 3D Bio-Responsive Materials
Researcher (PI) Mark Bradley
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary This proposal is focused in the areas of chemical medicine and chemical biology with the key drivers being the discovery and development of new materials that have practical functionality and application. The project will enable the fabrication of thousands of three-dimensional “smart-polymers” that will allow: (i). The precise and controlled release of drugs upon the addition of either a small molecule trigger or in response to disease, (ii). The discovery of materials that control and manipulate cells with the identification of scaffolds that provide the necessary biochemical cues for directing cell fate and drive tissue regeneration and (iii). The development of new classes of “smart-polymers” able, in real-time, to sense and report bacterial contamination. The newly discovered materials will find multiple biomedical applications in regenerative medicine and biotechnology ranging from 3D cell culture, bone repair and niche stabilisation to bacterial sensing/removal, while offering a new paradigm in drug delivery with biomarker triggered drug release.
Summary
This proposal is focused in the areas of chemical medicine and chemical biology with the key drivers being the discovery and development of new materials that have practical functionality and application. The project will enable the fabrication of thousands of three-dimensional “smart-polymers” that will allow: (i). The precise and controlled release of drugs upon the addition of either a small molecule trigger or in response to disease, (ii). The discovery of materials that control and manipulate cells with the identification of scaffolds that provide the necessary biochemical cues for directing cell fate and drive tissue regeneration and (iii). The development of new classes of “smart-polymers” able, in real-time, to sense and report bacterial contamination. The newly discovered materials will find multiple biomedical applications in regenerative medicine and biotechnology ranging from 3D cell culture, bone repair and niche stabilisation to bacterial sensing/removal, while offering a new paradigm in drug delivery with biomarker triggered drug release.
Max ERC Funding
2 310 884 €
Duration
Start date: 2014-11-01, End date: 2019-10-31