Project acronym 3DBrainStrom
Project Brain metastases: Deciphering tumor-stroma interactions in three dimensions for the rational design of nanomedicines
Researcher (PI) Ronit Satchi Fainaro
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary Brain metastases represent a major therapeutic challenge. Despite significant breakthroughs in targeted therapies, survival rates of patients with brain metastases remain poor. Nowadays, discovery, development and evaluation of new therapies are performed on human cancer cells grown in 2D on rigid plastic plates followed by in vivo testing in immunodeficient mice. These experimental settings are lacking and constitute a fundamental hurdle for the translation of preclinical discoveries into clinical practice. We propose to establish 3D-printed models of brain metastases (Aim 1), which include brain extracellular matrix, stroma and serum containing immune cells flowing in functional tumor vessels. Our unique models better capture the clinical physio-mechanical tissue properties, signaling pathways, hemodynamics and drug responsiveness. Using our 3D-printed models, we aim to develop two new fronts for identifying novel clinically-relevant molecular drivers (Aim 2) followed by the development of precision nanomedicines (Aim 3). We will exploit our vast experience in anticancer nanomedicines to design three therapeutic approaches that target various cellular compartments involved in brain metastases: 1) Prevention of brain metastatic colonization using targeted nano-vaccines, which elicit antitumor immune response; 2) Intervention of tumor-brain stroma cells crosstalk when brain micrometastases establish; 3) Regression of macrometastatic disease by selectively targeting tumor cells. These approaches will materialize using our libraries of polymeric nanocarriers that selectively accumulate in tumors.
This project will result in a paradigm shift by generating new preclinical cancer models that will bridge the translational gap in cancer therapeutics. The insights and tumor-stroma-targeted nanomedicines developed here will pave the way for prediction of patient outcome, revolutionizing our perception of tumor modelling and consequently the way we prevent and treat cancer.
Summary
Brain metastases represent a major therapeutic challenge. Despite significant breakthroughs in targeted therapies, survival rates of patients with brain metastases remain poor. Nowadays, discovery, development and evaluation of new therapies are performed on human cancer cells grown in 2D on rigid plastic plates followed by in vivo testing in immunodeficient mice. These experimental settings are lacking and constitute a fundamental hurdle for the translation of preclinical discoveries into clinical practice. We propose to establish 3D-printed models of brain metastases (Aim 1), which include brain extracellular matrix, stroma and serum containing immune cells flowing in functional tumor vessels. Our unique models better capture the clinical physio-mechanical tissue properties, signaling pathways, hemodynamics and drug responsiveness. Using our 3D-printed models, we aim to develop two new fronts for identifying novel clinically-relevant molecular drivers (Aim 2) followed by the development of precision nanomedicines (Aim 3). We will exploit our vast experience in anticancer nanomedicines to design three therapeutic approaches that target various cellular compartments involved in brain metastases: 1) Prevention of brain metastatic colonization using targeted nano-vaccines, which elicit antitumor immune response; 2) Intervention of tumor-brain stroma cells crosstalk when brain micrometastases establish; 3) Regression of macrometastatic disease by selectively targeting tumor cells. These approaches will materialize using our libraries of polymeric nanocarriers that selectively accumulate in tumors.
This project will result in a paradigm shift by generating new preclinical cancer models that will bridge the translational gap in cancer therapeutics. The insights and tumor-stroma-targeted nanomedicines developed here will pave the way for prediction of patient outcome, revolutionizing our perception of tumor modelling and consequently the way we prevent and treat cancer.
Max ERC Funding
2 353 125 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym BiomeRiskFactors
Project Discovering microbiome-based disease risk factors
Researcher (PI) Eran Segal
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary Identifying risk factors for diseases that can be prevented or delayed by early intervention is of major importance, and numerous genetic, lifestyle, anthropometric and clinical risk factors were found for many different diseases. Another source of potentially pertinent disease risk factors is the human microbiome - the collective genome of trillions of bacteria, viruses, fungi, and parasites that reside in the human gut. However, very few microbiome disease markers were found to date.
Here, we aim to develop risk prediction tools based on the human microbiome that predict the likelihood of an individual to develop a particular condition or disease within 5-10 years. We will use a cohort of >2200 individuals that my group previously assembled, for whom we have clinical profiles, gut microbiome data, and banked blood and stool samples. We will invite people 5-10 years after their initial recruitment time, profile disease status and blood markers, and develop algorithms for predicting 5-10 year onset of Type 2 diabetes, cardiovascular disease, and obesity, using microbiome data from recruitment time.
To increase the likelihood of finding microbiome markers predictive of disease onset, we will develop novel experimental and computational methods for in-depth characterization of microbial gene function, the metabolites produced by the microbiome, the underexplored fungal microbiome members, and the interactions between the gut microbiota and the host adaptive immune system. We will then apply these methods to >2200 banked samples from cohort recruitment time and use the resulting data in devising our microbiome-based risk prediction tools. In themselves, these novel assays and their application to >2200 samples should greatly advance the microbiome field.
If successful, our proposal will identify new disease risk factors and risk prediction tools based on the microbiome, paving the way towards using the microbiome in early disease detection and prevention.
Summary
Identifying risk factors for diseases that can be prevented or delayed by early intervention is of major importance, and numerous genetic, lifestyle, anthropometric and clinical risk factors were found for many different diseases. Another source of potentially pertinent disease risk factors is the human microbiome - the collective genome of trillions of bacteria, viruses, fungi, and parasites that reside in the human gut. However, very few microbiome disease markers were found to date.
Here, we aim to develop risk prediction tools based on the human microbiome that predict the likelihood of an individual to develop a particular condition or disease within 5-10 years. We will use a cohort of >2200 individuals that my group previously assembled, for whom we have clinical profiles, gut microbiome data, and banked blood and stool samples. We will invite people 5-10 years after their initial recruitment time, profile disease status and blood markers, and develop algorithms for predicting 5-10 year onset of Type 2 diabetes, cardiovascular disease, and obesity, using microbiome data from recruitment time.
To increase the likelihood of finding microbiome markers predictive of disease onset, we will develop novel experimental and computational methods for in-depth characterization of microbial gene function, the metabolites produced by the microbiome, the underexplored fungal microbiome members, and the interactions between the gut microbiota and the host adaptive immune system. We will then apply these methods to >2200 banked samples from cohort recruitment time and use the resulting data in devising our microbiome-based risk prediction tools. In themselves, these novel assays and their application to >2200 samples should greatly advance the microbiome field.
If successful, our proposal will identify new disease risk factors and risk prediction tools based on the microbiome, paving the way towards using the microbiome in early disease detection and prevention.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym BIOMOLECULAR_COMP
Project Biomolecular computers
Researcher (PI) Ehud Shapiro
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS9, ERC-2008-AdG
Summary Autonomous programmable computing devices made of biological molecules hold the promise of interacting with the biological environment in future biological and medical applications. Our laboratory's long-term objective is to develop a 'Doctor in a cell': molecular-sized device that can roam the body, equipped with medical knowledge. It would diagnose a disease by analyzing the data available in its biochemical environment based on the encoded medical knowledge and treat it by releasing the appropriate drug molecule in situ. This kind of device might, in the future, be delivered to all cells in a specific tissue, organ or the whole organism, and cure or kill only those cells diagnosed with a disease. Our laboratory embarked on the attempt to design and build these molecular computing devices and lay the foundation for their future biomedical applications. Several important milestones have already been accomplished towards the realization of the Doctor in a cell vision. The subject of this proposal is a construction of autonomous biomolecular computers that could be delivered into a living cell, interact with endogenous biomolecules that are known to indicate diseases, logically analyze them, make a diagnostic decision and couple it to the production of an active biomolecule capable of influencing cell fate.
Summary
Autonomous programmable computing devices made of biological molecules hold the promise of interacting with the biological environment in future biological and medical applications. Our laboratory's long-term objective is to develop a 'Doctor in a cell': molecular-sized device that can roam the body, equipped with medical knowledge. It would diagnose a disease by analyzing the data available in its biochemical environment based on the encoded medical knowledge and treat it by releasing the appropriate drug molecule in situ. This kind of device might, in the future, be delivered to all cells in a specific tissue, organ or the whole organism, and cure or kill only those cells diagnosed with a disease. Our laboratory embarked on the attempt to design and build these molecular computing devices and lay the foundation for their future biomedical applications. Several important milestones have already been accomplished towards the realization of the Doctor in a cell vision. The subject of this proposal is a construction of autonomous biomolecular computers that could be delivered into a living cell, interact with endogenous biomolecules that are known to indicate diseases, logically analyze them, make a diagnostic decision and couple it to the production of an active biomolecule capable of influencing cell fate.
Max ERC Funding
2 125 980 €
Duration
Start date: 2009-01-01, End date: 2013-10-31
Project acronym CardHeal
Project Novel strategies for mammalian cardiac repair
Researcher (PI) Eldad TZAHOR
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS4, ERC-2017-ADG
Summary Recent ground-breaking studies by my team and others demonstrated that latent heart regeneration machinery can be awakened even in adult mammals. My lab’s main contribution is the identification of two, apparently different, molecular mechanisms for augmenting cardiac regeneration in adult mice. The first requires transient activation of ErbB2 signalling in cardiomyocytes and the second involves extra cellular matrix-driven signalling by the proteoglycan agrin. Impressively, both mechanisms promote a major regenerative response that, in turn, enhances cardiac repair. In CardHeal we will use the two powerful regenerative models to obtain a holistic view of cardiac regeneration and repair mechanisms in mammals (mice and pigs).
In Aim 1, we will explore the molecular mechanisms underlying our discovery that transient activation of ErbB2 in adult cardiomyocytes results in massive cardiomyocyte dedifferentiation and proliferation followed by new vessels formation, scar resolution and functional cardiac repair. Specific objectives focus on ErbB2-Yap/Hippo signalling during cardiac regeneration; ErbB2 activation in a chronic heart failure model; ErbB2-induced regenerative EMT-like process; and cardiomyocyte re-differentiation.
In Aim 2, we will investigate the therapeutic effects of agrin, whose administration into injured hearts of mice and pigs elicits a significant regenerative response. Specific objectives are matrix-related cardiac regenerative cues, modulation of the immune response, angiogenesis, matrix remodeling, and developing a preclinical, large animal model to study agrin efficacy for cardiac repair.
Interrogating the differences and similarities between our two regenerative models should give us a detailed roadmap for cardiac regenerative medicine by providing deeper knowledge of the regenerative process in the heart and pointing to novel targets for cardiac repair in human patients.
Summary
Recent ground-breaking studies by my team and others demonstrated that latent heart regeneration machinery can be awakened even in adult mammals. My lab’s main contribution is the identification of two, apparently different, molecular mechanisms for augmenting cardiac regeneration in adult mice. The first requires transient activation of ErbB2 signalling in cardiomyocytes and the second involves extra cellular matrix-driven signalling by the proteoglycan agrin. Impressively, both mechanisms promote a major regenerative response that, in turn, enhances cardiac repair. In CardHeal we will use the two powerful regenerative models to obtain a holistic view of cardiac regeneration and repair mechanisms in mammals (mice and pigs).
In Aim 1, we will explore the molecular mechanisms underlying our discovery that transient activation of ErbB2 in adult cardiomyocytes results in massive cardiomyocyte dedifferentiation and proliferation followed by new vessels formation, scar resolution and functional cardiac repair. Specific objectives focus on ErbB2-Yap/Hippo signalling during cardiac regeneration; ErbB2 activation in a chronic heart failure model; ErbB2-induced regenerative EMT-like process; and cardiomyocyte re-differentiation.
In Aim 2, we will investigate the therapeutic effects of agrin, whose administration into injured hearts of mice and pigs elicits a significant regenerative response. Specific objectives are matrix-related cardiac regenerative cues, modulation of the immune response, angiogenesis, matrix remodeling, and developing a preclinical, large animal model to study agrin efficacy for cardiac repair.
Interrogating the differences and similarities between our two regenerative models should give us a detailed roadmap for cardiac regenerative medicine by providing deeper knowledge of the regenerative process in the heart and pointing to novel targets for cardiac repair in human patients.
Max ERC Funding
2 268 750 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym CRISPR-EVOL
Project The eco-evolutionary costs and benefits of CRISPR-Cas systems, and their effect on genome diversity within populations
Researcher (PI) Uri Gophna
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), LS8, ERC-2017-ADG
Summary CRISPR-Cas systems are microbial defense systems that provide prokaryotes with acquired and heritable DNA-based immunity against selfish genetic elements, primarily viruses. However, the full scope of benefits that these systems can provide, as well as their costs remain unknown. Specifically, it is unclear whether the benefits against viral infection outweigh the continual costs incurred even in the absence of parasitic elements, and whether CRISPR-Cas systems affect microbial genome diversity in nature.
Since CRISPR-Cas systems can impede lateral gene transfer, it is often assumed that they reduce genetic diversity. Conversely, our recent results suggest the exact opposite: that these systems generate a high level of genomic diversity within populations. We have recently combined genomics of environmental strains and experimental genetics to show that archaea frequently acquire CRISPR immune memory, known as spacers, from chromosomes of related species in the environment. The presence of these spacers reduces gene exchange between lineages, indicating that CRISPR-Cas contributes to diversification. We have also shown that such inter-species mating events induce the acquisition of spacers against a strain's own replicons, supporting a role for CRISPR-Cas systems in generating deletions in natural plasmids and unessential genomic loci, again increasing genome diversity within populations.
Here we aim to test our hypothesis that CRISPR-Cas systems increase within-population diversity, and quantify their benefits to both cells and populations, using large-scale genomics and experimental evolution. We will explore how these systems alter the patterns of recombination within and between species, and explore the potential involvement of CRISPR-associated proteins in cellular DNA repair.
This work will reveal the eco-evolutionary role of CRISPR-Cas systems in shaping microbial populations, and open new research avenues regarding additional roles beyond anti-viral defense
Summary
CRISPR-Cas systems are microbial defense systems that provide prokaryotes with acquired and heritable DNA-based immunity against selfish genetic elements, primarily viruses. However, the full scope of benefits that these systems can provide, as well as their costs remain unknown. Specifically, it is unclear whether the benefits against viral infection outweigh the continual costs incurred even in the absence of parasitic elements, and whether CRISPR-Cas systems affect microbial genome diversity in nature.
Since CRISPR-Cas systems can impede lateral gene transfer, it is often assumed that they reduce genetic diversity. Conversely, our recent results suggest the exact opposite: that these systems generate a high level of genomic diversity within populations. We have recently combined genomics of environmental strains and experimental genetics to show that archaea frequently acquire CRISPR immune memory, known as spacers, from chromosomes of related species in the environment. The presence of these spacers reduces gene exchange between lineages, indicating that CRISPR-Cas contributes to diversification. We have also shown that such inter-species mating events induce the acquisition of spacers against a strain's own replicons, supporting a role for CRISPR-Cas systems in generating deletions in natural plasmids and unessential genomic loci, again increasing genome diversity within populations.
Here we aim to test our hypothesis that CRISPR-Cas systems increase within-population diversity, and quantify their benefits to both cells and populations, using large-scale genomics and experimental evolution. We will explore how these systems alter the patterns of recombination within and between species, and explore the potential involvement of CRISPR-associated proteins in cellular DNA repair.
This work will reveal the eco-evolutionary role of CRISPR-Cas systems in shaping microbial populations, and open new research avenues regarding additional roles beyond anti-viral defense
Max ERC Funding
2 495 625 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym HOWPER
Project An open or closed process: Determining the global scheme of perception
Researcher (PI) Ehud AHISSAR
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS5, ERC-2017-ADG
Summary Despite decades of intensive research, there is no agreement about the general scheme of perception: Is the external object a trigger for a brain-internal process (open-loop perception, OLP) or is the object included in brain dynamics during the entire perceptual process (closed-loop perception, CLP)? HOWPER is designed to provide a definite answer to this question in the cases of human touch and vision. What enables this critical test is our development of an explicit CLP hypothesis, which will be contrasted, via specific testable predictions, with the OLP scheme. In the event that CLP is validated, HOWPER will introduce a radical paradigm shift in the study of perception, since almost all current experiments are guided, implicitly or explicitly, by the OLP scheme. If OLP is confirmed, HOWPER will provide the first formal affirmation for its superiority over CLP.
Our approach in this novel paradigm is based on a triangle of interactive efforts comprising theory, analytical experiments, and synthetic experiments. The theoretical effort (WP1) will be based on the core theoretical framework already developed in our lab. The analytical experiments (WP2) will involve human perceivers. The synthetic experiments (WP3) will be performed on synthesized artificial perceivers. The fourth WP will exploit our novel rat-machine hybrid model for testing the neural applicability of the insights gained in the other WPs, whereas the fifth WP will translate our insights into novel visual-to-tactile sensory substitution algorithms.
HOWPER is expected to either revolutionize or significantly advance the field of human perception, to greatly improve visual to tactile sensory substitution approaches and to contribute novel biomimetic algorithms for autonomous robotic agents.
Summary
Despite decades of intensive research, there is no agreement about the general scheme of perception: Is the external object a trigger for a brain-internal process (open-loop perception, OLP) or is the object included in brain dynamics during the entire perceptual process (closed-loop perception, CLP)? HOWPER is designed to provide a definite answer to this question in the cases of human touch and vision. What enables this critical test is our development of an explicit CLP hypothesis, which will be contrasted, via specific testable predictions, with the OLP scheme. In the event that CLP is validated, HOWPER will introduce a radical paradigm shift in the study of perception, since almost all current experiments are guided, implicitly or explicitly, by the OLP scheme. If OLP is confirmed, HOWPER will provide the first formal affirmation for its superiority over CLP.
Our approach in this novel paradigm is based on a triangle of interactive efforts comprising theory, analytical experiments, and synthetic experiments. The theoretical effort (WP1) will be based on the core theoretical framework already developed in our lab. The analytical experiments (WP2) will involve human perceivers. The synthetic experiments (WP3) will be performed on synthesized artificial perceivers. The fourth WP will exploit our novel rat-machine hybrid model for testing the neural applicability of the insights gained in the other WPs, whereas the fifth WP will translate our insights into novel visual-to-tactile sensory substitution algorithms.
HOWPER is expected to either revolutionize or significantly advance the field of human perception, to greatly improve visual to tactile sensory substitution approaches and to contribute novel biomimetic algorithms for autonomous robotic agents.
Max ERC Funding
2 493 441 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym IMAGO
Project Imaging regulatory pathways of angiogenesis
Researcher (PI) Michal Neeman
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS7, ERC-2008-AdG
Summary Homeostasis of multicellular tissues relies on accurate match of vascular supply and drain to the needs of the tissue. Multiple pathways are involved in detection, signalling and execution of the required steps involved in organization of blood and lymphatic vessels during embryonic development. Similar mechanisms are utilized for overcoming changes in tissue requirements also in adult tissues and in pathological processes. The goal of this work is to reveal the dynamic forces that shape the blood vessels during angiogenesis. In particular, we would like to explore the impact of interstitial convective flow in dynamic imprinting of growth factor signalling, thereby regulating vascular patterning. Angiogenesis is explored here as an example for a possible general role for interstitial convection of growth factors in determination of the fine spatial patterning of tissue morphogenesis in vertebrates. To achieve this goal, we will develop multi-modality tools for imaging the regulation of vascular patterning. In vivo imaging will then be utilized for mapping vascular patterning in pathological and physiological angiogenesis including tumours, wound repair, the preovulatory ovarian follicle and foetal implantation sites. Whole body optical, CT, ultrasound and MRI will be applied for non-invasive imaging of deep organs. Microscopic morphometric and molecular information will be derived from the macroscopic imaging data, using selective molecular imaging approaches and functional imaging tools with specific pharmacological models that will be developed to account for interstitial convective flow. Intravital two photon microscopy and fluorescence endoscopy will be used for high resolution evaluation of vascular patterning. The evaluation of novel mechanisms for spatial regulation of intercellular growth factor signalling, will allow us to define new potential targets for intervention, and to develop new tools for preclinical and clinical imaging of angiogenesis.
Summary
Homeostasis of multicellular tissues relies on accurate match of vascular supply and drain to the needs of the tissue. Multiple pathways are involved in detection, signalling and execution of the required steps involved in organization of blood and lymphatic vessels during embryonic development. Similar mechanisms are utilized for overcoming changes in tissue requirements also in adult tissues and in pathological processes. The goal of this work is to reveal the dynamic forces that shape the blood vessels during angiogenesis. In particular, we would like to explore the impact of interstitial convective flow in dynamic imprinting of growth factor signalling, thereby regulating vascular patterning. Angiogenesis is explored here as an example for a possible general role for interstitial convection of growth factors in determination of the fine spatial patterning of tissue morphogenesis in vertebrates. To achieve this goal, we will develop multi-modality tools for imaging the regulation of vascular patterning. In vivo imaging will then be utilized for mapping vascular patterning in pathological and physiological angiogenesis including tumours, wound repair, the preovulatory ovarian follicle and foetal implantation sites. Whole body optical, CT, ultrasound and MRI will be applied for non-invasive imaging of deep organs. Microscopic morphometric and molecular information will be derived from the macroscopic imaging data, using selective molecular imaging approaches and functional imaging tools with specific pharmacological models that will be developed to account for interstitial convective flow. Intravital two photon microscopy and fluorescence endoscopy will be used for high resolution evaluation of vascular patterning. The evaluation of novel mechanisms for spatial regulation of intercellular growth factor signalling, will allow us to define new potential targets for intervention, and to develop new tools for preclinical and clinical imaging of angiogenesis.
Max ERC Funding
2 278 344 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym IMMUNE/MEMORY AGING
Project Can immune system rejuvenation restore age-related memory loss?
Researcher (PI) Michal Eisenbach-Schwartz
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS5, ERC-2008-AdG
Summary With increased life expectancy, there has been a critical growth in the portion of the population that suffers from age-related cognitive decline and dementia. Attempts are therefore being made to find ways to slow brain-aging processes; successful therapies would have a significant impact on the quality of life of individuals, and decrease healthcare expenditures. Aging of the immune system has never been suggested as a factor in memory loss. My group formulated the concept of protective autoimmunity , suggesting a linkage between immunity and self-maintenance in the context of the brain in health and disease. Recently, we showed that T lymphocytes recognizing brain-self antigens have a pivotal role in maintaining hippocampal plasticity, as manifested by reduced neurogenesis and impaired cognitive abilities in T-cell deficient mice. Taken together, our novel observations that T cell immunity contributes to hippocampal plasticity, and the fact that T cell immunity decreases with progressive aging create the basis for the present proposal. We will focus on the following questions: (a) Which aspects of cognition are supported by the immune system- learning, memory or both; (b) whether aging of the immune system is sufficient to induce aging of the brain; (c) whether activation of the immune system is sufficient to reverse age-related cognitive decline; (d) the mechanism underlying the effect of peripheral immunity on brain cognition; and (e) potential therapeutic implications of our findings. Our preliminary results demonstrate that the immune system contributes to spatial memory, and that imposing an immune deficiency is sufficient to cause a reversible memory deficit. These findings give strong reason for optimism that memory loss in the elderly is preventable and perhaps reversible by immune-based therapies; we hope that, in the not too distant future, our studies will enable development of a vaccine to prevent CNS aging and cognitive loss in elderly.
Summary
With increased life expectancy, there has been a critical growth in the portion of the population that suffers from age-related cognitive decline and dementia. Attempts are therefore being made to find ways to slow brain-aging processes; successful therapies would have a significant impact on the quality of life of individuals, and decrease healthcare expenditures. Aging of the immune system has never been suggested as a factor in memory loss. My group formulated the concept of protective autoimmunity , suggesting a linkage between immunity and self-maintenance in the context of the brain in health and disease. Recently, we showed that T lymphocytes recognizing brain-self antigens have a pivotal role in maintaining hippocampal plasticity, as manifested by reduced neurogenesis and impaired cognitive abilities in T-cell deficient mice. Taken together, our novel observations that T cell immunity contributes to hippocampal plasticity, and the fact that T cell immunity decreases with progressive aging create the basis for the present proposal. We will focus on the following questions: (a) Which aspects of cognition are supported by the immune system- learning, memory or both; (b) whether aging of the immune system is sufficient to induce aging of the brain; (c) whether activation of the immune system is sufficient to reverse age-related cognitive decline; (d) the mechanism underlying the effect of peripheral immunity on brain cognition; and (e) potential therapeutic implications of our findings. Our preliminary results demonstrate that the immune system contributes to spatial memory, and that imposing an immune deficiency is sufficient to cause a reversible memory deficit. These findings give strong reason for optimism that memory loss in the elderly is preventable and perhaps reversible by immune-based therapies; we hope that, in the not too distant future, our studies will enable development of a vaccine to prevent CNS aging and cognitive loss in elderly.
Max ERC Funding
1 650 000 €
Duration
Start date: 2009-01-01, End date: 2012-12-31
Project acronym RegRNA
Project Mechanistic principles of regulation by small RNAs
Researcher (PI) Hanah Margalit
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS2, ERC-2018-ADG
Summary Small RNAs (sRNAs) are major regulators of gene expression in bacteria, exerting their regulation in trans by base pairing with target RNAs. Traditionally, sRNAs were considered post-transcriptional regulators, mainly regulating translation by blocking or exposing the ribosome binding site. However, accumulating evidence suggest that sRNAs can exploit the base pairing to manipulate their targets in different ways, assisting or interfering with various molecular processes involving the target RNA. Currently there are a few examples of these alternative regulation modes, but their extent and implications in the cellular circuitry have not been assessed. Here we propose to take advantage of the power of RNA-seq-based technologies to develop innovative approaches to address these challenges transcriptome-wide. These approaches will enable us to map the regulatory mechanism a sRNA employs per target through its effect on a certain molecular process. For feasibility we propose studying three processes: RNA cleavage by RNase E, pre-mature Rho-dependent transcription termination, and transcription elongation pausing. Finding targets regulated by sRNA manipulation of the two latter processes would be especially intriguing, as it would suggest that sRNAs can function as gene-specific transcription regulators (alluded to by our preliminary results). As a basis of our research we will use the network of ~2400 sRNA-target pairs in Escherichia coli, deciphered by RIL-seq (a method we recently developed for global in vivo detection of sRNA targets). Revealing the regulatory mechanism(s) employed per target will shed light on the principles underlying the integration of distinct sRNA regulation modes in specific regulatory circuits and cellular contexts, with direct implications to synthetic biology and pathogenic bacteria. Our study may change the way sRNAs are perceived, from post-transcriptional to versatile regulators that apply different regulation modes to different targets.
Summary
Small RNAs (sRNAs) are major regulators of gene expression in bacteria, exerting their regulation in trans by base pairing with target RNAs. Traditionally, sRNAs were considered post-transcriptional regulators, mainly regulating translation by blocking or exposing the ribosome binding site. However, accumulating evidence suggest that sRNAs can exploit the base pairing to manipulate their targets in different ways, assisting or interfering with various molecular processes involving the target RNA. Currently there are a few examples of these alternative regulation modes, but their extent and implications in the cellular circuitry have not been assessed. Here we propose to take advantage of the power of RNA-seq-based technologies to develop innovative approaches to address these challenges transcriptome-wide. These approaches will enable us to map the regulatory mechanism a sRNA employs per target through its effect on a certain molecular process. For feasibility we propose studying three processes: RNA cleavage by RNase E, pre-mature Rho-dependent transcription termination, and transcription elongation pausing. Finding targets regulated by sRNA manipulation of the two latter processes would be especially intriguing, as it would suggest that sRNAs can function as gene-specific transcription regulators (alluded to by our preliminary results). As a basis of our research we will use the network of ~2400 sRNA-target pairs in Escherichia coli, deciphered by RIL-seq (a method we recently developed for global in vivo detection of sRNA targets). Revealing the regulatory mechanism(s) employed per target will shed light on the principles underlying the integration of distinct sRNA regulation modes in specific regulatory circuits and cellular contexts, with direct implications to synthetic biology and pathogenic bacteria. Our study may change the way sRNAs are perceived, from post-transcriptional to versatile regulators that apply different regulation modes to different targets.
Max ERC Funding
2 278 125 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym REGULATORYCIRCUITS
Project Novel Systematic Strategies for Elucidating Cellular Regulatory Circuits
Researcher (PI) Nir Friedman
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS2, ERC-2008-AdG
Summary The precise regulation of gene expression has been the subject of extensive scrutiny. Nonetheless, there is a big gap between genomic characterization of transcriptional responses and our predictions based on known molecular mechanisms and networks and of transcription regulation. In this proposal I argue for an approach to bridge this gap by using a novel experimental strategy that exploits the recent maturation of two technologies: the use of fluorescence reporter techniques to monitor promoter activity and high-throughput genetic manipulations for the construction of combinatorial genetic perturbations. By combining these, we will screen for genes that modulate the transcriptional response of target promoters, use genetic interactions between them to better resolve their functional dependencies, and build detailed quantitative models of transcriptional processes. We will use the budding yeast model organism, which allows for efficient manipulations, to dissect two transcriptional responses that are prototypical of many regulatory networks in living cells: [1] The early response to osmotic stress, which is mediated by at least two signaling pathways and multiple transcription factors, and [2] the central carbon metabolism response to shifts in carbon source, which involves multiple sensing and signaling pathways to maintain homeostasis. Our approach will elucidate mechanisms that are opaque to classical screens and facilitate building detailed predictive models of these responses. These results will lead to understanding of general principles that govern transcriptional networks. This is the first approach to comprehensively characterize the molecular mechanisms that modulate a transcriptional response, and arrange them in a coherent network. It will open many questions for detailed biochemical investigations, as well as set the stage to extend these ideas to use more detailed phenotypic assays and in more complex organisms.
Summary
The precise regulation of gene expression has been the subject of extensive scrutiny. Nonetheless, there is a big gap between genomic characterization of transcriptional responses and our predictions based on known molecular mechanisms and networks and of transcription regulation. In this proposal I argue for an approach to bridge this gap by using a novel experimental strategy that exploits the recent maturation of two technologies: the use of fluorescence reporter techniques to monitor promoter activity and high-throughput genetic manipulations for the construction of combinatorial genetic perturbations. By combining these, we will screen for genes that modulate the transcriptional response of target promoters, use genetic interactions between them to better resolve their functional dependencies, and build detailed quantitative models of transcriptional processes. We will use the budding yeast model organism, which allows for efficient manipulations, to dissect two transcriptional responses that are prototypical of many regulatory networks in living cells: [1] The early response to osmotic stress, which is mediated by at least two signaling pathways and multiple transcription factors, and [2] the central carbon metabolism response to shifts in carbon source, which involves multiple sensing and signaling pathways to maintain homeostasis. Our approach will elucidate mechanisms that are opaque to classical screens and facilitate building detailed predictive models of these responses. These results will lead to understanding of general principles that govern transcriptional networks. This is the first approach to comprehensively characterize the molecular mechanisms that modulate a transcriptional response, and arrange them in a coherent network. It will open many questions for detailed biochemical investigations, as well as set the stage to extend these ideas to use more detailed phenotypic assays and in more complex organisms.
Max ERC Funding
2 199 899 €
Duration
Start date: 2009-01-01, End date: 2013-12-31