Project acronym aQUARiUM
Project QUAntum nanophotonics in Rolled-Up Metamaterials
Researcher (PI) Humeyra CAGLAYAN
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Country Finland
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Summary
Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Max ERC Funding
1 499 431 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym Bi3BoostFlowBat
Project Bioinspired, biphasic and bipolar flow batteries with boosters for sustainable large-scale energy storage
Researcher (PI) Pekka PELJO
Host Institution (HI) TURUN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), PE8, ERC-2020-STG
Summary To satisfy our growing energy demand while reducing reliance on fossil fuels, a switch to renewable energy sources is vital. The intermittent nature of the latter means innovations in energy storage technology is a key grand challenge. Cost and sustainability issues currently limit the widespread use of electrochemical energy storage technologies, such as lithium ion and redox flow batteries. As the scale for energy storage is simply enormous, the only option is to look for abundant materials. However, compounds that fulfil the extensive requirements entailed at low cost has yet to be reported. While it is possible that the holy grail of energy storage will be found, for example by advanced computational tools and machine learning to design “perfect” abundant molecules, a more flexible, innovative solution to sustainable and cost-effective large-scale energy storage is required. Bi3BoostFlowBat will develop game changing strategies to widen the choice of compounds utilizable for batteries to simultaneously satisfy the requirements for low cost, optimal redox potentials, high solubility and stability in all conditions. The aim of this project is to develop cost-efficient batteries by using solid boosters and by eliminating cross over. Two approaches will be pursued for cross-over elimination 1) bio-inspired polymer batteries, where cross-over of solubilized polymers is prevented by size-exclusion membranes and 2) biphasic emulsion flow batteries, where redox species are transferred to oil phase droplets upon charge. Third research direction focuses on systems to maintain a pH gradient, to allow operation of differential pH systems to improve the cell voltages. Limits of different approaches will be explored by taking an electrochemical engineering approach to model the performance of different systems and by validating the models experimentally. This work will chart the route towards the future third generation battery technologies for the large-scale energy storage.
Summary
To satisfy our growing energy demand while reducing reliance on fossil fuels, a switch to renewable energy sources is vital. The intermittent nature of the latter means innovations in energy storage technology is a key grand challenge. Cost and sustainability issues currently limit the widespread use of electrochemical energy storage technologies, such as lithium ion and redox flow batteries. As the scale for energy storage is simply enormous, the only option is to look for abundant materials. However, compounds that fulfil the extensive requirements entailed at low cost has yet to be reported. While it is possible that the holy grail of energy storage will be found, for example by advanced computational tools and machine learning to design “perfect” abundant molecules, a more flexible, innovative solution to sustainable and cost-effective large-scale energy storage is required. Bi3BoostFlowBat will develop game changing strategies to widen the choice of compounds utilizable for batteries to simultaneously satisfy the requirements for low cost, optimal redox potentials, high solubility and stability in all conditions. The aim of this project is to develop cost-efficient batteries by using solid boosters and by eliminating cross over. Two approaches will be pursued for cross-over elimination 1) bio-inspired polymer batteries, where cross-over of solubilized polymers is prevented by size-exclusion membranes and 2) biphasic emulsion flow batteries, where redox species are transferred to oil phase droplets upon charge. Third research direction focuses on systems to maintain a pH gradient, to allow operation of differential pH systems to improve the cell voltages. Limits of different approaches will be explored by taking an electrochemical engineering approach to model the performance of different systems and by validating the models experimentally. This work will chart the route towards the future third generation battery technologies for the large-scale energy storage.
Max ERC Funding
1 499 880 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym CapBed
Project Engineered Capillary Beds for Successful Prevascularization of Tissue Engineering Constructs
Researcher (PI) Rogerio Pedro Lemos de Sousa Pirraco
Host Institution (HI) UNIVERSIDADE DO MINHO
Country Portugal
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary The demand for donated organs vastly outnumbers the supply, leading each year to the death of thousands of people and the suffering of millions more. Engineered tissues and organs following Tissue Engineering approaches are a possible solution to this problem. However, a prevascularization solution to irrigate complex engineered tissues and assure their survival after transplantation is currently elusive. In the human body, complex organs and tissues irrigation is achieved by a network of blood vessels termed capillary bed which suggests such a structure is needed in engineered tissues. Previous approaches to engineer capillary beds reached different levels of success but none yielded a fully functional one due to the inability in simultaneously addressing key elements such as correct angiogenic cell populations, a suitable matrix and dynamic conditions that mimic blood flow.
CapBed aims at proposing a new technology to fabricate in vitro capillary beds that include a vascular axis that can be anastomosed with a patient circulation. Such capillary beds could be used as prime tools to prevascularize in vitro engineered tissues and provide fast perfusion of those after transplantation to a patient. Cutting edge techniques will be for the first time integrated in a disruptive approach to address the requirements listed above. Angiogenic cell sheets of human Adipose-derived Stromal Vascular fraction cells will provide the cell populations that integrate the capillaries and manage its intricate formation, as well as the collagen required to build the matrix that will hold the capillary beds. Innovative fabrication technologies such as 3D printing and laser photoablation will be used for the fabrication of the micropatterned matrix that will allow fluid flow through microfluidics. The resulting functional capillary beds can be used with virtually every tissue engineering strategy rendering the proposed strategy with massive economical, scientific and medical potential
Summary
The demand for donated organs vastly outnumbers the supply, leading each year to the death of thousands of people and the suffering of millions more. Engineered tissues and organs following Tissue Engineering approaches are a possible solution to this problem. However, a prevascularization solution to irrigate complex engineered tissues and assure their survival after transplantation is currently elusive. In the human body, complex organs and tissues irrigation is achieved by a network of blood vessels termed capillary bed which suggests such a structure is needed in engineered tissues. Previous approaches to engineer capillary beds reached different levels of success but none yielded a fully functional one due to the inability in simultaneously addressing key elements such as correct angiogenic cell populations, a suitable matrix and dynamic conditions that mimic blood flow.
CapBed aims at proposing a new technology to fabricate in vitro capillary beds that include a vascular axis that can be anastomosed with a patient circulation. Such capillary beds could be used as prime tools to prevascularize in vitro engineered tissues and provide fast perfusion of those after transplantation to a patient. Cutting edge techniques will be for the first time integrated in a disruptive approach to address the requirements listed above. Angiogenic cell sheets of human Adipose-derived Stromal Vascular fraction cells will provide the cell populations that integrate the capillaries and manage its intricate formation, as well as the collagen required to build the matrix that will hold the capillary beds. Innovative fabrication technologies such as 3D printing and laser photoablation will be used for the fabrication of the micropatterned matrix that will allow fluid flow through microfluidics. The resulting functional capillary beds can be used with virtually every tissue engineering strategy rendering the proposed strategy with massive economical, scientific and medical potential
Max ERC Funding
1 499 940 €
Duration
Start date: 2018-11-01, End date: 2024-04-30
Project acronym E-CONTROL
Project "Electric-Field Control of Magnetic Domain Wall Motion and Fast Magnetic Switching: Magnetoelectrics at Micro, Nano, and Atomic Length Scales"
Researcher (PI) Sebastiaan Van Dijken
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary "The aim of the proposed research is to study electric-field induced magnetic phenomena in thin-film ferromagnetic-ferroelectric heterostructures. In particular, the project addresses ferroic order competition and magnetoelectric coupling dynamics at micro, nano, and atomic length scales.
The first part of the project focuses on the dynamics of coupled ferromagnetic-ferroelectric domains and electric-field induced magnetic domain wall motion at sub-nanosecond time scales. For simultaneous imaging of both ferroic domain responses to ultra-short electric-field pulses, the construction of a time-resolved polarization microscope is proposed. The second part relates to finite-size scaling of ferroic domain correlations in continuous films and electric-field control of magnetic effects in patterned nanostructures. Here, the aim is to elucidate the competition between magnetoelectric coupling at ferromagnetic-ferroelectric interfaces and the relevant energy scales within the bulk of ferroic materials. Moreover, electric-field induced domain wall motion in magnetic nanowires is pursued as a viable low-power alternative to current-driven spin-torque effects. Finally, the third part of E-CONTROL aims at visualization of magnetoelectric coupling effects with atomic precision. For this frontier study, the development of in situ transmission electron microscopy (TEM) techniques is proposed. The new measurement method enables the application of local electric fields on cross-sectional specimen during TEM analysis and this is bound to provide unique insights in strain-mediated and charge-modulated coupling mechanisms between ferromagnetic and ferroelectric thin films."
Summary
"The aim of the proposed research is to study electric-field induced magnetic phenomena in thin-film ferromagnetic-ferroelectric heterostructures. In particular, the project addresses ferroic order competition and magnetoelectric coupling dynamics at micro, nano, and atomic length scales.
The first part of the project focuses on the dynamics of coupled ferromagnetic-ferroelectric domains and electric-field induced magnetic domain wall motion at sub-nanosecond time scales. For simultaneous imaging of both ferroic domain responses to ultra-short electric-field pulses, the construction of a time-resolved polarization microscope is proposed. The second part relates to finite-size scaling of ferroic domain correlations in continuous films and electric-field control of magnetic effects in patterned nanostructures. Here, the aim is to elucidate the competition between magnetoelectric coupling at ferromagnetic-ferroelectric interfaces and the relevant energy scales within the bulk of ferroic materials. Moreover, electric-field induced domain wall motion in magnetic nanowires is pursued as a viable low-power alternative to current-driven spin-torque effects. Finally, the third part of E-CONTROL aims at visualization of magnetoelectric coupling effects with atomic precision. For this frontier study, the development of in situ transmission electron microscopy (TEM) techniques is proposed. The new measurement method enables the application of local electric fields on cross-sectional specimen during TEM analysis and this is bound to provide unique insights in strain-mediated and charge-modulated coupling mechanisms between ferromagnetic and ferroelectric thin films."
Max ERC Funding
1 499 465 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym ELASTIC-TURBULENCE
Project Purely-elastic flow instabilities and transition to elastic turbulence in microscale flows of complex fluids
Researcher (PI) Manuel Antonio Moreira Alves
Host Institution (HI) UNIVERSIDADE DO PORTO
Country Portugal
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary Flows of complex fluids, such as many biological fluids and most synthetic fluids, are common in our daily life and are very important from an industrial perspective. Because of their inherent nonlinearity, the flow of complex viscoelastic fluids often leads to counterintuitive and complex behaviour and, above critical conditions, can prompt flow instabilities even under low Reynolds number conditions which are entirely absent in the corresponding Newtonian fluid flows.
The primary goal of this project is to substantially expand the frontiers of our current knowledge regarding the mechanisms that lead to the development of such purely-elastic flow instabilities, and ultimately to understand the transition to so-called “elastic turbulence”, a turbulent-like phenomenon which can arise even under inertialess flow conditions. This is an extremely challenging problem, and to significantly advance our knowledge in such important flows these instabilities will be investigated in a combined manner encompassing experiments, theory and numerical simulations. Such a holistic approach will enable us to understand the underlying mechanisms of those instabilities and to develop accurate criteria for their prediction far in advance of what we could achieve with either approach separately. A deep understanding of the mechanisms generating elastic instabilities and subsequent transition to elastic turbulence is crucial from a fundamental point of view and for many important practical applications involving engineered complex fluids, such as the design of microfluidic mixers for efficient operation under inertialess flow conditions, or the development of highly efficient micron-sized energy management and mass transfer systems.
This research proposal will create a solid basis for the establishment of an internationally-leading research group led by the PI studying flow instabilities and elastic turbulence in complex fluid flows.
Summary
Flows of complex fluids, such as many biological fluids and most synthetic fluids, are common in our daily life and are very important from an industrial perspective. Because of their inherent nonlinearity, the flow of complex viscoelastic fluids often leads to counterintuitive and complex behaviour and, above critical conditions, can prompt flow instabilities even under low Reynolds number conditions which are entirely absent in the corresponding Newtonian fluid flows.
The primary goal of this project is to substantially expand the frontiers of our current knowledge regarding the mechanisms that lead to the development of such purely-elastic flow instabilities, and ultimately to understand the transition to so-called “elastic turbulence”, a turbulent-like phenomenon which can arise even under inertialess flow conditions. This is an extremely challenging problem, and to significantly advance our knowledge in such important flows these instabilities will be investigated in a combined manner encompassing experiments, theory and numerical simulations. Such a holistic approach will enable us to understand the underlying mechanisms of those instabilities and to develop accurate criteria for their prediction far in advance of what we could achieve with either approach separately. A deep understanding of the mechanisms generating elastic instabilities and subsequent transition to elastic turbulence is crucial from a fundamental point of view and for many important practical applications involving engineered complex fluids, such as the design of microfluidic mixers for efficient operation under inertialess flow conditions, or the development of highly efficient micron-sized energy management and mass transfer systems.
This research proposal will create a solid basis for the establishment of an internationally-leading research group led by the PI studying flow instabilities and elastic turbulence in complex fluid flows.
Max ERC Funding
994 110 €
Duration
Start date: 2012-10-01, End date: 2018-01-31
Project acronym FARE
Project FAKE NEWS AND REAL PEOPLE – USING BIG DATA TO UNDERSTAND HUMAN BEHAVIOUR
Researcher (PI) Maria Joana GONcALVES-Sa
Host Institution (HI) LABORATORIO DE INSTRUMENTACAO E FISICA EXPERIMENTAL DE PARTICULAS LIP
Country Portugal
Call Details Starting Grant (StG), SH3, ERC-2019-STG
Summary Recent events, from the anti-vaccination movement, to Brexit and even to mob killings, have raised serious concerns about the influence of the so-called fake news (FN). False information is not new in human history, but the recent surge in online activity, coupled with poor digital literacy, consumer profiling, and large profits from ad revenues, created a perfect storm for the FN epidemic, with still unimaginable consequences.
This challenge is interdisciplinary and requires academic research to guide current calls for action issued by academics, governmental and non-governmental agencies, and the social network platforms themselves. FARE will enrich current efforts, which mostly confront FN spreading from an applied perspective, by offering a theoretical framework that allows to make testable predictions. FARE argues that sharing of FN is a deviation from pure rationality and brings together 1) state of the art knowledge in behavioural psychology, to assess the role that cognitive biases play in susceptibility to FN, and 2) current models in network science and epidemiology, to test whether FN spread more like simple or complex contagions. Finally, fully recognizing that these novel big-data approaches carry great risks, FARE will develop a new strategy, mostly based on distributed computing, and guidelines to the ethical handling of human-related big-data.
Together, FARE will offer a comprehensive model to ask questions such as: 1) What role(s) cognitive biases play in FN spreading? 2) How does network architecture affect FNs spread? 3) How do biases and position on networks build on each other to impact propagation? 4) What monitoring and mitigation interventions are likely to be more efficient?
Moreover, the study of FN from such a conceptual perspective has the potential to profoundly increase our knowledge on human behaviour and information spread, beyond specific problems, with implications for communication (science, political), economics, and psychology.
Summary
Recent events, from the anti-vaccination movement, to Brexit and even to mob killings, have raised serious concerns about the influence of the so-called fake news (FN). False information is not new in human history, but the recent surge in online activity, coupled with poor digital literacy, consumer profiling, and large profits from ad revenues, created a perfect storm for the FN epidemic, with still unimaginable consequences.
This challenge is interdisciplinary and requires academic research to guide current calls for action issued by academics, governmental and non-governmental agencies, and the social network platforms themselves. FARE will enrich current efforts, which mostly confront FN spreading from an applied perspective, by offering a theoretical framework that allows to make testable predictions. FARE argues that sharing of FN is a deviation from pure rationality and brings together 1) state of the art knowledge in behavioural psychology, to assess the role that cognitive biases play in susceptibility to FN, and 2) current models in network science and epidemiology, to test whether FN spread more like simple or complex contagions. Finally, fully recognizing that these novel big-data approaches carry great risks, FARE will develop a new strategy, mostly based on distributed computing, and guidelines to the ethical handling of human-related big-data.
Together, FARE will offer a comprehensive model to ask questions such as: 1) What role(s) cognitive biases play in FN spreading? 2) How does network architecture affect FNs spread? 3) How do biases and position on networks build on each other to impact propagation? 4) What monitoring and mitigation interventions are likely to be more efficient?
Moreover, the study of FN from such a conceptual perspective has the potential to profoundly increase our knowledge on human behaviour and information spread, beyond specific problems, with implications for communication (science, political), economics, and psychology.
Max ERC Funding
1 499 844 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym GREEN
Project Generating Energy from Electroactive Algae
Researcher (PI) Paulo ROCHA
Host Institution (HI) UNIVERSIDADE DE COIMBRA
Country Portugal
Call Details Starting Grant (StG), PE8, ERC-2020-STG
Summary The aim of this grant is to establish a world leading research centre focusing on developing a radically different way to generate clean energy from algae. GREEN will deliver a self-sustainable bioenergy generator, with an output power of the order of W/m2 that is at least 100 times larger than current state-of-art bioenergy generators. The unprecedented enhancement in output power finally breaks the power scalability barrier for bioenergy generators and in this way delivers impact on the world’s renewable energy research trajectory.
I have recently discovered that a population of diatoms, a form of algae, communicate in a cooperative manner and produce long lasting large magnitude electrical oscillations. The discovery has been made possible through my recent breakthrough - I have developed a large area and low impedance transducer to record cooperative communication in cells.
My idea is to harvest the generated electricity from the algae. Using 2D electrodes, the output power is µW/m2, which is low. However, the power increases with the density of diatoms adhered to the electrode and with the electrical coupling of the cells to the electrode. By going from a 2D to porous 3D electrodes, and by optimizing the coupling an output power of W/m2 is within my reach.
To deliver the new bioenergy generator, it is essential to understand 1) which materials and 3D electrode geometries comprise larger cell densities and enable a more efficient charge transfer from the living organisms to the electrode 2) which organisms provide the higher output powers, and 3) how the electric circuitry will be developed to store and deliver the generated power.
This multidisciplinary research will advance the state-of-the-art by delivering a prototype for a new green self-sustained energy harvester, suitable for power scalability, through realising technological advances in 1) electrochemical electrodes, 2) cooperative signalling mechanisms in algae and 3) energy harvesting circuits.
Summary
The aim of this grant is to establish a world leading research centre focusing on developing a radically different way to generate clean energy from algae. GREEN will deliver a self-sustainable bioenergy generator, with an output power of the order of W/m2 that is at least 100 times larger than current state-of-art bioenergy generators. The unprecedented enhancement in output power finally breaks the power scalability barrier for bioenergy generators and in this way delivers impact on the world’s renewable energy research trajectory.
I have recently discovered that a population of diatoms, a form of algae, communicate in a cooperative manner and produce long lasting large magnitude electrical oscillations. The discovery has been made possible through my recent breakthrough - I have developed a large area and low impedance transducer to record cooperative communication in cells.
My idea is to harvest the generated electricity from the algae. Using 2D electrodes, the output power is µW/m2, which is low. However, the power increases with the density of diatoms adhered to the electrode and with the electrical coupling of the cells to the electrode. By going from a 2D to porous 3D electrodes, and by optimizing the coupling an output power of W/m2 is within my reach.
To deliver the new bioenergy generator, it is essential to understand 1) which materials and 3D electrode geometries comprise larger cell densities and enable a more efficient charge transfer from the living organisms to the electrode 2) which organisms provide the higher output powers, and 3) how the electric circuitry will be developed to store and deliver the generated power.
This multidisciplinary research will advance the state-of-the-art by delivering a prototype for a new green self-sustained energy harvester, suitable for power scalability, through realising technological advances in 1) electrochemical electrodes, 2) cooperative signalling mechanisms in algae and 3) energy harvesting circuits.
Max ERC Funding
2 267 667 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym HEATTRONICS
Project Mesoscopic heattronics: thermal and nonequilibrium effects and fluctuations in nanoelectronics
Researcher (PI) Tero Tapio Heikkilae
Host Institution (HI) JYVASKYLAN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary Few systems in nature are entirely in equilibrium. Out of equilibrium, there are heat currents, and different degrees of freedom or parts of studied systems may be described by entirely different temperatures if the concept of temperature is at all well defined. In this project we will study the emergence of the subsystem temperatures in different types of small electronic systems, and the physical phenomena associated with those temperatures. Our emphasis is on the mesoscopic effects, residing between the microscopic world of individual atoms and electrons, and the macroscopic everyday world. In particular, we will research thermometry methods, different types of relaxation, magnitudes of fluctuations and effects at high frequencies. We will explore these effects in a wide variety of systems: normal metals and superconductors, carbon nanostructures, nanoelectromechanical and spintronic systems. Besides contributing to the understanding of the fundamental properties of electronic systems, our studies are directly relevant for the development of thermal sensors and electron refrigerators. The improved understanding of the thermal phenomena will also benefit the study of almost any type of a nonlinear phenomenon in electronics, for example the research of solid-state realizations of quantum computing or the race towards quantum limited mass and force detection.
Summary
Few systems in nature are entirely in equilibrium. Out of equilibrium, there are heat currents, and different degrees of freedom or parts of studied systems may be described by entirely different temperatures if the concept of temperature is at all well defined. In this project we will study the emergence of the subsystem temperatures in different types of small electronic systems, and the physical phenomena associated with those temperatures. Our emphasis is on the mesoscopic effects, residing between the microscopic world of individual atoms and electrons, and the macroscopic everyday world. In particular, we will research thermometry methods, different types of relaxation, magnitudes of fluctuations and effects at high frequencies. We will explore these effects in a wide variety of systems: normal metals and superconductors, carbon nanostructures, nanoelectromechanical and spintronic systems. Besides contributing to the understanding of the fundamental properties of electronic systems, our studies are directly relevant for the development of thermal sensors and electron refrigerators. The improved understanding of the thermal phenomena will also benefit the study of almost any type of a nonlinear phenomenon in electronics, for example the research of solid-state realizations of quantum computing or the race towards quantum limited mass and force detection.
Max ERC Funding
1 322 371 €
Duration
Start date: 2010-01-01, End date: 2015-12-31
Project acronym IgYPurTech
Project IgY Technology: A Purification Platform using Ionic-Liquid-Based Aqueous Biphasic Systems
Researcher (PI) Mara Guadalupe Freire Martins
Host Institution (HI) UNIVERSIDADE DE AVEIRO
Country Portugal
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary With the emergence of antibiotic-resistant pathogens the development of antigen-specific antibodies for use in passive immunotherapy is, nowadays, a major concern in human society. Despite the most focused mammal antibodies, antibodies obtained from egg yolk of immunized hens, immunoglobulin Y (IgY), are an alternative option that can be obtained in higher titres by non-stressful and non-invasive methods. This large amount of available antibodies opens the door for a new kind of cheaper biopharmaceuticals. However, the production cost of high-quality IgY for large-scale applications remains higher than other drug therapies due to the lack of an efficient purification method. The search of new purification platforms is thus a vital demand to which liquid-liquid extraction using aqueous biphasic systems (ABS) could be the answer. Besides the conventional polymer-based systems, highly viscous and with a limited polarity/affinity range, a recent type of ABS composed of ionic liquids (ILs) may be employed. ILs are usually classified as “green solvents” due to their negligible vapour pressure. Yet, the major advantage of IL-based ABS relies on the possibility of tailoring their phases’ polarities aiming at extracting a target biomolecule. A proper manipulation of the system constituents and respective composition allows the pre-concentration, complete extraction, or purification of the most diverse biomolecules.
This research project addresses the development of a new technique for the extraction and purification of IgY from egg yolk using IL-based ABS. The proposed plan contemplates the optimization of purification systems at the laboratory scale and their use in countercurrent chromatography to achieve a simple, cost-effective and scalable process. The success of this project and its scalability to an industrial level certainly will allow the production of cheaper antibodies with a long-term impact in human healthcare.
Summary
With the emergence of antibiotic-resistant pathogens the development of antigen-specific antibodies for use in passive immunotherapy is, nowadays, a major concern in human society. Despite the most focused mammal antibodies, antibodies obtained from egg yolk of immunized hens, immunoglobulin Y (IgY), are an alternative option that can be obtained in higher titres by non-stressful and non-invasive methods. This large amount of available antibodies opens the door for a new kind of cheaper biopharmaceuticals. However, the production cost of high-quality IgY for large-scale applications remains higher than other drug therapies due to the lack of an efficient purification method. The search of new purification platforms is thus a vital demand to which liquid-liquid extraction using aqueous biphasic systems (ABS) could be the answer. Besides the conventional polymer-based systems, highly viscous and with a limited polarity/affinity range, a recent type of ABS composed of ionic liquids (ILs) may be employed. ILs are usually classified as “green solvents” due to their negligible vapour pressure. Yet, the major advantage of IL-based ABS relies on the possibility of tailoring their phases’ polarities aiming at extracting a target biomolecule. A proper manipulation of the system constituents and respective composition allows the pre-concentration, complete extraction, or purification of the most diverse biomolecules.
This research project addresses the development of a new technique for the extraction and purification of IgY from egg yolk using IL-based ABS. The proposed plan contemplates the optimization of purification systems at the laboratory scale and their use in countercurrent chromatography to achieve a simple, cost-effective and scalable process. The success of this project and its scalability to an industrial level certainly will allow the production of cheaper antibodies with a long-term impact in human healthcare.
Max ERC Funding
1 386 020 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym InterActive
Project Interacting with Active Particles
Researcher (PI) Jaakko Vaino Isakki TIMONEN
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary Active particles refer to out-of-equilibrium self-propulsive objects such as biological microswimmers and engineered colloidal particles that can form various fascinating collective states. Active particles are easy to observe experimentally but notoriously difficult to interact with due to their fast and stochastic dynamics at both single-particle and collective state levels. In this project, I aim at scientific breakthrough in both instrumentation that allows direct interaction with active particles and using the methodology to progress substantially our understanding of dynamics and phase transitions of active particles.
The first part focuses on rendering active particles, including E. coli, C. reinhardtii and Quincke rollers, permanently magnetized and designing suitable hardware for controlling them in real time. These particles are rendered “intelligent” by programming their behavior based on real-time image analysis (long-range vision) and steering with external magnetic field. I will program these particles to reveal the limits of using local dissipative hydrodynamic near-fields to guiding active particles, and demonstrate unambiguously the extent to which a single active particle within a collective state can control the collective behaviour.
The second part aims at realizing tuneable magnetic traps and other conservative potential energy landscapes for non-magnetic active particles by using magnetophoresis in superparamagnetic fluids. I will use the technique to establishing confinement-activity phase diagrams for both biological (C. reinhardtii) and synthetic (Quincke rollers) active particles in quadratic confinements. I will further reveal the role of dimensionality (1D vs 2D vs 3D) in the phase transitions of active particles and carry out the seminal investigation of active particles in periodic potentials.
The results and methodologies will have a major impact, both immediately and in long-term, on experimental physics of active particles.
Summary
Active particles refer to out-of-equilibrium self-propulsive objects such as biological microswimmers and engineered colloidal particles that can form various fascinating collective states. Active particles are easy to observe experimentally but notoriously difficult to interact with due to their fast and stochastic dynamics at both single-particle and collective state levels. In this project, I aim at scientific breakthrough in both instrumentation that allows direct interaction with active particles and using the methodology to progress substantially our understanding of dynamics and phase transitions of active particles.
The first part focuses on rendering active particles, including E. coli, C. reinhardtii and Quincke rollers, permanently magnetized and designing suitable hardware for controlling them in real time. These particles are rendered “intelligent” by programming their behavior based on real-time image analysis (long-range vision) and steering with external magnetic field. I will program these particles to reveal the limits of using local dissipative hydrodynamic near-fields to guiding active particles, and demonstrate unambiguously the extent to which a single active particle within a collective state can control the collective behaviour.
The second part aims at realizing tuneable magnetic traps and other conservative potential energy landscapes for non-magnetic active particles by using magnetophoresis in superparamagnetic fluids. I will use the technique to establishing confinement-activity phase diagrams for both biological (C. reinhardtii) and synthetic (Quincke rollers) active particles in quadratic confinements. I will further reveal the role of dimensionality (1D vs 2D vs 3D) in the phase transitions of active particles and carry out the seminal investigation of active particles in periodic potentials.
The results and methodologies will have a major impact, both immediately and in long-term, on experimental physics of active particles.
Max ERC Funding
1 499 938 €
Duration
Start date: 2019-01-01, End date: 2023-12-31