Project acronym ABIONYS
Project Artificial Enzyme Modules as Tools in a Tailor-made Biosynthesis
Researcher (PI) Jan DESKA
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Consolidator Grant (CoG), PE5, ERC-2019-COG
Summary In order to tackle some of the prime societal challenges of this century, science has to urgently provide effective tools addressing the redesign of chemical value chains through the exploitation of novel, bio-based raw materials, and the discovery and implementation of more resource-efficient production platforms. Nature will inevitably play a pivotal role in the imminent transformation of industrial strategies, and the recent bioeconomy approaches can only be regarded as initial step towards a sustainable future. Operating at the interface between chemistry and life sciences, my ABIONYS will fundamentally challenge the widely held distinction separating chemical from biosynthesis, and will deliver the first proof-of-concept where abiotic reactions act as productive puzzle pieces in biosynthetic arrangements. On the basis of our previous ground-breaking discoveries on artificial enzyme functions, I will create a significantly extended toolbox of biocatalysis modules by applying protein-based interpretations of synthetically crucial but non-natural reactions i.e. transformations that are in no way biosynthetically encoded in living organisms. My research will exploit these tools in multi-enzyme cascades for the preparation of complex organic target structures, not only to highlight the great synthetic potential of these approaches, but also to lay the groundwork for in vivo implementations. Eventually, the knowledge gathered from enzyme discovery and cascade design will enable to create an unprecedented class of bioproduction systems, where the genetic incorporation of artificial enzyme functions into recombinant microbial host organisms will yield tailor-made cellular factories. Combining classical organic synthesis strategies with the power of modern biotechnology, ABIONYS is going to transform the way we synthesize complex and functional building blocks by allowing us to encode organic chemistry thinking into living production platforms.
Summary
In order to tackle some of the prime societal challenges of this century, science has to urgently provide effective tools addressing the redesign of chemical value chains through the exploitation of novel, bio-based raw materials, and the discovery and implementation of more resource-efficient production platforms. Nature will inevitably play a pivotal role in the imminent transformation of industrial strategies, and the recent bioeconomy approaches can only be regarded as initial step towards a sustainable future. Operating at the interface between chemistry and life sciences, my ABIONYS will fundamentally challenge the widely held distinction separating chemical from biosynthesis, and will deliver the first proof-of-concept where abiotic reactions act as productive puzzle pieces in biosynthetic arrangements. On the basis of our previous ground-breaking discoveries on artificial enzyme functions, I will create a significantly extended toolbox of biocatalysis modules by applying protein-based interpretations of synthetically crucial but non-natural reactions i.e. transformations that are in no way biosynthetically encoded in living organisms. My research will exploit these tools in multi-enzyme cascades for the preparation of complex organic target structures, not only to highlight the great synthetic potential of these approaches, but also to lay the groundwork for in vivo implementations. Eventually, the knowledge gathered from enzyme discovery and cascade design will enable to create an unprecedented class of bioproduction systems, where the genetic incorporation of artificial enzyme functions into recombinant microbial host organisms will yield tailor-made cellular factories. Combining classical organic synthesis strategies with the power of modern biotechnology, ABIONYS is going to transform the way we synthesize complex and functional building blocks by allowing us to encode organic chemistry thinking into living production platforms.
Max ERC Funding
1 995 707 €
Duration
Start date: 2020-11-01, End date: 2025-10-31
Project acronym ADAPT
Project Autoxidation of Anthropogenic Volatile Organic Compounds (AVOC) as a Source of Urban Air Pollution
Researcher (PI) Matti Rissanen
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Country Finland
Call Details Consolidator Grant (CoG), PE10, ERC-2020-COG
Summary Previous efforts to raise living standards have been based on relentlessly increasing combustion, causing environmental destruction at all scales. In addition to climate-warming CO2, fossil fuel combustion also produces a large number of organic compounds and particulate matter, which deteriorate air quality.
The atmosphere is cleansed from such pollutants by gas-phase oxidation reactions, which are invariably mediated by peroxy radicals (RO2). Oxidation transforms initially volatile and water-insoluble hydrocarbons into water-soluble forms (ultimately CO2), enabling scavenging by liquid droplets. A minor but crucially important alternative oxidation pathway leads to oxidative molecular growth, and formation of atmospheric aerosols. Aerosols impart a huge influence on the atmosphere, from local air quality issues to global climate forcing, yet their formation mechanisms and structures of organic aerosol precursors remains elusive.
In a paradigm change, RO2 was recently found to undergo autoxidation, enabling rapid aerosol precursor formation even at sub-second time-scales – in stark contrast to the long processing times (days - weeks) previously assumed to be necessary. We have shown how abundant biogenic hydrocarbons (BVOC) autoxidize, but due to key structural differences, the same pathways are not available for anthropogenic hydrocarbons (AVOC), and thus they were not expected to autoxidize. My preliminary experiments reveal that AVOCs do autoxidize, but the mechanism enabling this remain unknown. Crucially, the co-reactants shown to inhibit BVOC seem to enforce AVOC autoxidation – potentially explaining the recent mysterious discovery of new-particle formation in polluted megacities. In ADAPT, I will use a combination of novel mass spectrometric detection methods fortified by theoretical calculations, to solve the mechanism of AVOC autoxidation. This will directly assist both air quality management, and the design of cleaner fuels and engines.
Summary
Previous efforts to raise living standards have been based on relentlessly increasing combustion, causing environmental destruction at all scales. In addition to climate-warming CO2, fossil fuel combustion also produces a large number of organic compounds and particulate matter, which deteriorate air quality.
The atmosphere is cleansed from such pollutants by gas-phase oxidation reactions, which are invariably mediated by peroxy radicals (RO2). Oxidation transforms initially volatile and water-insoluble hydrocarbons into water-soluble forms (ultimately CO2), enabling scavenging by liquid droplets. A minor but crucially important alternative oxidation pathway leads to oxidative molecular growth, and formation of atmospheric aerosols. Aerosols impart a huge influence on the atmosphere, from local air quality issues to global climate forcing, yet their formation mechanisms and structures of organic aerosol precursors remains elusive.
In a paradigm change, RO2 was recently found to undergo autoxidation, enabling rapid aerosol precursor formation even at sub-second time-scales – in stark contrast to the long processing times (days - weeks) previously assumed to be necessary. We have shown how abundant biogenic hydrocarbons (BVOC) autoxidize, but due to key structural differences, the same pathways are not available for anthropogenic hydrocarbons (AVOC), and thus they were not expected to autoxidize. My preliminary experiments reveal that AVOCs do autoxidize, but the mechanism enabling this remain unknown. Crucially, the co-reactants shown to inhibit BVOC seem to enforce AVOC autoxidation – potentially explaining the recent mysterious discovery of new-particle formation in polluted megacities. In ADAPT, I will use a combination of novel mass spectrometric detection methods fortified by theoretical calculations, to solve the mechanism of AVOC autoxidation. This will directly assist both air quality management, and the design of cleaner fuels and engines.
Max ERC Funding
2 689 147 €
Duration
Start date: 2021-02-01, End date: 2026-01-31
Project acronym BHIVE
Project Bio-derived HIgh Value polymers through novel Enzyme function
Researcher (PI) Emma Rusi Master
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Consolidator Grant (CoG), LS9, ERC-2014-CoG
Summary Recent advances in systems-level study of cells and organisms have revealed the enormous potential to live more sustainably through better use of biological processes. Plants sustainably synthesize the most abundant and diverse materials on Earth. By applying recent advances in life science technology, we can better harness renewable plant resources and bioconversion processes, to develop environmentally and politically sustainable human enterprise and lifestyles. At the same time, the global market for high-value biochemicals and bioplastics from forest and agricultural sources is rapidly increasing, which presents new opportunities for forest and agricultural sectors.
The overall aim of BHIVE is to illuminate uncharted regions of genome and metagenome sequences to discover entirely new protein families that can be used to sustainably synthesize novel, high-value biomaterials from renewable plant resources. The approach will include three parallel research thrusts: 1) strategic analysis of transcriptome and metagenome sequences to identify proteins with entirely unknown function relevant to biomass (lignocellulose) transformation, 2) mapping of uncharted regions within phylogenetic trees of poorly characterized enzyme families with recognized potential to modify the chemistry and biophysical properties of plant polysaccharides, and 3) the design and development of novel enzyme screens to directly address the increasing limitations of existing assays to uncover entirely new protein functions. BHIVE will be unique in its undivided focus on characterizing lignocellulose-active proteins encoded by the 30-40% of un-annotated sequence, or genomic “dark matter”, typical of nearly all genome sequences. In this way, BHIVE tackles a key constraint to fully realizing the societal and environmental benefits of the genomics era.
Summary
Recent advances in systems-level study of cells and organisms have revealed the enormous potential to live more sustainably through better use of biological processes. Plants sustainably synthesize the most abundant and diverse materials on Earth. By applying recent advances in life science technology, we can better harness renewable plant resources and bioconversion processes, to develop environmentally and politically sustainable human enterprise and lifestyles. At the same time, the global market for high-value biochemicals and bioplastics from forest and agricultural sources is rapidly increasing, which presents new opportunities for forest and agricultural sectors.
The overall aim of BHIVE is to illuminate uncharted regions of genome and metagenome sequences to discover entirely new protein families that can be used to sustainably synthesize novel, high-value biomaterials from renewable plant resources. The approach will include three parallel research thrusts: 1) strategic analysis of transcriptome and metagenome sequences to identify proteins with entirely unknown function relevant to biomass (lignocellulose) transformation, 2) mapping of uncharted regions within phylogenetic trees of poorly characterized enzyme families with recognized potential to modify the chemistry and biophysical properties of plant polysaccharides, and 3) the design and development of novel enzyme screens to directly address the increasing limitations of existing assays to uncover entirely new protein functions. BHIVE will be unique in its undivided focus on characterizing lignocellulose-active proteins encoded by the 30-40% of un-annotated sequence, or genomic “dark matter”, typical of nearly all genome sequences. In this way, BHIVE tackles a key constraint to fully realizing the societal and environmental benefits of the genomics era.
Max ERC Funding
1 977 781 €
Duration
Start date: 2015-09-01, End date: 2020-12-31
Project acronym CAPSID
Project Controlling Activity of Lysogenic Phages by Small Molecule Inducers and Dysregulators
Researcher (PI) Thomas Boettcher
Host Institution (HI) UNIVERSITAT WIEN
Country Austria
Call Details Consolidator Grant (CoG), PE5, ERC-2019-COG
Summary The human microbiome has been increasingly in the focus of research for its importance in human health and disease. Yet, the viruses (phages) infecting these microbiota have gained much less attention. The majority of phages reside integrated in the genomes of their microbial hosts as so called lysogenic prophages.
Often, these prophages encode important toxins and other virulence related factors that, while they are beneficial to their microbial hosts, may be detrimental for the infected human. Prophages can be induced under certain conditions to resume a lytic lifestyle resulting in the production of virus particles and often in the destruction of the host cell. Frequently, however, phage induction also leads to increased production of virulence factors. In this project, we aim to uncover small molecules modulating phage induction. We will explore to what extent microbial metabolites of human microbiota act as native triggers or inhibitors of phage induction and shape the complex interspecies interactions in the microbiome. The corresponding phage inducing or dysregulating metabolites will be isolated to elucidate their chemical structure and unveil their molecular targets. We will develop chemical tools to dissect and interrogate the responsible mechanisms and finally develop customized synthetic modulators that allow us to achieve control over the activity of phage-microbe systems with specific medical relevance. The integrated approach of the CAPSID project will provide first comprehensive insights into the chemistry of microbe-phage interactions and allow to assess its role for infectious diseases and its potential for customized treatment of microbial pathogens.
Summary
The human microbiome has been increasingly in the focus of research for its importance in human health and disease. Yet, the viruses (phages) infecting these microbiota have gained much less attention. The majority of phages reside integrated in the genomes of their microbial hosts as so called lysogenic prophages.
Often, these prophages encode important toxins and other virulence related factors that, while they are beneficial to their microbial hosts, may be detrimental for the infected human. Prophages can be induced under certain conditions to resume a lytic lifestyle resulting in the production of virus particles and often in the destruction of the host cell. Frequently, however, phage induction also leads to increased production of virulence factors. In this project, we aim to uncover small molecules modulating phage induction. We will explore to what extent microbial metabolites of human microbiota act as native triggers or inhibitors of phage induction and shape the complex interspecies interactions in the microbiome. The corresponding phage inducing or dysregulating metabolites will be isolated to elucidate their chemical structure and unveil their molecular targets. We will develop chemical tools to dissect and interrogate the responsible mechanisms and finally develop customized synthetic modulators that allow us to achieve control over the activity of phage-microbe systems with specific medical relevance. The integrated approach of the CAPSID project will provide first comprehensive insights into the chemistry of microbe-phage interactions and allow to assess its role for infectious diseases and its potential for customized treatment of microbial pathogens.
Max ERC Funding
1 992 240 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym CapTherPV
Project Integration of Capacitor, Thermoelectric and PhotoVoltaic thin films for efficient energy conversion and storage
Researcher (PI) Isabel Maria Das Merces Ferreira
Host Institution (HI) NOVA ID FCT - ASSOCIACAO PARA A INOVACAO E DESENVOLVIMENTO DA FCT
Country Portugal
Call Details Consolidator Grant (CoG), PE8, ERC-2014-CoG
Summary The possibility of having a unique device that converts thermal and photonics energy into electrical energy and simultaneously stores it, is something dreamed by the PI since the beginning of her research career. To achieve that goal, this project aims to gather, in a single substrate, solar cells with up-conversion nanoparticles, thermoelectrics and graphene super-capacitor, all made of thin films. These three main components will be developed separately and integrated sequentially. The innovation proposed is not limited to the integration of components, but rely in ground-breaking concepts: 1) thermoelectric elements based on thin film (TE-TF) oxides; 2) plasmonic nanoparticles for up conversion of near infrared radiation to visible emission in solar cells; 3) graphene super-capacitors; 4) integration and optimization of all components in a single CapTherPV device. This ambitious project will bring new insights at large area, low cost and flexible energy harvesting and comes from an old idea of combining energy conversion and storage that has been pursued by the PI. She started her career in amorphous silicon thin film solar cells, later she started the development of thin film batteries and more recently started a research line in thermoelectric films. If approved, this project will give financial support to consolidate the research being carried out and will give independence to the PI in terms of resources and creative think. More importantly, will facilitate the concretization of the dream that has been pursued with hard work.
Summary
The possibility of having a unique device that converts thermal and photonics energy into electrical energy and simultaneously stores it, is something dreamed by the PI since the beginning of her research career. To achieve that goal, this project aims to gather, in a single substrate, solar cells with up-conversion nanoparticles, thermoelectrics and graphene super-capacitor, all made of thin films. These three main components will be developed separately and integrated sequentially. The innovation proposed is not limited to the integration of components, but rely in ground-breaking concepts: 1) thermoelectric elements based on thin film (TE-TF) oxides; 2) plasmonic nanoparticles for up conversion of near infrared radiation to visible emission in solar cells; 3) graphene super-capacitors; 4) integration and optimization of all components in a single CapTherPV device. This ambitious project will bring new insights at large area, low cost and flexible energy harvesting and comes from an old idea of combining energy conversion and storage that has been pursued by the PI. She started her career in amorphous silicon thin film solar cells, later she started the development of thin film batteries and more recently started a research line in thermoelectric films. If approved, this project will give financial support to consolidate the research being carried out and will give independence to the PI in terms of resources and creative think. More importantly, will facilitate the concretization of the dream that has been pursued with hard work.
Max ERC Funding
1 999 375 €
Duration
Start date: 2015-07-01, End date: 2021-09-30
Project acronym CARBOFLOW
Project Streamlined carbon dioxide conversion in ionic liquids – a platform strategy for modern carbonylation chemistry
Researcher (PI) Katharina SCHRoeDER
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Country Austria
Call Details Consolidator Grant (CoG), PE5, ERC-2019-COG
Summary Since the discovery in the nineteenth century, carbonylation chemistry has found broad applicability in chemical industries and become now a key technology for bulk and fine chemical synthesis. Despite its substantial toxicity, carbon monoxide (CO) is commonly used as carbonyl source causing considerable safety issues, particularly when used on bulk scale. The replacement of this hazardous gas with more benign surrogates would be highly desirable, and recent ideas focus on the valorisation of carbon dioxide as abundant, non-toxic and renewable carbon resource. However, few industrial processes utilise carbon dioxide as a raw material, and potent catalysts are required to overcome its thermodynamic and kinetic barrier. In this regard, ionic liquids show considerable potential as cooperative media as they can solubilise large concentrations of carbon dioxide but also strongly interact and activate carbon dioxide.
This project focuses on the photocatalytic reduction of carbon dioxide in ionic liquids and its successive conversion into carbonyl compounds. Several goals need to be realised, including fundamental studies and optimisation of the ionic liquid co-catalysed photocatalytic reduction of carbon dioxide to produce CO under mild conditions (Goal 1). The reactivity of formed CO in supercritical carbon dioxide with various organic substrates needs to be explored (Goal 2) before finally developing a streamlined and continuous process for the direct formation of carbonyl compounds from carbon dioxide (Goal 3).
I envision that the photocatalytic activation of carbon dioxide in combination with the positive features of tailored ionic liquids as co-catalysts may overcome problems currently associated with carbon dioxide utilisation, eventually replacing the long-standing bastion of CO-based carbonylation chemistry with novel solutions.
Summary
Since the discovery in the nineteenth century, carbonylation chemistry has found broad applicability in chemical industries and become now a key technology for bulk and fine chemical synthesis. Despite its substantial toxicity, carbon monoxide (CO) is commonly used as carbonyl source causing considerable safety issues, particularly when used on bulk scale. The replacement of this hazardous gas with more benign surrogates would be highly desirable, and recent ideas focus on the valorisation of carbon dioxide as abundant, non-toxic and renewable carbon resource. However, few industrial processes utilise carbon dioxide as a raw material, and potent catalysts are required to overcome its thermodynamic and kinetic barrier. In this regard, ionic liquids show considerable potential as cooperative media as they can solubilise large concentrations of carbon dioxide but also strongly interact and activate carbon dioxide.
This project focuses on the photocatalytic reduction of carbon dioxide in ionic liquids and its successive conversion into carbonyl compounds. Several goals need to be realised, including fundamental studies and optimisation of the ionic liquid co-catalysed photocatalytic reduction of carbon dioxide to produce CO under mild conditions (Goal 1). The reactivity of formed CO in supercritical carbon dioxide with various organic substrates needs to be explored (Goal 2) before finally developing a streamlined and continuous process for the direct formation of carbonyl compounds from carbon dioxide (Goal 3).
I envision that the photocatalytic activation of carbon dioxide in combination with the positive features of tailored ionic liquids as co-catalysts may overcome problems currently associated with carbon dioxide utilisation, eventually replacing the long-standing bastion of CO-based carbonylation chemistry with novel solutions.
Max ERC Funding
1 963 515 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym CATCH
Project Cross-dimensional Activation of Two-Dimensional Semiconductors for Photocatalytic Heterojunctions
Researcher (PI) Wei CAO
Host Institution (HI) OULUN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), PE8, ERC-2020-COG
Summary Spacetime defines existence and evolution of materials. A key path to human’s sustainability through materials innovation can hardly circumvent materials dimensionalities. Despite numerous studies in electrically distinct 2D semiconductors, the route to engage them in high-performance photocatalysts remains elusive. Herein, CATCH proposes a cross-dimensional activation strategy of 2D semiconductors to implement practical photocatalysis. It operates electronic structures of dimensionally paradoxical 2D semiconductors and spatially limited nD (n=0-2) guests, directs charge migration processes, mass-produces advanced catalysts and elucidates time-evolved catalysis. Synergic impacts crossing 2D-nD will lead to > 95%/hour rates for pollutant removal and >20% quantum efficiencies for H2 evolution under visible light. CATCH enumerates chemical coordination and writes reaction equations with sub-nanosecond precision.
CATCH employs density functional theory optimization and data mining prediction to select most probable heterojunctional peers from hetero/homo- dimensions. Through facile but efficient wet and dry synthesis, nanostructures will be bonded to basal planes or brinks of 2D slabs. CATCH benefits in-house techniques for product characterizations and refinements and emphasizes on cutting-edge in situ studies to unveil photocatalysis at advanced photon sources. Assisted with theoretical modelling, ambient and time-evolved experiments will illustrate photocatalytic dynamics and kinetics in mixed spacetime.
CATCH unites low-dimensional materials designs by counting physical and electronic merits from spacetime confinements. It metrologically elaborates photocatalysis in an elevated 2D+nD+t, alters passages of materials combinations crossing dimensions, and directs future photocatalyst designs. Standing on cross-dimensional materials innovation and photocatalysis study, CATCH breaks the deadlock of practical photocatalysis that eventually leads to sustainability.
Summary
Spacetime defines existence and evolution of materials. A key path to human’s sustainability through materials innovation can hardly circumvent materials dimensionalities. Despite numerous studies in electrically distinct 2D semiconductors, the route to engage them in high-performance photocatalysts remains elusive. Herein, CATCH proposes a cross-dimensional activation strategy of 2D semiconductors to implement practical photocatalysis. It operates electronic structures of dimensionally paradoxical 2D semiconductors and spatially limited nD (n=0-2) guests, directs charge migration processes, mass-produces advanced catalysts and elucidates time-evolved catalysis. Synergic impacts crossing 2D-nD will lead to > 95%/hour rates for pollutant removal and >20% quantum efficiencies for H2 evolution under visible light. CATCH enumerates chemical coordination and writes reaction equations with sub-nanosecond precision.
CATCH employs density functional theory optimization and data mining prediction to select most probable heterojunctional peers from hetero/homo- dimensions. Through facile but efficient wet and dry synthesis, nanostructures will be bonded to basal planes or brinks of 2D slabs. CATCH benefits in-house techniques for product characterizations and refinements and emphasizes on cutting-edge in situ studies to unveil photocatalysis at advanced photon sources. Assisted with theoretical modelling, ambient and time-evolved experiments will illustrate photocatalytic dynamics and kinetics in mixed spacetime.
CATCH unites low-dimensional materials designs by counting physical and electronic merits from spacetime confinements. It metrologically elaborates photocatalysis in an elevated 2D+nD+t, alters passages of materials combinations crossing dimensions, and directs future photocatalyst designs. Standing on cross-dimensional materials innovation and photocatalysis study, CATCH breaks the deadlock of practical photocatalysis that eventually leads to sustainability.
Max ERC Funding
1 999 946 €
Duration
Start date: 2021-05-01, End date: 2026-04-30
Project acronym CAVITYQPD
Project Cavity quantum phonon dynamics
Researcher (PI) Mika Antero Sillanpaeae
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Consolidator Grant (CoG), PE3, ERC-2013-CoG
Summary "Large bodies usually follow the classical equations of motion. Deviations from this can be called
macroscopic quantum behavior. These phenomena have been experimentally verified with cavity Quantum
Electro Dynamics (QED), trapped ions, and superconducting Josephson junction systems. Recently, evidence
was obtained that also moving objects can display such behavior. These objects are micromechanical
resonators (MR), which can measure tens of microns in size and are hence quite macroscopic. The degree of
freedom is their vibrations: phonons.
I propose experimental research in order to push quantum mechanics closer to the classical world than ever
before. I will try find quantum behavior in the most classical objects, that is, slowly moving bodies. I will use
MR's, accessed via electrical resonators. Part of it will be in analogy to the previously studied macroscopic
systems, but with photons replaced by phonons. The experiments are done in a cryogenic temperature mostly
in dilution refrigerator. The work will open up new perspectives on how nature works, and can have
technological implications.
The first basic setup is the coupling of MR to microwave cavity resonators. This is a direct analogy to
optomechanics, and can be called circuit optomechanics. The goals will be phonon state transfer via a cavity
bus, construction of squeezed states and of phonon-cavity entanglement. The second setup is to boost the
optomechanical coupling with a Josephson junction system, and reach the single-phonon strong-coupling for
the first time. The third setup is the coupling of MR to a Josephson junction artificial atom. Here we will
access the MR same way as the motion of a trapped ions is coupled to their internal transitions. In this setup,
I am proposing to construct exotic quantum states of motion, and finally entangle and transfer phonons over
mm-distance via cavity-coupled qubits. I believe within the project it is possible to perform rudimentary Bell
measurement with phonons."
Summary
"Large bodies usually follow the classical equations of motion. Deviations from this can be called
macroscopic quantum behavior. These phenomena have been experimentally verified with cavity Quantum
Electro Dynamics (QED), trapped ions, and superconducting Josephson junction systems. Recently, evidence
was obtained that also moving objects can display such behavior. These objects are micromechanical
resonators (MR), which can measure tens of microns in size and are hence quite macroscopic. The degree of
freedom is their vibrations: phonons.
I propose experimental research in order to push quantum mechanics closer to the classical world than ever
before. I will try find quantum behavior in the most classical objects, that is, slowly moving bodies. I will use
MR's, accessed via electrical resonators. Part of it will be in analogy to the previously studied macroscopic
systems, but with photons replaced by phonons. The experiments are done in a cryogenic temperature mostly
in dilution refrigerator. The work will open up new perspectives on how nature works, and can have
technological implications.
The first basic setup is the coupling of MR to microwave cavity resonators. This is a direct analogy to
optomechanics, and can be called circuit optomechanics. The goals will be phonon state transfer via a cavity
bus, construction of squeezed states and of phonon-cavity entanglement. The second setup is to boost the
optomechanical coupling with a Josephson junction system, and reach the single-phonon strong-coupling for
the first time. The third setup is the coupling of MR to a Josephson junction artificial atom. Here we will
access the MR same way as the motion of a trapped ions is coupled to their internal transitions. In this setup,
I am proposing to construct exotic quantum states of motion, and finally entangle and transfer phonons over
mm-distance via cavity-coupled qubits. I believe within the project it is possible to perform rudimentary Bell
measurement with phonons."
Max ERC Funding
2 004 283 €
Duration
Start date: 2015-01-01, End date: 2019-12-31
Project acronym CeraText
Project Tailoring Microstructure and Architecture to Build Ceramic Components with Unprecedented Damage Tolerance
Researcher (PI) Raul BERMEJO
Host Institution (HI) MONTANUNIVERSITAET LEOBEN
Country Austria
Call Details Consolidator Grant (CoG), PE8, ERC-2018-COG
Summary Advanced ceramics are often combined with metals, polymers or other ceramics to produce structural and functional systems with exceptional properties. Examples are resistors and capacitors in microelectronics, piezo-ceramic actuators in car injection devices, and bio-implants for hip joint replacements. However, a critical issue affecting the functionality, lifetime and reliability of such systems is the initiation and uncontrolled propagation of cracks in the brittle ceramic parts, yielding in some cases rejection rates up to 70% of components production.
The remarkable “damage tolerance” found in natural materials such as wood, bone or mollusc, has yet to be achieved in technical ceramics, where incipient damage is synonymous with catastrophic failure. Novel “multilayer designs” combining microstructure and architecture could change this situation. Recent work of the PI has shown that tuning the location of “protective” layers within a 3D multilayer ceramic can increase its fracture resistance by five times (from ~3.5 to ~17 MPa∙m1/2) relative to constituent bulk ceramic layers, while retaining high strength (~500 MPa). By orienting the grain structure, similar to the textured and organized microstructure found in natural systems such as nacre, the PI has shown that crack propagation can be controlled within the textured ceramic layer. Thus, I believe tailored microstructures with controlled grain boundaries engineered in a layer-by-layer 3D architectural design hold the key to a new generation of “damage tolerant” ceramics.
This proposal outlines a research program to establish new scientific principles for the fabrication of innovative ceramic components that exhibit unprecedented damage tolerance. The successful implementation of microstructural features (e.g. texture degree, tailored internal stresses, second phases, interfaces) in a layer-by-layer architecture will provide outstanding lifetime and reliability in both structural and functional ceramic devices.
Summary
Advanced ceramics are often combined with metals, polymers or other ceramics to produce structural and functional systems with exceptional properties. Examples are resistors and capacitors in microelectronics, piezo-ceramic actuators in car injection devices, and bio-implants for hip joint replacements. However, a critical issue affecting the functionality, lifetime and reliability of such systems is the initiation and uncontrolled propagation of cracks in the brittle ceramic parts, yielding in some cases rejection rates up to 70% of components production.
The remarkable “damage tolerance” found in natural materials such as wood, bone or mollusc, has yet to be achieved in technical ceramics, where incipient damage is synonymous with catastrophic failure. Novel “multilayer designs” combining microstructure and architecture could change this situation. Recent work of the PI has shown that tuning the location of “protective” layers within a 3D multilayer ceramic can increase its fracture resistance by five times (from ~3.5 to ~17 MPa∙m1/2) relative to constituent bulk ceramic layers, while retaining high strength (~500 MPa). By orienting the grain structure, similar to the textured and organized microstructure found in natural systems such as nacre, the PI has shown that crack propagation can be controlled within the textured ceramic layer. Thus, I believe tailored microstructures with controlled grain boundaries engineered in a layer-by-layer 3D architectural design hold the key to a new generation of “damage tolerant” ceramics.
This proposal outlines a research program to establish new scientific principles for the fabrication of innovative ceramic components that exhibit unprecedented damage tolerance. The successful implementation of microstructural features (e.g. texture degree, tailored internal stresses, second phases, interfaces) in a layer-by-layer architecture will provide outstanding lifetime and reliability in both structural and functional ceramic devices.
Max ERC Funding
1 985 000 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym CITRES
Project Chemistry and interface tailored lead-free relaxor thin films for energy storage capacitors
Researcher (PI) Marco Deluca
Host Institution (HI) MATERIALS CENTER LEOBEN FORSCHUNG GMBH
Country Austria
Call Details Consolidator Grant (CoG), PE8, ERC-2018-COG
Summary The goal of CITRES is to provide new energy storage devices with high power and energy density by developing novel multilayer ceramic capacitors (MLCCs) based on relaxor thin films (RTF).
Energy storage units for energy autonomous sensor systems for the Internet of Things (IoT) must possess high power and energy density to allow quick charge/recharge and long-time energy supply. Current energy storage devices cannot meet those demands: Batteries have large capacity but long charging/discharging times due to slow chemical reactions and ion diffusion. Ceramic dielectric capacitors – being based on ionic and electronic polarisation mechanisms – can deliver and take up power quickly, but store much less energy due to low dielectric breakdown strength (DBS), high losses, and leakage currents.
RTF are ideal candidates: (i) Thin film processing allows obtaining low porosity and defects, thus enhancing the DBS; (ii) slim polarisation hysteresis loops, intrinsic to relaxors, allow reducing the losses. High energy density can be achieved in RTF by maximising the polarisation and minimising the leakage currents. Both aspects are controlled by the amount, type and local distribution of chemical substituents in the RTF lattice, whereas the latter depends also on the chemistry of the electrode metal.
In CITRES, we will identify the influence of substituents on electric polarisation from atomic to macroscopic scale by combining multiscale atomistic modelling with advanced structural, chemical and electrical characterizations on several length scales both in the RTF bulk and at interfaces with various electrodes. This will allow for the first time the design of energy storage properties of RTF by chemical substitution and electrode selection.
The ground-breaking nature of CITRES resides in the design and realisation of RTF-based dielectric MLCCs with better energy storage performances than supercapacitors and batteries, thus enabling energy autonomy for IoT sensor systems.
Summary
The goal of CITRES is to provide new energy storage devices with high power and energy density by developing novel multilayer ceramic capacitors (MLCCs) based on relaxor thin films (RTF).
Energy storage units for energy autonomous sensor systems for the Internet of Things (IoT) must possess high power and energy density to allow quick charge/recharge and long-time energy supply. Current energy storage devices cannot meet those demands: Batteries have large capacity but long charging/discharging times due to slow chemical reactions and ion diffusion. Ceramic dielectric capacitors – being based on ionic and electronic polarisation mechanisms – can deliver and take up power quickly, but store much less energy due to low dielectric breakdown strength (DBS), high losses, and leakage currents.
RTF are ideal candidates: (i) Thin film processing allows obtaining low porosity and defects, thus enhancing the DBS; (ii) slim polarisation hysteresis loops, intrinsic to relaxors, allow reducing the losses. High energy density can be achieved in RTF by maximising the polarisation and minimising the leakage currents. Both aspects are controlled by the amount, type and local distribution of chemical substituents in the RTF lattice, whereas the latter depends also on the chemistry of the electrode metal.
In CITRES, we will identify the influence of substituents on electric polarisation from atomic to macroscopic scale by combining multiscale atomistic modelling with advanced structural, chemical and electrical characterizations on several length scales both in the RTF bulk and at interfaces with various electrodes. This will allow for the first time the design of energy storage properties of RTF by chemical substitution and electrode selection.
The ground-breaking nature of CITRES resides in the design and realisation of RTF-based dielectric MLCCs with better energy storage performances than supercapacitors and batteries, thus enabling energy autonomy for IoT sensor systems.
Max ERC Funding
1 996 519 €
Duration
Start date: 2019-04-01, End date: 2024-03-31