Project acronym aQUARiUM
Project QUAntum nanophotonics in Rolled-Up Metamaterials
Researcher (PI) Humeyra CAGLAYAN
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Country Finland
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Summary
Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Max ERC Funding
1 499 431 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym AXIAL.EC
Project PRINCIPLES OF AXIAL POLARITY-DRIVEN VASCULAR PATTERNING
Researcher (PI) Claudio Franco
Host Institution (HI) INSTITUTO DE MEDICINA MOLECULAR JOAO LOBO ANTUNES
Country Portugal
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary The formation of a functional patterned vascular network is essential for development, tissue growth and organ physiology. Several human vascular disorders arise from the mis-patterning of blood vessels, such as arteriovenous malformations, aneurysms and diabetic retinopathy. Although blood flow is recognised as a stimulus for vascular patterning, very little is known about the molecular mechanisms that regulate endothelial cell behaviour in response to flow and promote vascular patterning.
Recently, we uncovered that endothelial cells migrate extensively in the immature vascular network, and that endothelial cells polarise against the blood flow direction. Here, we put forward the hypothesis that vascular patterning is dependent on the polarisation and migration of endothelial cells against the flow direction, in a continuous flux of cells going from low-shear stress to high-shear stress regions. We will establish new reporter mouse lines to observe and manipulate endothelial polarity in vivo in order to investigate how polarisation and coordination of endothelial cells movements are orchestrated to generate vascular patterning. We will manipulate cell polarity using mouse models to understand the importance of cell polarisation in vascular patterning. Also, using a unique zebrafish line allowing analysis of endothelial cell polarity, we will perform a screen to identify novel regulators of vascular patterning. Finally, we will explore the hypothesis that defective flow-dependent endothelial polarisation underlies arteriovenous malformations using two genetic models.
This integrative approach, based on high-resolution imaging and unique experimental models, will provide a unifying model defining the cellular and molecular principles involved in vascular patterning. Given the physiological relevance of vascular patterning in health and disease, this research plan will set the basis for the development of novel clinical therapies targeting vascular disorders.
Summary
The formation of a functional patterned vascular network is essential for development, tissue growth and organ physiology. Several human vascular disorders arise from the mis-patterning of blood vessels, such as arteriovenous malformations, aneurysms and diabetic retinopathy. Although blood flow is recognised as a stimulus for vascular patterning, very little is known about the molecular mechanisms that regulate endothelial cell behaviour in response to flow and promote vascular patterning.
Recently, we uncovered that endothelial cells migrate extensively in the immature vascular network, and that endothelial cells polarise against the blood flow direction. Here, we put forward the hypothesis that vascular patterning is dependent on the polarisation and migration of endothelial cells against the flow direction, in a continuous flux of cells going from low-shear stress to high-shear stress regions. We will establish new reporter mouse lines to observe and manipulate endothelial polarity in vivo in order to investigate how polarisation and coordination of endothelial cells movements are orchestrated to generate vascular patterning. We will manipulate cell polarity using mouse models to understand the importance of cell polarisation in vascular patterning. Also, using a unique zebrafish line allowing analysis of endothelial cell polarity, we will perform a screen to identify novel regulators of vascular patterning. Finally, we will explore the hypothesis that defective flow-dependent endothelial polarisation underlies arteriovenous malformations using two genetic models.
This integrative approach, based on high-resolution imaging and unique experimental models, will provide a unifying model defining the cellular and molecular principles involved in vascular patterning. Given the physiological relevance of vascular patterning in health and disease, this research plan will set the basis for the development of novel clinical therapies targeting vascular disorders.
Max ERC Funding
1 618 750 €
Duration
Start date: 2016-09-01, End date: 2022-02-28
Project acronym CUMTAS
Project Customized Micro Total Analysis Systems to Study Human Phase I Metabolism
Researcher (PI) Tiina Marjukka Sikanen
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), LS9, ERC-2012-StG_20111109
Summary The goal of this project is to develop inexpensive, high-throughput technology to screen the thus far unexplored metabolic interactions between environmental and household chemicals and clinically relevant drugs. The main influential focus will be on human phase I metabolism (redox reactions) of common toxicants like agrochemicals and plasticizers. On the basis of their structural resemblance to pharmaceuticals and endogenous compounds, many of these chemicals are suspected to have critical effects on cytochrome P450 metabolism which is the main detoxification route of pharmaceuticals in man. However, with the current analytical instrumentation, screening of such large chemical pool would take several years, and new chemicals would be introduced faster than the old ones are screened. Thus, the main technological goal of this project is to develop novel, practically zero-cost analytical instruments that enable characterization of a compound’s metabolic profile at very high speed (<1 min/sample). This goal is achieved through miniaturization and high degree of integration of analytical instrumentation by microfabrication means, an approach often called lab(oratory)-on-a-chip. The microfabricated arrays are envisioned to incorporate all analytical key functions required (i.e., sample pretreatment, metabolic reaction, separation of the reaction products, detection) on a single chip. Thanks to the reduced dimensions, the amount of chemical waste and consumption of expensive reagents are significantly reduced. In this project, several different microfabrication techniques, from delicate cleanroom processes to extremely simple printing techniques, will be exploited to produce smart microfluidic designs and multifunctional surfaces. Towards the end of the project, more focus will be put on “printable microfluidics” which provides a truly low-cost approach for fabrication of highly customized microfluidic assays. Numerical modelling is also an integral part of the work.
Summary
The goal of this project is to develop inexpensive, high-throughput technology to screen the thus far unexplored metabolic interactions between environmental and household chemicals and clinically relevant drugs. The main influential focus will be on human phase I metabolism (redox reactions) of common toxicants like agrochemicals and plasticizers. On the basis of their structural resemblance to pharmaceuticals and endogenous compounds, many of these chemicals are suspected to have critical effects on cytochrome P450 metabolism which is the main detoxification route of pharmaceuticals in man. However, with the current analytical instrumentation, screening of such large chemical pool would take several years, and new chemicals would be introduced faster than the old ones are screened. Thus, the main technological goal of this project is to develop novel, practically zero-cost analytical instruments that enable characterization of a compound’s metabolic profile at very high speed (<1 min/sample). This goal is achieved through miniaturization and high degree of integration of analytical instrumentation by microfabrication means, an approach often called lab(oratory)-on-a-chip. The microfabricated arrays are envisioned to incorporate all analytical key functions required (i.e., sample pretreatment, metabolic reaction, separation of the reaction products, detection) on a single chip. Thanks to the reduced dimensions, the amount of chemical waste and consumption of expensive reagents are significantly reduced. In this project, several different microfabrication techniques, from delicate cleanroom processes to extremely simple printing techniques, will be exploited to produce smart microfluidic designs and multifunctional surfaces. Towards the end of the project, more focus will be put on “printable microfluidics” which provides a truly low-cost approach for fabrication of highly customized microfluidic assays. Numerical modelling is also an integral part of the work.
Max ERC Funding
1 499 668 €
Duration
Start date: 2013-05-01, End date: 2019-02-28
Project acronym DIADRUG
Project Insulin resistance and diabetic nephropathy - development of novel in vivo models for drug discovery
Researcher (PI) Sanna Lehtonen
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), LS9, ERC-2009-StG
Summary Up to one third of diabetic patients develop nephropathy, a serious complication of diabetes. Microalbuminuria is the earliest sign of the complication, which may ultimately develop to end-stage renal disease requiring dialysis or a kidney transplant. Insulin resistance and metabolic syndrome are associated with an increased risk for diabetic nephropathy. Interestingly, glomerular epithelial cells or podocytes have recently been shown to be insulin responsive. Further, nephrin, a key structural component of podocytes, is essential for insulin action in these cells. Our novel findings show that adaptor protein CD2AP, an interaction partner of nephrin, associates with regulators of insulin signaling and glucose transport in glomeruli. The results suggest that nephrin and CD2AP are involved, by association with these proteins, in the regulation of insulin signaling and glucose transport in podocytes. We hypothesize that podocytes can develop insulin resistance and that disturbances in insulin response affect podocyte function and contribute to the development of diabetic nephropathy. The aim of this project is to clarify the mechanisms leading to development of insulin resistance in podocytes and to study the association between insulin resistance and the development of diabetic nephropathy. For this we will develop transgenic zebrafish and mouse models by overexpressing/knocking down insulin signaling-associated proteins specifically in podocytes. Further, we aim to identify novel drug leads to treat insulin resistance and diabetic nephropathy by performing high-throughput small molecule library screens on the developed transgenic fish models. The ultimate goal is to find a treatment to combat the early stages of diabetic nephropathy in humans.
Summary
Up to one third of diabetic patients develop nephropathy, a serious complication of diabetes. Microalbuminuria is the earliest sign of the complication, which may ultimately develop to end-stage renal disease requiring dialysis or a kidney transplant. Insulin resistance and metabolic syndrome are associated with an increased risk for diabetic nephropathy. Interestingly, glomerular epithelial cells or podocytes have recently been shown to be insulin responsive. Further, nephrin, a key structural component of podocytes, is essential for insulin action in these cells. Our novel findings show that adaptor protein CD2AP, an interaction partner of nephrin, associates with regulators of insulin signaling and glucose transport in glomeruli. The results suggest that nephrin and CD2AP are involved, by association with these proteins, in the regulation of insulin signaling and glucose transport in podocytes. We hypothesize that podocytes can develop insulin resistance and that disturbances in insulin response affect podocyte function and contribute to the development of diabetic nephropathy. The aim of this project is to clarify the mechanisms leading to development of insulin resistance in podocytes and to study the association between insulin resistance and the development of diabetic nephropathy. For this we will develop transgenic zebrafish and mouse models by overexpressing/knocking down insulin signaling-associated proteins specifically in podocytes. Further, we aim to identify novel drug leads to treat insulin resistance and diabetic nephropathy by performing high-throughput small molecule library screens on the developed transgenic fish models. The ultimate goal is to find a treatment to combat the early stages of diabetic nephropathy in humans.
Max ERC Funding
2 000 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym EnDeCAD
Project Enhancers Decoding the Mechanisms Underlying CAD Risk
Researcher (PI) Minna Unelma KAIKKONEN-MaeaeTTae
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), LS4, ERC-2018-STG
Summary In recent years, genome-wide association studies (GWAS) have discovered hundreds of single nucleotide polymorphisms (SNPs) which are significantly associated with coronary artery disease (CAD). However, the SNPs identified by GWAS explain typically only small portion of the trait heritability and vast majority of variants do not have known biological roles. This is explained by variants lying within noncoding regions such as in cell type specific enhancers and additionally ‘the lead SNP’ identified in GWAS may not be the ‘the causal SNP’ but only linked with a trait associated SNP. Therefore, a major priority for understanding disease mechanisms is to understand at the molecular level the function of each CAD loci. In this study we aim to bring the functional characterization of SNPs associated with CAD risk to date by focusing our search for causal SNPs to enhancers of disease relevant cell types, namely endothelial cells, macrophages and smooth muscle cells of the vessel wall, hepatocytes and adipocytes. By combination of massively parallel enhancer activity measurements, collection of novel eQTL data throughout cell types under disease relevant stimuli, identification of the target genes in physical interaction with the candidate enhancers and establishment of correlative relationships between enhancer activity and gene expression we hope to identify causal enhancer variants and link them with target genes to obtain a more complete picture of the gene regulatory events driving disease progression and the genetic basis of CAD. Linking these findings with our deep phenotypic data for cardiovascular risk factors, gene expression and metabolomics has the potential to improve risk prediction, biomarker identification and treatment selection in clinical practice. Ultimately, this research strives for fundamental discoveries and breakthrough that advance our knowledge of CAD and provides pioneering steps towards taking the growing array of GWAS for translatable results.
Summary
In recent years, genome-wide association studies (GWAS) have discovered hundreds of single nucleotide polymorphisms (SNPs) which are significantly associated with coronary artery disease (CAD). However, the SNPs identified by GWAS explain typically only small portion of the trait heritability and vast majority of variants do not have known biological roles. This is explained by variants lying within noncoding regions such as in cell type specific enhancers and additionally ‘the lead SNP’ identified in GWAS may not be the ‘the causal SNP’ but only linked with a trait associated SNP. Therefore, a major priority for understanding disease mechanisms is to understand at the molecular level the function of each CAD loci. In this study we aim to bring the functional characterization of SNPs associated with CAD risk to date by focusing our search for causal SNPs to enhancers of disease relevant cell types, namely endothelial cells, macrophages and smooth muscle cells of the vessel wall, hepatocytes and adipocytes. By combination of massively parallel enhancer activity measurements, collection of novel eQTL data throughout cell types under disease relevant stimuli, identification of the target genes in physical interaction with the candidate enhancers and establishment of correlative relationships between enhancer activity and gene expression we hope to identify causal enhancer variants and link them with target genes to obtain a more complete picture of the gene regulatory events driving disease progression and the genetic basis of CAD. Linking these findings with our deep phenotypic data for cardiovascular risk factors, gene expression and metabolomics has the potential to improve risk prediction, biomarker identification and treatment selection in clinical practice. Ultimately, this research strives for fundamental discoveries and breakthrough that advance our knowledge of CAD and provides pioneering steps towards taking the growing array of GWAS for translatable results.
Max ERC Funding
1 498 647 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym FARE
Project FAKE NEWS AND REAL PEOPLE – USING BIG DATA TO UNDERSTAND HUMAN BEHAVIOUR
Researcher (PI) Maria Joana GONcALVES-Sa
Host Institution (HI) LABORATORIO DE INSTRUMENTACAO E FISICA EXPERIMENTAL DE PARTICULAS LIP
Country Portugal
Call Details Starting Grant (StG), SH3, ERC-2019-STG
Summary Recent events, from the anti-vaccination movement, to Brexit and even to mob killings, have raised serious concerns about the influence of the so-called fake news (FN). False information is not new in human history, but the recent surge in online activity, coupled with poor digital literacy, consumer profiling, and large profits from ad revenues, created a perfect storm for the FN epidemic, with still unimaginable consequences.
This challenge is interdisciplinary and requires academic research to guide current calls for action issued by academics, governmental and non-governmental agencies, and the social network platforms themselves. FARE will enrich current efforts, which mostly confront FN spreading from an applied perspective, by offering a theoretical framework that allows to make testable predictions. FARE argues that sharing of FN is a deviation from pure rationality and brings together 1) state of the art knowledge in behavioural psychology, to assess the role that cognitive biases play in susceptibility to FN, and 2) current models in network science and epidemiology, to test whether FN spread more like simple or complex contagions. Finally, fully recognizing that these novel big-data approaches carry great risks, FARE will develop a new strategy, mostly based on distributed computing, and guidelines to the ethical handling of human-related big-data.
Together, FARE will offer a comprehensive model to ask questions such as: 1) What role(s) cognitive biases play in FN spreading? 2) How does network architecture affect FNs spread? 3) How do biases and position on networks build on each other to impact propagation? 4) What monitoring and mitigation interventions are likely to be more efficient?
Moreover, the study of FN from such a conceptual perspective has the potential to profoundly increase our knowledge on human behaviour and information spread, beyond specific problems, with implications for communication (science, political), economics, and psychology.
Summary
Recent events, from the anti-vaccination movement, to Brexit and even to mob killings, have raised serious concerns about the influence of the so-called fake news (FN). False information is not new in human history, but the recent surge in online activity, coupled with poor digital literacy, consumer profiling, and large profits from ad revenues, created a perfect storm for the FN epidemic, with still unimaginable consequences.
This challenge is interdisciplinary and requires academic research to guide current calls for action issued by academics, governmental and non-governmental agencies, and the social network platforms themselves. FARE will enrich current efforts, which mostly confront FN spreading from an applied perspective, by offering a theoretical framework that allows to make testable predictions. FARE argues that sharing of FN is a deviation from pure rationality and brings together 1) state of the art knowledge in behavioural psychology, to assess the role that cognitive biases play in susceptibility to FN, and 2) current models in network science and epidemiology, to test whether FN spread more like simple or complex contagions. Finally, fully recognizing that these novel big-data approaches carry great risks, FARE will develop a new strategy, mostly based on distributed computing, and guidelines to the ethical handling of human-related big-data.
Together, FARE will offer a comprehensive model to ask questions such as: 1) What role(s) cognitive biases play in FN spreading? 2) How does network architecture affect FNs spread? 3) How do biases and position on networks build on each other to impact propagation? 4) What monitoring and mitigation interventions are likely to be more efficient?
Moreover, the study of FN from such a conceptual perspective has the potential to profoundly increase our knowledge on human behaviour and information spread, beyond specific problems, with implications for communication (science, political), economics, and psychology.
Max ERC Funding
1 499 844 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym GelGeneCircuit
Project Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Researcher (PI) Joao CONDE
Host Institution (HI) UNIVERSIDADE NOVA DE LISBOA
Country Portugal
Call Details Starting Grant (StG), LS9, ERC-2019-STG
Summary Conventional cancer therapies suffer from poor efficacy owing to the lack of efficient delivery systems and to the inherent tumor heterogeneity that requires multi-modal approach to abrogate cancer progression. Nanotechnology holds promise to address these drawbacks, as the use of (bio)nanomaterials for diagnostics and therapy has been gaining momentum over the last years. The main goal of this project is to develop a novel and facile platform capable of profiling both the therapy outcome and heterogeneity in cancer, by using bioresponsive nanohydrogels for the delivery of logic multicolor synthetic gene circuits. These logic synthetic gene circuits will be designed as a biobarcode of multicolor RNA circuits embedded in hybrid nanoparticles and doped in hydrogels for local therapy in breast cancer in vivo. Using cell-type specific promoters, the multicolor miRNA circuits will be expressed specifically to each type of the cells of the tumor microenvironment. Subsequently, this will permit to evaluate the therapeutic efficacy in a cell-by-cell basis and to profile the tumor heterogeneity across different breast cancer types. In order to potentiate the translation of this ground-breaking platform into clinics and precision medicine, novel de-regulated miRNA targets will be identified based on screens performed in breast cancer patient-derived tumors that better reflect the heterogeneous tumor microenvironment in a patient-by-patient basis.
In sum, the material platforms developed herein and newly identified biological targets can be harnessed to design effective cancer treatments that go beyond breast cancer. The project is highly versatile and multidisciplinary and this system can be easily adapted to target any cancer cell type and molecular mechanisms and translated to clinical testing.
Summary
Conventional cancer therapies suffer from poor efficacy owing to the lack of efficient delivery systems and to the inherent tumor heterogeneity that requires multi-modal approach to abrogate cancer progression. Nanotechnology holds promise to address these drawbacks, as the use of (bio)nanomaterials for diagnostics and therapy has been gaining momentum over the last years. The main goal of this project is to develop a novel and facile platform capable of profiling both the therapy outcome and heterogeneity in cancer, by using bioresponsive nanohydrogels for the delivery of logic multicolor synthetic gene circuits. These logic synthetic gene circuits will be designed as a biobarcode of multicolor RNA circuits embedded in hybrid nanoparticles and doped in hydrogels for local therapy in breast cancer in vivo. Using cell-type specific promoters, the multicolor miRNA circuits will be expressed specifically to each type of the cells of the tumor microenvironment. Subsequently, this will permit to evaluate the therapeutic efficacy in a cell-by-cell basis and to profile the tumor heterogeneity across different breast cancer types. In order to potentiate the translation of this ground-breaking platform into clinics and precision medicine, novel de-regulated miRNA targets will be identified based on screens performed in breast cancer patient-derived tumors that better reflect the heterogeneous tumor microenvironment in a patient-by-patient basis.
In sum, the material platforms developed herein and newly identified biological targets can be harnessed to design effective cancer treatments that go beyond breast cancer. The project is highly versatile and multidisciplinary and this system can be easily adapted to target any cancer cell type and molecular mechanisms and translated to clinical testing.
Max ERC Funding
1 435 312 €
Duration
Start date: 2020-02-01, End date: 2025-01-31
Project acronym GLUCOSE SENSING
Project Transcriptional networks in glucose sensing
Researcher (PI) Ville Ilmari Hietakangas
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), LS4, ERC-2011-StG_20101109
Summary Glucose is key source of nutritional energy and raw material for biosynthetic processes. Maintaining glucose homeostasis requires a regulatory network that functions both in the systemic level through hormonal signaling and locally at the intracellular level. Insulin signalling is the main hormonal mechanism involved in maintaining the levels of circulating glucose through regulation of cellular glucose intake and metabolism. While the signalling pathways mediating the effects of insulin have been thoroughly studied, the transcriptional networks downstream of insulin signalling are not comprehensively understood. In addition to insulin signalling, intracellular glucose sensing mechanisms, including transcription factor complex MondoA/B-Mlx, have recently emerged as important regulators of glucose metabolism. In the proposed project we aim to take a systematic approach to characterize the transcriptional regulators involved in glucose sensing and metabolism in physiological context, using Drosophila as the main model system. We will use several complementary screening strategies, both in vivo and in cell culture, to identify transcription factors regulated by insulin and intracellular glucose. Identified transcription factors will be exposed to a panel of in vivo tests measuring parameters related to glucose and energy metabolism, aiming to identify those transcriptional regulators most essential in maintaining glucose homeostasis. With these factors, we will proceed to in-depth analysis, generating mutant alleles, analysing their metabolic profile and physiologically important target genes as well as functional conservation in mammals. Our aim is to identify and characterize several novel transcriptional regulators involved in glucose metabolism and to achieve a comprehensive overview on how these transcriptional regulators act together to achieve metabolic homeostasis in response to fluctuating dietary glucose intake.
Summary
Glucose is key source of nutritional energy and raw material for biosynthetic processes. Maintaining glucose homeostasis requires a regulatory network that functions both in the systemic level through hormonal signaling and locally at the intracellular level. Insulin signalling is the main hormonal mechanism involved in maintaining the levels of circulating glucose through regulation of cellular glucose intake and metabolism. While the signalling pathways mediating the effects of insulin have been thoroughly studied, the transcriptional networks downstream of insulin signalling are not comprehensively understood. In addition to insulin signalling, intracellular glucose sensing mechanisms, including transcription factor complex MondoA/B-Mlx, have recently emerged as important regulators of glucose metabolism. In the proposed project we aim to take a systematic approach to characterize the transcriptional regulators involved in glucose sensing and metabolism in physiological context, using Drosophila as the main model system. We will use several complementary screening strategies, both in vivo and in cell culture, to identify transcription factors regulated by insulin and intracellular glucose. Identified transcription factors will be exposed to a panel of in vivo tests measuring parameters related to glucose and energy metabolism, aiming to identify those transcriptional regulators most essential in maintaining glucose homeostasis. With these factors, we will proceed to in-depth analysis, generating mutant alleles, analysing their metabolic profile and physiologically important target genes as well as functional conservation in mammals. Our aim is to identify and characterize several novel transcriptional regulators involved in glucose metabolism and to achieve a comprehensive overview on how these transcriptional regulators act together to achieve metabolic homeostasis in response to fluctuating dietary glucose intake.
Max ERC Funding
1 496 930 €
Duration
Start date: 2012-01-01, End date: 2017-02-28
Project acronym INTUMORX
Project Elucidation of intratumoral heterogeneity in Kras-driven cancers
Researcher (PI) Tuomas TAMMELA
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), LS4, ERC-2016-STG
Summary The considerable variability within tissue microenvironments as well as the multiclonality of cancers leads to intratumoral heterogeneity. This increases the probablility of cellular states that promote resistance to therapy and eventually lead to reconstitution of the tumor by treatment-resistant cancer cells, which in some cases have properties of normal tissue stem cells. Wnt signals are important in the maintenance of stem cells in various epithelial tissues, including in lung development and regeneration. We hypothesized that Wnt signals contribute to tumor heterogeneity in genetically engineered KrasG12D; Tp53Δ/Δ (”KP”) mouse lung adenocarcinomas (LUAD). We observed that a subpopulation of LUAD cells exhibited high Wnt reporter activity and had increased tumor forming ability, which could be suppressed by silencing of Wnt signaling pathway components or by small molecule Wnt inhibitors in vitro and in vivo. KP LUAD cells show hierarchical features with two distinct populations, one with increased Wnt reporter activity and another forming a niche that provides the Wnt signal. Lineage-tracing experiments in the autochthonous KP tumors demonstrated that Wnt responder cells have increased tumor propagation ability in vivo. Strikingly, selective ablation of the Wnt responder cells resulted in tumor stasis. CRISPR-based targeting or small molecules targeting Wnt signaling reduced tumor growth and prolonged survival in the autochthonous KP mouse lung cancer model. These results indicate that maintenance of heterogeneity within tumors may be advantageous for the tumor cell population collectively. We propose to elucidate the molecular and cellullar mechanisms that control stem-like and niche cell phenotypes using a combination of novel lentiviral vectors and genetically modified mice in the context of the KP LUAD model. These efforts may lead to novel therapeutic concepts in human lung cancer.
Summary
The considerable variability within tissue microenvironments as well as the multiclonality of cancers leads to intratumoral heterogeneity. This increases the probablility of cellular states that promote resistance to therapy and eventually lead to reconstitution of the tumor by treatment-resistant cancer cells, which in some cases have properties of normal tissue stem cells. Wnt signals are important in the maintenance of stem cells in various epithelial tissues, including in lung development and regeneration. We hypothesized that Wnt signals contribute to tumor heterogeneity in genetically engineered KrasG12D; Tp53Δ/Δ (”KP”) mouse lung adenocarcinomas (LUAD). We observed that a subpopulation of LUAD cells exhibited high Wnt reporter activity and had increased tumor forming ability, which could be suppressed by silencing of Wnt signaling pathway components or by small molecule Wnt inhibitors in vitro and in vivo. KP LUAD cells show hierarchical features with two distinct populations, one with increased Wnt reporter activity and another forming a niche that provides the Wnt signal. Lineage-tracing experiments in the autochthonous KP tumors demonstrated that Wnt responder cells have increased tumor propagation ability in vivo. Strikingly, selective ablation of the Wnt responder cells resulted in tumor stasis. CRISPR-based targeting or small molecules targeting Wnt signaling reduced tumor growth and prolonged survival in the autochthonous KP mouse lung cancer model. These results indicate that maintenance of heterogeneity within tumors may be advantageous for the tumor cell population collectively. We propose to elucidate the molecular and cellullar mechanisms that control stem-like and niche cell phenotypes using a combination of novel lentiviral vectors and genetically modified mice in the context of the KP LUAD model. These efforts may lead to novel therapeutic concepts in human lung cancer.
Max ERC Funding
1 972 905 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym LIMBo
Project Zooming the link between diet and brain health: how phenolic metabolites modulate brain inflammation
Researcher (PI) Claudia NUNES DOS SANTOS
Host Institution (HI) UNIVERSIDADE NOVA DE LISBOA
Country Portugal
Call Details Starting Grant (StG), LS9, ERC-2018-STG
Summary Currently a big concern of our aging society is to efficiently delay the onset of neurodegenerative diseases which are progressively rising in incidence. The paradigm that a diet rich in the phenolics, prevalent e.g. in fruits, is beneficial to brain health has reached the public. However their mechanistic actions in brain functions remain to be seen, particularly since the nature of those acting in the brain remains overlooked. I wish to address this gap by identifying candidate compounds that can support development of effective strategies to delay neurodegeneration.
Specifically, I will be analysing the potential of dietary phenolics in both prevention and treatment (i.e delay) of neuroinflammation – key process shared in neurodegenerative diseases. To break down the current indeterminate status of “cause vs effect”, my vision is to focus my research on metabolites derived from dietary phenolics that reach the brain. I will be investigating their effects in both established and unknown response pathways of microglia cells - the innate immune cells of the central nervous system, either alone or when communicating with other brain cells. Ultimately, to attain an integrated view of their effects I will establish nutrition trials in mice. LIMBo considers both pro- and anti- inflammatory processes to preliminary validate the action of any promising metabolite in prevention and/or therapeutics.
LIMBo provides valuable scientific insights for future implementation of healthy brain diets. My group is in a unique position to address LIMBo objectives due to multidisciplinary expertise in organic synthesis, metabolomics and molecular and cellular biology, together with our previous data on novel neuroactive metabolites.
LIMBo also creates far-reaching opportunities by generating knowledge that impacts our fundamental understanding on the diversity of phenolic metabolites and their specific influences in neuroinflammation and potential use as prodrugs.
Summary
Currently a big concern of our aging society is to efficiently delay the onset of neurodegenerative diseases which are progressively rising in incidence. The paradigm that a diet rich in the phenolics, prevalent e.g. in fruits, is beneficial to brain health has reached the public. However their mechanistic actions in brain functions remain to be seen, particularly since the nature of those acting in the brain remains overlooked. I wish to address this gap by identifying candidate compounds that can support development of effective strategies to delay neurodegeneration.
Specifically, I will be analysing the potential of dietary phenolics in both prevention and treatment (i.e delay) of neuroinflammation – key process shared in neurodegenerative diseases. To break down the current indeterminate status of “cause vs effect”, my vision is to focus my research on metabolites derived from dietary phenolics that reach the brain. I will be investigating their effects in both established and unknown response pathways of microglia cells - the innate immune cells of the central nervous system, either alone or when communicating with other brain cells. Ultimately, to attain an integrated view of their effects I will establish nutrition trials in mice. LIMBo considers both pro- and anti- inflammatory processes to preliminary validate the action of any promising metabolite in prevention and/or therapeutics.
LIMBo provides valuable scientific insights for future implementation of healthy brain diets. My group is in a unique position to address LIMBo objectives due to multidisciplinary expertise in organic synthesis, metabolomics and molecular and cellular biology, together with our previous data on novel neuroactive metabolites.
LIMBo also creates far-reaching opportunities by generating knowledge that impacts our fundamental understanding on the diversity of phenolic metabolites and their specific influences in neuroinflammation and potential use as prodrugs.
Max ERC Funding
1 496 022 €
Duration
Start date: 2019-04-01, End date: 2024-03-31