Project acronym 2D4QT
Project 2D Materials for Quantum Technology
Researcher (PI) Christoph STAMPFER
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Country Germany
Call Details Consolidator Grant (CoG), PE3, ERC-2018-COG
Summary Since its discovery, graphene has been indicated as a promising platform for quantum technologies (QT). The number of theoretical proposal dedicated to this vision has grown steadily, exploring a wide range of directions, ranging from spin and valley qubits, to topologically-protected states. The experimental confirmation of these ideas lagged so far significantly behind, mostly because of material quality problems. The quality of graphene-based devices has however improved dramatically in the past five years, thanks to the advent of the so-called van der Waals (vdW) heteostructures - artificial solids formed by mechanically stacking layers of different two dimensional (2D) materials, such as graphene, hexagonal boron nitride and transition metal dichalcogenides. These new advances open now finally the door to put several of those theoretical proposals to test.
The goal of this project is to assess experimentally the potential of graphene-based heterostructures for QT applications. Specifically, I will push the development of an advanced technological platform for vdW heterostructures, which will allow to give quantitative answers to the following open questions: i) what are the relaxation and coherence times of spin and valley qubits in isotopically purified bilayer graphene (BLG); ii) what is the efficiency of a Cooper-pair splitter based on BLG; and iii) what are the characteristic energy scales of topologically protected quantum states engineered in graphene-based heterostructures.
At the end of this project, I aim at being in the position of saying whether graphene is the horse-worth-betting-on predicted by theory, or whether it still hides surprises in terms of fundamental physics. The technological advancements developed in this project for integrating nanostructured layers into vdW heterostructures will reach even beyond this goal, opening the door to new research directions and possible applications.
Summary
Since its discovery, graphene has been indicated as a promising platform for quantum technologies (QT). The number of theoretical proposal dedicated to this vision has grown steadily, exploring a wide range of directions, ranging from spin and valley qubits, to topologically-protected states. The experimental confirmation of these ideas lagged so far significantly behind, mostly because of material quality problems. The quality of graphene-based devices has however improved dramatically in the past five years, thanks to the advent of the so-called van der Waals (vdW) heteostructures - artificial solids formed by mechanically stacking layers of different two dimensional (2D) materials, such as graphene, hexagonal boron nitride and transition metal dichalcogenides. These new advances open now finally the door to put several of those theoretical proposals to test.
The goal of this project is to assess experimentally the potential of graphene-based heterostructures for QT applications. Specifically, I will push the development of an advanced technological platform for vdW heterostructures, which will allow to give quantitative answers to the following open questions: i) what are the relaxation and coherence times of spin and valley qubits in isotopically purified bilayer graphene (BLG); ii) what is the efficiency of a Cooper-pair splitter based on BLG; and iii) what are the characteristic energy scales of topologically protected quantum states engineered in graphene-based heterostructures.
At the end of this project, I aim at being in the position of saying whether graphene is the horse-worth-betting-on predicted by theory, or whether it still hides surprises in terms of fundamental physics. The technological advancements developed in this project for integrating nanostructured layers into vdW heterostructures will reach even beyond this goal, opening the door to new research directions and possible applications.
Max ERC Funding
1 806 250 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym 2DQP
Project Two-dimensional quantum photonics
Researcher (PI) Brian David GERARDOT
Host Institution (HI) HERIOT-WATT UNIVERSITY
Country United Kingdom
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Summary
Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Max ERC Funding
1 999 135 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym 3D-BioMat
Project Deciphering biomineralization mechanisms through 3D explorations of mesoscale crystalline structure in calcareous biomaterials
Researcher (PI) VIRGINIE CHAMARD
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Summary
The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Max ERC Funding
1 966 429 €
Duration
Start date: 2017-03-01, End date: 2022-08-31
Project acronym ABSOLUTESPIN
Project Absolute Spin Dynamics in Quantum Materials
Researcher (PI) Christian Reinhard Ast
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Country Germany
Call Details Consolidator Grant (CoG), PE3, ERC-2015-CoG
Summary One of the greatest challenges in exploiting the electron spin for information processing is that it is not a conserved quantity like the electron charge. In addition, spin lifetimes are rather short and correspondingly coherence is quickly lost. This challenge culminates in the coherent manipulation and detection of information from a single spin. Except in a few special systems, so far, single spins cannot be manipulated coherently on the atomic scale, while spin coherence times can only be measured on spin ensembles. A new concept is needed for coherence measurements on arbitrary single spins. Here, the principal investigator (PI) will combine a novel time- and spin-resolved low-temperature scanning tunneling microscope (STM) with the concept of pulsed electron paramagnetic resonance. With this unique and innovative setup, he will be able to address long-standing problems, such as relaxation and coherence times of arbitrary single spin systems on the atomic scale as well as individual spin interactions with the immediate surroundings. Spin readout will be realized through the detection of the absolute spin polarization in the tunneling current by a superconducting tip based on the Meservey-Tedrow-Fulde effect, which the PI has recently demonstrated for the first time in STM. For the coherent excitation, a specially designed pulsed GHz light source will be implemented. The goal is to better understand the spin dynamics and coherence times of single spin systems as well as the spin interactions involved in the decay mechanisms. This will have direct impact on the feasibility of quantum spin information processing with single spin systems on different decoupling surfaces and their scalability at the atomic level. A successful demonstration will enhance the detection limit of spins by several orders of magnitude and fill important missing links in the understanding of spin dynamics and quantum computing with single spins.
Summary
One of the greatest challenges in exploiting the electron spin for information processing is that it is not a conserved quantity like the electron charge. In addition, spin lifetimes are rather short and correspondingly coherence is quickly lost. This challenge culminates in the coherent manipulation and detection of information from a single spin. Except in a few special systems, so far, single spins cannot be manipulated coherently on the atomic scale, while spin coherence times can only be measured on spin ensembles. A new concept is needed for coherence measurements on arbitrary single spins. Here, the principal investigator (PI) will combine a novel time- and spin-resolved low-temperature scanning tunneling microscope (STM) with the concept of pulsed electron paramagnetic resonance. With this unique and innovative setup, he will be able to address long-standing problems, such as relaxation and coherence times of arbitrary single spin systems on the atomic scale as well as individual spin interactions with the immediate surroundings. Spin readout will be realized through the detection of the absolute spin polarization in the tunneling current by a superconducting tip based on the Meservey-Tedrow-Fulde effect, which the PI has recently demonstrated for the first time in STM. For the coherent excitation, a specially designed pulsed GHz light source will be implemented. The goal is to better understand the spin dynamics and coherence times of single spin systems as well as the spin interactions involved in the decay mechanisms. This will have direct impact on the feasibility of quantum spin information processing with single spin systems on different decoupling surfaces and their scalability at the atomic level. A successful demonstration will enhance the detection limit of spins by several orders of magnitude and fill important missing links in the understanding of spin dynamics and quantum computing with single spins.
Max ERC Funding
2 469 136 €
Duration
Start date: 2016-07-01, End date: 2022-06-30
Project acronym ACQDIV
Project Acquisition processes in maximally diverse languages: Min(d)ing the ambient language
Researcher (PI) Sabine Erika Stoll
Host Institution (HI) University of Zurich
Country Switzerland
Call Details Consolidator Grant (CoG), SH4, ERC-2013-CoG
Summary "Children learn any language that they grow up with, adapting to any of the ca. 7000 languages of the world, no matter how divergent or complex their structures are. What cognitive processes make this extreme flexibility possible? This is one of the most burning questions in cognitive science and the ACQDIV project aims at answering it by testing and refining the following leading hypothesis: Language acquisition is flexible and adaptive to any kind of language because it relies on a small set of universal cognitive processes that variably target different structures at different times during acquisition in every language. The project aims at establishing the precise set of processes and at determining the conditions of variation across maximally diverse languages. This project focuses on three processes: (i) distributional learning, (ii) generalization-based learning and (iii) interaction-based learning. To investigate these processes I will work with a sample of five clusters of languages including longitudinal data of two languages each. The clusters were determined by a clustering algorithm seeking the structurally most divergent languages in a typological database. The languages are: Cluster 1: Slavey and Cree, Cluster 2: Indonesian and Yucatec, Cluster 3: Inuktitut and Chintang, Cluster 4: Sesotho and Russian, Cluster 5: Japanese and Turkish. For all languages, corpora are available, except for Slavey where fieldwork is planned. The leading hypothesis will be tested against the acquisition of aspect and negation in each language of the sample and also against the two structures in each language that are most salient and challenging in them (e. g. complex morphology in Chintang). The acquisition processes also depend on statistical patterns in the input children receive. I will examine these patterns across the sample with respect to repetitiveness effects, applying data-mining methods and systematically comparing child-directed and child-surrounding speech."
Summary
"Children learn any language that they grow up with, adapting to any of the ca. 7000 languages of the world, no matter how divergent or complex their structures are. What cognitive processes make this extreme flexibility possible? This is one of the most burning questions in cognitive science and the ACQDIV project aims at answering it by testing and refining the following leading hypothesis: Language acquisition is flexible and adaptive to any kind of language because it relies on a small set of universal cognitive processes that variably target different structures at different times during acquisition in every language. The project aims at establishing the precise set of processes and at determining the conditions of variation across maximally diverse languages. This project focuses on three processes: (i) distributional learning, (ii) generalization-based learning and (iii) interaction-based learning. To investigate these processes I will work with a sample of five clusters of languages including longitudinal data of two languages each. The clusters were determined by a clustering algorithm seeking the structurally most divergent languages in a typological database. The languages are: Cluster 1: Slavey and Cree, Cluster 2: Indonesian and Yucatec, Cluster 3: Inuktitut and Chintang, Cluster 4: Sesotho and Russian, Cluster 5: Japanese and Turkish. For all languages, corpora are available, except for Slavey where fieldwork is planned. The leading hypothesis will be tested against the acquisition of aspect and negation in each language of the sample and also against the two structures in each language that are most salient and challenging in them (e. g. complex morphology in Chintang). The acquisition processes also depend on statistical patterns in the input children receive. I will examine these patterns across the sample with respect to repetitiveness effects, applying data-mining methods and systematically comparing child-directed and child-surrounding speech."
Max ERC Funding
1 998 438 €
Duration
Start date: 2014-09-01, End date: 2019-08-31
Project acronym ActionContraThreat
Project Action selection under threat: the complex control of human defense
Researcher (PI) Dominik BACH
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Country United Kingdom
Call Details Consolidator Grant (CoG), SH4, ERC-2018-COG
Summary Run away, sidestep, duck-and-cover, watch: when under threat, humans immediately choreograph a large repertoire of defensive actions. Understanding action-selection under threat is important for anybody wanting to explain why anxiety disorders imply some of these behaviours in harmless situations. Current concepts of human defensive behaviour are largely derived from rodent research and focus on a small number of broad, cross-species, action tendencies. This is likely to underestimate the complexity of the underlying action-selection mechanisms. This research programme will take decisive steps to understand these psychological mechanisms and elucidate their neural implementation.
To elicit threat-related action in the laboratory, I will use virtual reality computer games with full body motion, and track actions with motion-capture technology. Based on a cognitive-computational framework, I will systematically characterise the space of actions under threat, investigate the psychological mechanisms by which actions are selected in different scenarios, and describe them with computational algorithms that allow quantitative predictions. To independently verify their neural implementation, I will use wearable magnetoencephalography (MEG) in freely moving subjects.
This proposal fills a lacuna between defence system concepts based on rodent research, emotion psychology, and clinical accounts of anxiety disorders. By combining a stringent experimental approach with the formalism of cognitive-computational psychology, it furnishes a unique opportunity to understand the mechanisms of action-selection under threat, and how these are distinct from more general-purpose action-selection systems. Beyond its immediate scope, the proposal has a potential to lead to a better understanding of anxiety disorders, and to pave the way towards improved diagnostics and therapies.
Summary
Run away, sidestep, duck-and-cover, watch: when under threat, humans immediately choreograph a large repertoire of defensive actions. Understanding action-selection under threat is important for anybody wanting to explain why anxiety disorders imply some of these behaviours in harmless situations. Current concepts of human defensive behaviour are largely derived from rodent research and focus on a small number of broad, cross-species, action tendencies. This is likely to underestimate the complexity of the underlying action-selection mechanisms. This research programme will take decisive steps to understand these psychological mechanisms and elucidate their neural implementation.
To elicit threat-related action in the laboratory, I will use virtual reality computer games with full body motion, and track actions with motion-capture technology. Based on a cognitive-computational framework, I will systematically characterise the space of actions under threat, investigate the psychological mechanisms by which actions are selected in different scenarios, and describe them with computational algorithms that allow quantitative predictions. To independently verify their neural implementation, I will use wearable magnetoencephalography (MEG) in freely moving subjects.
This proposal fills a lacuna between defence system concepts based on rodent research, emotion psychology, and clinical accounts of anxiety disorders. By combining a stringent experimental approach with the formalism of cognitive-computational psychology, it furnishes a unique opportunity to understand the mechanisms of action-selection under threat, and how these are distinct from more general-purpose action-selection systems. Beyond its immediate scope, the proposal has a potential to lead to a better understanding of anxiety disorders, and to pave the way towards improved diagnostics and therapies.
Max ERC Funding
1 998 750 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym ACTIVE_ADAPTIVE
Project Active and Adaptive: Reconfigurable Active Colloids with Internal Feedback and Communication Schemes
Researcher (PI) Lucio ISA
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Consolidator Grant (CoG), PE3, ERC-2020-COG
Summary The vision of creating autonomous materials constituted of microscale motile units promises to disrupt a broad range of technologies but is still far beyond our reach. Inspired by nature, these materials are active, i.e. they convert available energy into functions, and adaptive, i.e. they respond to stimuli by reconfiguring via internal feedback and signalling schemes. In order to progress, we need to rethink the way in which we design, fabricate and control synthetic active units, aka active colloids or artificial microswimmers.
I propose an innovative approach that combines colloidal synthesis, assembly and actuation with nanofabrication and the implementation of feedback to realize a new class of active colloids. Borrowing ideas from soft-robotic systems, we aim to realize and study “cyber-free” artificial microswimmers, which, in addition to on-board energy conversion, present internal degrees of freedom allowing for sensing, feedback and communication pathways ultimately to be regulated without external intervention. In particular, we will: 1) Numerically and experimentally implement feedback schemes to regulate single-particle motility and collective behaviour based on control theory. 2) Use a unique combination of capillary assembly and two-photon nanolithography to create shape-shifting active colloids that autonomously regulate their motility based on stimuli orthogonal to their propulsion schemes. 3) Create “transmitting” and “receiving” active colloids, sending and sensing chemical signals (pH changes), to regulate their motility.
By introducing strong coupling between particles, and with stimuli beyond classical colloidal interactions, this proposal will enable a forward leap in the study of the emergent physics of active systems, as required to realize the vision of autonomous materials and microscale devices.
Summary
The vision of creating autonomous materials constituted of microscale motile units promises to disrupt a broad range of technologies but is still far beyond our reach. Inspired by nature, these materials are active, i.e. they convert available energy into functions, and adaptive, i.e. they respond to stimuli by reconfiguring via internal feedback and signalling schemes. In order to progress, we need to rethink the way in which we design, fabricate and control synthetic active units, aka active colloids or artificial microswimmers.
I propose an innovative approach that combines colloidal synthesis, assembly and actuation with nanofabrication and the implementation of feedback to realize a new class of active colloids. Borrowing ideas from soft-robotic systems, we aim to realize and study “cyber-free” artificial microswimmers, which, in addition to on-board energy conversion, present internal degrees of freedom allowing for sensing, feedback and communication pathways ultimately to be regulated without external intervention. In particular, we will: 1) Numerically and experimentally implement feedback schemes to regulate single-particle motility and collective behaviour based on control theory. 2) Use a unique combination of capillary assembly and two-photon nanolithography to create shape-shifting active colloids that autonomously regulate their motility based on stimuli orthogonal to their propulsion schemes. 3) Create “transmitting” and “receiving” active colloids, sending and sensing chemical signals (pH changes), to regulate their motility.
By introducing strong coupling between particles, and with stimuli beyond classical colloidal interactions, this proposal will enable a forward leap in the study of the emergent physics of active systems, as required to realize the vision of autonomous materials and microscale devices.
Max ERC Funding
1 997 718 €
Duration
Start date: 2021-05-01, End date: 2026-04-30
Project acronym AgeConsolidate
Project The Missing Link of Episodic Memory Decline in Aging: The Role of Inefficient Systems Consolidation
Researcher (PI) Anders Martin FJELL
Host Institution (HI) UNIVERSITETET I OSLO
Country Norway
Call Details Consolidator Grant (CoG), SH4, ERC-2016-COG
Summary Which brain mechanisms are responsible for the faith of the memories we make with age, whether they wither or stay, and in what form? Episodic memory function does decline with age. While this decline can have multiple causes, research has focused almost entirely on encoding and retrieval processes, largely ignoring a third critical process– consolidation. The objective of AgeConsolidate is to provide this missing link, by combining novel experimental cognitive paradigms with neuroimaging in a longitudinal large-scale attempt to directly test how age-related changes in consolidation processes in the brain impact episodic memory decline. The ambitious aims of the present proposal are two-fold:
(1) Use recent advances in memory consolidation theory to achieve an elaborate model of episodic memory deficits in aging
(2) Use aging as a model to uncover how structural and functional brain changes affect episodic memory consolidation in general
The novelty of the project lies in the synthesis of recent methodological advances and theoretical models for episodic memory consolidation to explain age-related decline, by employing a unique combination of a range of different techniques and approaches. This is ground-breaking, in that it aims at taking our understanding of the brain processes underlying episodic memory decline in aging to a new level, while at the same time advancing our theoretical understanding of how episodic memories are consolidated in the human brain. To obtain this outcome, I will test the main hypothesis of the project: Brain processes of episodic memory consolidation are less effective in older adults, and this can account for a significant portion of the episodic memory decline in aging. This will be answered by six secondary hypotheses, with 1-3 experiments or tasks designated to address each hypothesis, focusing on functional and structural MRI, positron emission tomography data and sleep experiments to target consolidation from different angles.
Summary
Which brain mechanisms are responsible for the faith of the memories we make with age, whether they wither or stay, and in what form? Episodic memory function does decline with age. While this decline can have multiple causes, research has focused almost entirely on encoding and retrieval processes, largely ignoring a third critical process– consolidation. The objective of AgeConsolidate is to provide this missing link, by combining novel experimental cognitive paradigms with neuroimaging in a longitudinal large-scale attempt to directly test how age-related changes in consolidation processes in the brain impact episodic memory decline. The ambitious aims of the present proposal are two-fold:
(1) Use recent advances in memory consolidation theory to achieve an elaborate model of episodic memory deficits in aging
(2) Use aging as a model to uncover how structural and functional brain changes affect episodic memory consolidation in general
The novelty of the project lies in the synthesis of recent methodological advances and theoretical models for episodic memory consolidation to explain age-related decline, by employing a unique combination of a range of different techniques and approaches. This is ground-breaking, in that it aims at taking our understanding of the brain processes underlying episodic memory decline in aging to a new level, while at the same time advancing our theoretical understanding of how episodic memories are consolidated in the human brain. To obtain this outcome, I will test the main hypothesis of the project: Brain processes of episodic memory consolidation are less effective in older adults, and this can account for a significant portion of the episodic memory decline in aging. This will be answered by six secondary hypotheses, with 1-3 experiments or tasks designated to address each hypothesis, focusing on functional and structural MRI, positron emission tomography data and sleep experiments to target consolidation from different angles.
Max ERC Funding
1 999 482 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym AlgoFinance
Project Algorithmic Finance: Inquiring into the Reshaping of Financial Markets
Researcher (PI) Christian BORCH
Host Institution (HI) COPENHAGEN BUSINESS SCHOOL
Country Denmark
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary Present-day financial markets are turning algorithmic, as market orders are increasingly being executed by fully automated computer algorithms, without any direct human intervention. Although algorithmic finance seems to fundamentally reshape the central dynamics in financial markets, and even though it prompts core sociological questions, it has not yet received any systematic attention. In a pioneering contribution to economic sociology and social studies of finance, ALGOFINANCE aims to understand how and with what consequences the turn to algorithms is changing financial markets. The overall concept and central contributions of ALGOFINANCE are the following: (1) on an intra-firm level, the project examines how the shift to algorithmic finance reshapes the ways in which trading firms operate, and does so by systematically and empirically investigating the reconfiguration of organizational structures and employee subjectivity; (2) on an inter-algorithmic level, it offers a ground-breaking methodology (agent-based modelling informed by qualitative data) to grasp how trading algorithms interact with one another in a fully digital space; and (3) on the level of market sociality, it proposes a novel theorization of how intra-firm and inter-algorithmic dynamics can be conceived of as introducing a particular form of sociality that is characteristic to algorithmic finance: a form of sociality-as-association heuristically analyzed as imitation. None of these three levels have received systematic attention in the state-of-the-art literature. Addressing them will significantly advance the understanding of present-day algorithmic finance in economic sociology. By contributing novel empirical, methodological, and theoretical understandings of the functioning and consequences of algorithms, ALGOFINANCE will pave the way for other research into digital sociology and the broader algorithmization of society.
Summary
Present-day financial markets are turning algorithmic, as market orders are increasingly being executed by fully automated computer algorithms, without any direct human intervention. Although algorithmic finance seems to fundamentally reshape the central dynamics in financial markets, and even though it prompts core sociological questions, it has not yet received any systematic attention. In a pioneering contribution to economic sociology and social studies of finance, ALGOFINANCE aims to understand how and with what consequences the turn to algorithms is changing financial markets. The overall concept and central contributions of ALGOFINANCE are the following: (1) on an intra-firm level, the project examines how the shift to algorithmic finance reshapes the ways in which trading firms operate, and does so by systematically and empirically investigating the reconfiguration of organizational structures and employee subjectivity; (2) on an inter-algorithmic level, it offers a ground-breaking methodology (agent-based modelling informed by qualitative data) to grasp how trading algorithms interact with one another in a fully digital space; and (3) on the level of market sociality, it proposes a novel theorization of how intra-firm and inter-algorithmic dynamics can be conceived of as introducing a particular form of sociality that is characteristic to algorithmic finance: a form of sociality-as-association heuristically analyzed as imitation. None of these three levels have received systematic attention in the state-of-the-art literature. Addressing them will significantly advance the understanding of present-day algorithmic finance in economic sociology. By contributing novel empirical, methodological, and theoretical understandings of the functioning and consequences of algorithms, ALGOFINANCE will pave the way for other research into digital sociology and the broader algorithmization of society.
Max ERC Funding
1 590 036 €
Duration
Start date: 2017-05-01, End date: 2021-04-30
Project acronym APOGEE
Project Atomic-scale physics of single-photon sources.
Researcher (PI) GUILLAUME ARTHUR FRANCOIS SCHULL
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE3, ERC-2017-COG
Summary Single-photon sources (SPSs) are systems capable of emitting photons one by one. These sources are of major importance for quantum-information science and applications. SPSs experiments generally rely on the optical excitation of two level systems of atomic-scale dimensions (single-molecules, vacancies in diamond…). Many fundamental questions related to the nature of these sources and the impact of their environment remain to be explored:
Can SPSs be addressed with atomic-scale spatial accuracy? How do the nanometer-scale distance or the orientation between two (or more) SPSs affect their emission properties? Does coherence emerge from the proximity between the sources? Do these structures still behave as SPSs or do they lead to the emission of correlated photons? How can we then control the degree of entanglement between the sources? Can we remotely excite the emission of these sources by using molecular chains as charge-carrying wires? Can we couple SPSs embodied in one or two-dimensional arrays? How does mechanical stress or localised plasmons affect the properties of an electrically-driven SPS?
Answering these questions requires probing, manipulating and exciting SPSs with an atomic-scale precision. This is beyond what is attainable with an all-optical method. Since they can be confined to atomic-scale pathways we propose to use electrons rather than photons to excite the SPSs. This unconventional approach provides a direct access to the atomic-scale physics of SPSs and is relevant for the implementation of these sources in hybrid devices combining electronic and photonic components. To this end, a scanning probe microscope will be developed that provides simultaneous spatial, chemical, spectral, and temporal resolutions. Single-molecules and defects in monolayer transition metal dichalcogenides are SPSs that will be studied in the project, and which are respectively of interest for fundamental and more applied issues.
Summary
Single-photon sources (SPSs) are systems capable of emitting photons one by one. These sources are of major importance for quantum-information science and applications. SPSs experiments generally rely on the optical excitation of two level systems of atomic-scale dimensions (single-molecules, vacancies in diamond…). Many fundamental questions related to the nature of these sources and the impact of their environment remain to be explored:
Can SPSs be addressed with atomic-scale spatial accuracy? How do the nanometer-scale distance or the orientation between two (or more) SPSs affect their emission properties? Does coherence emerge from the proximity between the sources? Do these structures still behave as SPSs or do they lead to the emission of correlated photons? How can we then control the degree of entanglement between the sources? Can we remotely excite the emission of these sources by using molecular chains as charge-carrying wires? Can we couple SPSs embodied in one or two-dimensional arrays? How does mechanical stress or localised plasmons affect the properties of an electrically-driven SPS?
Answering these questions requires probing, manipulating and exciting SPSs with an atomic-scale precision. This is beyond what is attainable with an all-optical method. Since they can be confined to atomic-scale pathways we propose to use electrons rather than photons to excite the SPSs. This unconventional approach provides a direct access to the atomic-scale physics of SPSs and is relevant for the implementation of these sources in hybrid devices combining electronic and photonic components. To this end, a scanning probe microscope will be developed that provides simultaneous spatial, chemical, spectral, and temporal resolutions. Single-molecules and defects in monolayer transition metal dichalcogenides are SPSs that will be studied in the project, and which are respectively of interest for fundamental and more applied issues.
Max ERC Funding
1 996 848 €
Duration
Start date: 2018-06-01, End date: 2023-05-31