Project acronym 19TH-CENTURY_EUCLID
Project Nineteenth-Century Euclid: Geometry and the Literary Imagination from Wordsworth to Wells
Researcher (PI) Alice Jenkins
Host Institution (HI) UNIVERSITY OF GLASGOW
Country United Kingdom
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Summary
This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Max ERC Funding
323 118 €
Duration
Start date: 2009-01-01, End date: 2011-10-31
Project acronym 1D-Engine
Project 1D-electrons coupled to dissipation: a novel approach for understanding and engineering superconducting materials and devices
Researcher (PI) Adrian KANTIAN
Host Institution (HI) HERIOT-WATT UNIVERSITY
Country United Kingdom
Call Details Starting Grant (StG), PE3, ERC-2017-STG
Summary Correlated electrons are at the forefront of condensed matter theory. Interacting quasi-1D electrons have seen vast progress in analytical and numerical theory, and thus in fundamental understanding and quantitative prediction. Yet, in the 1D limit fluctuations preclude important technological use, particularly of superconductors. In contrast, high-Tc superconductors in 2D/3D are not precluded by fluctuations, but lack a fundamental theory, making prediction and engineering of their properties, a major goal in physics, very difficult. This project aims to combine the advantages of both areas by making major progress in the theory of quasi-1D electrons coupled to an electron bath, in part building on recent breakthroughs (with the PIs extensive involvement) in simulating 1D and 2D electrons with parallelized density matrix renormalization group (pDMRG) numerics. Such theory will fundamentally advance the study of open electron systems, and show how to use 1D materials as elements of new superconducting (SC) devices and materials: 1) It will enable a new state of matter, 1D electrons with true SC order. Fluctuations from the electronic liquid, such as graphene, could also enable nanoscale wires to appear SC at high temperatures. 2) A new approach for the deliberate engineering of a high-Tc superconductor. In 1D, how electrons pair by repulsive interactions is understood and can be predicted. Stabilization by reservoir - formed by a parallel array of many such 1D systems - offers a superconductor for which all factors setting Tc are known and can be optimized. 3) Many existing superconductors with repulsive electron pairing, all presently not understood, can be cast as 1D electrons coupled to a bath. Developing chain-DMFT theory based on pDMRG will allow these materials SC properties to be simulated and understood for the first time. 4) The insights gained will be translated to 2D superconductors to study how they could be enhanced by contact with electronic liquids.
Summary
Correlated electrons are at the forefront of condensed matter theory. Interacting quasi-1D electrons have seen vast progress in analytical and numerical theory, and thus in fundamental understanding and quantitative prediction. Yet, in the 1D limit fluctuations preclude important technological use, particularly of superconductors. In contrast, high-Tc superconductors in 2D/3D are not precluded by fluctuations, but lack a fundamental theory, making prediction and engineering of their properties, a major goal in physics, very difficult. This project aims to combine the advantages of both areas by making major progress in the theory of quasi-1D electrons coupled to an electron bath, in part building on recent breakthroughs (with the PIs extensive involvement) in simulating 1D and 2D electrons with parallelized density matrix renormalization group (pDMRG) numerics. Such theory will fundamentally advance the study of open electron systems, and show how to use 1D materials as elements of new superconducting (SC) devices and materials: 1) It will enable a new state of matter, 1D electrons with true SC order. Fluctuations from the electronic liquid, such as graphene, could also enable nanoscale wires to appear SC at high temperatures. 2) A new approach for the deliberate engineering of a high-Tc superconductor. In 1D, how electrons pair by repulsive interactions is understood and can be predicted. Stabilization by reservoir - formed by a parallel array of many such 1D systems - offers a superconductor for which all factors setting Tc are known and can be optimized. 3) Many existing superconductors with repulsive electron pairing, all presently not understood, can be cast as 1D electrons coupled to a bath. Developing chain-DMFT theory based on pDMRG will allow these materials SC properties to be simulated and understood for the first time. 4) The insights gained will be translated to 2D superconductors to study how they could be enhanced by contact with electronic liquids.
Max ERC Funding
1 491 013 €
Duration
Start date: 2018-10-01, End date: 2024-03-31
Project acronym 2DNANOPTICA
Project Nano-optics on flatland: from quantum nanotechnology to nano-bio-photonics
Researcher (PI) Pablo Alonso-Gonzalez
Host Institution (HI) UNIVERSIDAD DE OVIEDO
Country Spain
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Summary
Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Max ERC Funding
1 459 219 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym 2DTHERMS
Project Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Researcher (PI) Jose Francisco Rivadulla Fernandez
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Country Spain
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Summary
Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Max ERC Funding
1 427 190 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym 3D-FM
Project Taking Force Microscopy into the Third Dimension
Researcher (PI) Tjerk Hendrik Oosterkamp
Host Institution (HI) UNIVERSITEIT LEIDEN
Country Netherlands
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary I propose to pursue two emerging Force Microscopy techniques that allow measuring structural properties below the surface of the specimen. Whereas Force Microscopy (most commonly known under the name AFM) is usually limited to measuring the surface topography and surface properties of a specimen, I will demonstrate that Force Microscopy can achieve true 3D images of the structure of the cell nucleus. In Ultrasound Force Microscopy, an ultrasound wave is launched from below towards the surface of the specimen. After the sound waves interact with structures beneath the surface of the specimen, the local variations in the amplitude and phase shift of the ultrasonic surface motion is collected by the Force Microscopy tip. Previously, measured 2D maps of the surface response have shown that the surface response is sensitive to structures below the surface. In this project I will employ miniature AFM cantilevers and nanotube tips that I have already developed in my lab. This will allow me to quickly acquire many such 2D maps at a much wider range of ultrasound frequencies and from these 2D maps calculate the full 3D structure below the surface. I expect this technique to have a resolving power better than 10 nm in three dimensions as far as 2 microns below the surface. In parallel I will introduce a major improvement to a technique based on Nuclear Magnetic Resonance (NMR). Magnetic Resonance Force Microscopy measures the interaction of a rotating nuclear spin in the field gradient of a magnetic Force Microscopy tip. However, these forces are so small that they pose an enormous challenge. Miniature cantilevers and nanotube tips, in combination with additional innovations in the detection of the cantilever motion, can overcome this problem. I expect to be able to measure the combined signal of 100 proton spins or fewer, which will allow me to measure proton densities with a resolution of 5 nm, but possibly even with atomic resolution.
Summary
I propose to pursue two emerging Force Microscopy techniques that allow measuring structural properties below the surface of the specimen. Whereas Force Microscopy (most commonly known under the name AFM) is usually limited to measuring the surface topography and surface properties of a specimen, I will demonstrate that Force Microscopy can achieve true 3D images of the structure of the cell nucleus. In Ultrasound Force Microscopy, an ultrasound wave is launched from below towards the surface of the specimen. After the sound waves interact with structures beneath the surface of the specimen, the local variations in the amplitude and phase shift of the ultrasonic surface motion is collected by the Force Microscopy tip. Previously, measured 2D maps of the surface response have shown that the surface response is sensitive to structures below the surface. In this project I will employ miniature AFM cantilevers and nanotube tips that I have already developed in my lab. This will allow me to quickly acquire many such 2D maps at a much wider range of ultrasound frequencies and from these 2D maps calculate the full 3D structure below the surface. I expect this technique to have a resolving power better than 10 nm in three dimensions as far as 2 microns below the surface. In parallel I will introduce a major improvement to a technique based on Nuclear Magnetic Resonance (NMR). Magnetic Resonance Force Microscopy measures the interaction of a rotating nuclear spin in the field gradient of a magnetic Force Microscopy tip. However, these forces are so small that they pose an enormous challenge. Miniature cantilevers and nanotube tips, in combination with additional innovations in the detection of the cantilever motion, can overcome this problem. I expect to be able to measure the combined signal of 100 proton spins or fewer, which will allow me to measure proton densities with a resolution of 5 nm, but possibly even with atomic resolution.
Max ERC Funding
1 794 960 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym 3D-PXM
Project 3D Piezoresponse X-ray Microscopy
Researcher (PI) Hugh SIMONS
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk.
This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage.
For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.
Summary
Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk.
This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage.
For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.
Max ERC Funding
1 496 941 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym 3DMOSHBOND
Project Three-Dimensional Mapping Of a Single Hydrogen Bond
Researcher (PI) Adam Marc SWEETMAN
Host Institution (HI) UNIVERSITY OF LEEDS
Country United Kingdom
Call Details Starting Grant (StG), PE3, ERC-2017-STG
Summary All properties of matter are ultimately governed by the forces between single atoms, but our knowledge of interatomic, and intermolecular, potentials is often derived indirectly.
In 3DMOSHBOND, I outline a program of work designed to create a paradigm shift in the direct measurement of complex interatomic potentials via a fundamental reimagining of how atomic resolution imaging, and force measurement, techniques are applied.
To provide a clear proof of principle demonstration of the power of this concept, I propose to map the strength, shape and extent of single hydrogen bonding (H-bonding) interactions in 3D with sub-Angstrom precision. H-bonding is a key component governing intermolecular interactions, particularly for biologically important molecules. Despite its critical importance, H-bonding is relatively poorly understood, and the IUPAC definition of the H-bond was changed as recently as 2011- highlighting the relevance of a new means to engage with these fundamental interactions.
Hitherto unprecedented resolution and accuracy will be achieved via a creation of a novel layer of vertically oriented H-bonding molecules, functionalisation of the tip of a scanning probe microscope with a single complementary H-bonding molecule, and by complete characterisation of the position of all atoms in the junction. This will place two H-bonding groups “end on” and map the extent, and magnitude, of the H-bond with sub-Angstrom precision for a variety of systems. This investigation of the H-bond will present us with an unparalleled level of information regarding its properties.
Experimental results will be compared with ab initio density functional theory (DFT) simulations, to investigate the extent to which state-of-the-art simulations are able to reproduce the behaviour of the H-bonding interaction. The project will create a new generalised probe for the study of single atomic and molecular interactions.
Summary
All properties of matter are ultimately governed by the forces between single atoms, but our knowledge of interatomic, and intermolecular, potentials is often derived indirectly.
In 3DMOSHBOND, I outline a program of work designed to create a paradigm shift in the direct measurement of complex interatomic potentials via a fundamental reimagining of how atomic resolution imaging, and force measurement, techniques are applied.
To provide a clear proof of principle demonstration of the power of this concept, I propose to map the strength, shape and extent of single hydrogen bonding (H-bonding) interactions in 3D with sub-Angstrom precision. H-bonding is a key component governing intermolecular interactions, particularly for biologically important molecules. Despite its critical importance, H-bonding is relatively poorly understood, and the IUPAC definition of the H-bond was changed as recently as 2011- highlighting the relevance of a new means to engage with these fundamental interactions.
Hitherto unprecedented resolution and accuracy will be achieved via a creation of a novel layer of vertically oriented H-bonding molecules, functionalisation of the tip of a scanning probe microscope with a single complementary H-bonding molecule, and by complete characterisation of the position of all atoms in the junction. This will place two H-bonding groups “end on” and map the extent, and magnitude, of the H-bond with sub-Angstrom precision for a variety of systems. This investigation of the H-bond will present us with an unparalleled level of information regarding its properties.
Experimental results will be compared with ab initio density functional theory (DFT) simulations, to investigate the extent to which state-of-the-art simulations are able to reproduce the behaviour of the H-bonding interaction. The project will create a new generalised probe for the study of single atomic and molecular interactions.
Max ERC Funding
1 971 468 €
Duration
Start date: 2018-01-01, End date: 2023-12-31
Project acronym [LC]2
Project 'Living' Colloidal Liquid Crystals
Researcher (PI) Tyler Shendruk
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Country United Kingdom
Call Details Starting Grant (StG), PE3, ERC-2019-STG
Summary We propose an unprecedented class of soft, self-assembled and self-motile micro-machines. The combined qualities of active fluids and colloidal liquid crystals can be leveraged to design intrinsically out-of- equilibrium hierarchal structures, or ‘Living’ Colloidal Liquid Crystals [LC]2. The study of colloidal interactions and self-assembly in active nematics has yet to be considered and constitutes an unexplored and inter-disciplinary application of the emerging sciences of active matter and colloidal liquid crystals. Activity will endow dynamical multi-scale colloidal structures with autonomous functionality, including self-motility, self-revolution and dynamical self-transformations, which are exactly the characteristics one would desire for a first generation of autonomous components of micro-biomechanical systems and soft micro-machines. As hybrids between biological active fluids and man-made materials, [LC]2 structures represent an early foray into ‘living’ metamaterials, in which active self-assembly of simple components produces a rich diversity of behaviours and the potential for autonomously tunable material properties, mimicking biological complexity. In particular, we hypothesize self-assembled [LC]2 dimer turbines, colloidal flagella and ant-like group retrieval. These systems represent a fundamentally innovative concept that we propose to drive nanotechnology into a new future of soft materials that biomimetically self-assemble and autonomously enact functions. It is our multiscale coarse-grained simulations and expertise in flowing active nematic fluids that generates the opportunity for this unique line of research.
Summary
We propose an unprecedented class of soft, self-assembled and self-motile micro-machines. The combined qualities of active fluids and colloidal liquid crystals can be leveraged to design intrinsically out-of- equilibrium hierarchal structures, or ‘Living’ Colloidal Liquid Crystals [LC]2. The study of colloidal interactions and self-assembly in active nematics has yet to be considered and constitutes an unexplored and inter-disciplinary application of the emerging sciences of active matter and colloidal liquid crystals. Activity will endow dynamical multi-scale colloidal structures with autonomous functionality, including self-motility, self-revolution and dynamical self-transformations, which are exactly the characteristics one would desire for a first generation of autonomous components of micro-biomechanical systems and soft micro-machines. As hybrids between biological active fluids and man-made materials, [LC]2 structures represent an early foray into ‘living’ metamaterials, in which active self-assembly of simple components produces a rich diversity of behaviours and the potential for autonomously tunable material properties, mimicking biological complexity. In particular, we hypothesize self-assembled [LC]2 dimer turbines, colloidal flagella and ant-like group retrieval. These systems represent a fundamentally innovative concept that we propose to drive nanotechnology into a new future of soft materials that biomimetically self-assemble and autonomously enact functions. It is our multiscale coarse-grained simulations and expertise in flowing active nematic fluids that generates the opportunity for this unique line of research.
Max ERC Funding
1 402 345 €
Duration
Start date: 2019-12-01, End date: 2024-11-30
Project acronym ABACUS
Project Advancing Behavioral and Cognitive Understanding of Speech
Researcher (PI) Bart De Boer
Host Institution (HI) VRIJE UNIVERSITEIT BRUSSEL
Country Belgium
Call Details Starting Grant (StG), SH4, ERC-2011-StG_20101124
Summary I intend to investigate what cognitive mechanisms give us combinatorial speech. Combinatorial speech is the ability to make new words using pre-existing speech sounds. Humans are the only apes that can do this, yet we do not know how our brains do it, nor how exactly we differ from other apes. Using new experimental techniques to study human behavior and new computational techniques to model human cognition, I will find out how we deal with combinatorial speech.
The experimental part will study individual and cultural learning. Experimental cultural learning is a new technique that simulates cultural evolution in the laboratory. Two types of cultural learning will be used: iterated learning, which simulates language transfer across generations, and social coordination, which simulates emergence of norms in a language community. Using the two types of cultural learning together with individual learning experiments will help to zero in, from three angles, on how humans deal with combinatorial speech. In addition it will make a methodological contribution by comparing the strengths and weaknesses of the three methods.
The computer modeling part will formalize hypotheses about how our brains deal with combinatorial speech. Two models will be built: a high-level model that will establish the basic algorithms with which combinatorial speech is learned and reproduced, and a neural model that will establish in more detail how the algorithms are implemented in the brain. In addition, the models, through increasing understanding of how humans deal with speech, will help bridge the performance gap between human and computer speech recognition.
The project will advance science in four ways: it will provide insight into how our unique ability for using combinatorial speech works, it will tell us how this is implemented in the brain, it will extend the novel methodology of experimental cultural learning and it will create new computer models for dealing with human speech.
Summary
I intend to investigate what cognitive mechanisms give us combinatorial speech. Combinatorial speech is the ability to make new words using pre-existing speech sounds. Humans are the only apes that can do this, yet we do not know how our brains do it, nor how exactly we differ from other apes. Using new experimental techniques to study human behavior and new computational techniques to model human cognition, I will find out how we deal with combinatorial speech.
The experimental part will study individual and cultural learning. Experimental cultural learning is a new technique that simulates cultural evolution in the laboratory. Two types of cultural learning will be used: iterated learning, which simulates language transfer across generations, and social coordination, which simulates emergence of norms in a language community. Using the two types of cultural learning together with individual learning experiments will help to zero in, from three angles, on how humans deal with combinatorial speech. In addition it will make a methodological contribution by comparing the strengths and weaknesses of the three methods.
The computer modeling part will formalize hypotheses about how our brains deal with combinatorial speech. Two models will be built: a high-level model that will establish the basic algorithms with which combinatorial speech is learned and reproduced, and a neural model that will establish in more detail how the algorithms are implemented in the brain. In addition, the models, through increasing understanding of how humans deal with speech, will help bridge the performance gap between human and computer speech recognition.
The project will advance science in four ways: it will provide insight into how our unique ability for using combinatorial speech works, it will tell us how this is implemented in the brain, it will extend the novel methodology of experimental cultural learning and it will create new computer models for dealing with human speech.
Max ERC Funding
1 276 620 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ABINITIODGA
Project Ab initio Dynamical Vertex Approximation
Researcher (PI) Karsten Held
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Country Austria
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary Some of the most fascinating physical phenomena are experimentally observed in strongly correlated electron systems and, on the theoretical side, only poorly understood hitherto. The aim of the ERC project AbinitioDGA is the development, implementation and application of a new, 21th century method for the ab initio calculation of materials with such strong electronic correlations. AbinitioDGA includes strong electronic correlations on all time and length scales and hence is a big step beyond the state-of-the-art methods, such as the local density approximation, dynamical mean field theory, and the GW approach (Green function G times screened interaction W). It has the potential for an extraordinary high impact not only in the field of computational materials science but also for a better understanding of quantum critical heavy fermion systems, high-temperature superconductors, and transport through nano- and heterostructures. These four physical problems and related materials will be studied within the ERC project, besides the methodological development.
On the technical side, AbinitioDGA realizes Hedin's idea to include vertex corrections beyond the GW approximation. All vertex corrections which can be traced back to a fully irreducible local vertex and the bare non-local Coulomb interaction are included. This way, AbinitioDGA does not only contain the GW physics of screened exchange and the strong local correlations of dynamical mean field theory but also non-local correlations beyond on all length scales. Through the latter, AbinitioDGA can prospectively describe phenomena such as quantum criticality, spin-fluctuation mediated superconductivity, and weak localization corrections to the conductivity. Nonetheless, the computational effort is still manageable even for realistic materials calculations, making the considerable effort to implement AbinitioDGA worthwhile.
Summary
Some of the most fascinating physical phenomena are experimentally observed in strongly correlated electron systems and, on the theoretical side, only poorly understood hitherto. The aim of the ERC project AbinitioDGA is the development, implementation and application of a new, 21th century method for the ab initio calculation of materials with such strong electronic correlations. AbinitioDGA includes strong electronic correlations on all time and length scales and hence is a big step beyond the state-of-the-art methods, such as the local density approximation, dynamical mean field theory, and the GW approach (Green function G times screened interaction W). It has the potential for an extraordinary high impact not only in the field of computational materials science but also for a better understanding of quantum critical heavy fermion systems, high-temperature superconductors, and transport through nano- and heterostructures. These four physical problems and related materials will be studied within the ERC project, besides the methodological development.
On the technical side, AbinitioDGA realizes Hedin's idea to include vertex corrections beyond the GW approximation. All vertex corrections which can be traced back to a fully irreducible local vertex and the bare non-local Coulomb interaction are included. This way, AbinitioDGA does not only contain the GW physics of screened exchange and the strong local correlations of dynamical mean field theory but also non-local correlations beyond on all length scales. Through the latter, AbinitioDGA can prospectively describe phenomena such as quantum criticality, spin-fluctuation mediated superconductivity, and weak localization corrections to the conductivity. Nonetheless, the computational effort is still manageable even for realistic materials calculations, making the considerable effort to implement AbinitioDGA worthwhile.
Max ERC Funding
1 491 090 €
Duration
Start date: 2013-01-01, End date: 2018-07-31