Project acronym ALGILE
Project Foundations of Algebraic and Dynamic Data Management Systems
Researcher (PI) Christoph Koch
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary "Contemporary database query languages are ultimately founded on logic and feature an additive operation – usually a form of (multi)set union or disjunction – that is asymmetric in that additions or updates do not always have an inverse. This asymmetry puts a greater part of the machinery of abstract algebra for equation solving outside the reach of databases. However, such equation solving would be a key functionality that problems such as query equivalence testing and data integration could be reduced to: In the current scenario of the presence of an asymmetric additive operation they are undecidable. Moreover, query languages with a symmetric additive operation (i.e., which has an inverse and is thus based on ring theory) would open up databases for a large range of new scientific and mathematical applications.
The goal of the proposed project is to reinvent database management systems with a foundation in abstract algebra and specifically in ring theory. The presence of an additive inverse allows to cleanly define differences between queries. This gives rise to a database analog of differential calculus that leads to radically new incremental and adaptive query evaluation algorithms that substantially outperform the state of the art techniques. These algorithms enable a new class of systems which I call Dynamic Data Management Systems. Such systems can maintain continuously fresh query views at extremely high update rates and have important applications in interactive Large-scale Data Analysis. There is a natural connection between differences and updates, motivating the group theoretic study of updates that will lead to better ways of creating out-of-core data processing algorithms for new storage devices. Basing queries on ring theory leads to a new class of systems, Algebraic Data Management Systems, which herald a convergence of database systems and computer algebra systems."
Summary
"Contemporary database query languages are ultimately founded on logic and feature an additive operation – usually a form of (multi)set union or disjunction – that is asymmetric in that additions or updates do not always have an inverse. This asymmetry puts a greater part of the machinery of abstract algebra for equation solving outside the reach of databases. However, such equation solving would be a key functionality that problems such as query equivalence testing and data integration could be reduced to: In the current scenario of the presence of an asymmetric additive operation they are undecidable. Moreover, query languages with a symmetric additive operation (i.e., which has an inverse and is thus based on ring theory) would open up databases for a large range of new scientific and mathematical applications.
The goal of the proposed project is to reinvent database management systems with a foundation in abstract algebra and specifically in ring theory. The presence of an additive inverse allows to cleanly define differences between queries. This gives rise to a database analog of differential calculus that leads to radically new incremental and adaptive query evaluation algorithms that substantially outperform the state of the art techniques. These algorithms enable a new class of systems which I call Dynamic Data Management Systems. Such systems can maintain continuously fresh query views at extremely high update rates and have important applications in interactive Large-scale Data Analysis. There is a natural connection between differences and updates, motivating the group theoretic study of updates that will lead to better ways of creating out-of-core data processing algorithms for new storage devices. Basing queries on ring theory leads to a new class of systems, Algebraic Data Management Systems, which herald a convergence of database systems and computer algebra systems."
Max ERC Funding
1 480 548 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym ANIMETRICS
Project Measurement-Based Modeling and Animation of Complex Mechanical Phenomena
Researcher (PI) Miguel Angel Otaduy Tristan
Host Institution (HI) UNIVERSIDAD REY JUAN CARLOS
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary Computer animation has traditionally been associated with applications in virtual-reality-based training, video games or feature films. However, interactive animation is gaining relevance in a more general scope, as a tool for early-stage analysis, design and planning in many applications in science and engineering. The user can get quick and visual feedback of the results, and then proceed by refining the experiments or designs. Potential applications include nanodesign, e-commerce or tactile telecommunication, but they also reach as far as, e.g., the analysis of ecological, climate, biological or physiological processes.
The application of computer animation is extremely limited in comparison to its potential outreach due to a trade-off between accuracy and computational efficiency. Such trade-off is induced by inherent complexity sources such as nonlinear or anisotropic behaviors, heterogeneous properties, or high dynamic ranges of effects.
The Animetrics project proposes a modeling and animation methodology, which consists of a multi-scale decomposition of complex processes, the description of the process at each scale through combination of simple local models, and fitting the parameters of those local models using large amounts of data from example effects. The modeling and animation methodology will be explored on specific problems arising in complex mechanical phenomena, including viscoelasticity of solids and thin shells, multi-body contact, granular and liquid flow, and fracture of solids.
Summary
Computer animation has traditionally been associated with applications in virtual-reality-based training, video games or feature films. However, interactive animation is gaining relevance in a more general scope, as a tool for early-stage analysis, design and planning in many applications in science and engineering. The user can get quick and visual feedback of the results, and then proceed by refining the experiments or designs. Potential applications include nanodesign, e-commerce or tactile telecommunication, but they also reach as far as, e.g., the analysis of ecological, climate, biological or physiological processes.
The application of computer animation is extremely limited in comparison to its potential outreach due to a trade-off between accuracy and computational efficiency. Such trade-off is induced by inherent complexity sources such as nonlinear or anisotropic behaviors, heterogeneous properties, or high dynamic ranges of effects.
The Animetrics project proposes a modeling and animation methodology, which consists of a multi-scale decomposition of complex processes, the description of the process at each scale through combination of simple local models, and fitting the parameters of those local models using large amounts of data from example effects. The modeling and animation methodology will be explored on specific problems arising in complex mechanical phenomena, including viscoelasticity of solids and thin shells, multi-body contact, granular and liquid flow, and fracture of solids.
Max ERC Funding
1 277 969 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym ANTICS
Project Algorithmic Number Theory in Computer Science
Researcher (PI) Andreas Enge
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary "During the past twenty years, we have witnessed profound technological changes, summarised under the terms of digital revolution or entering the information age. It is evident that these technological changes will have a deep societal impact, and questions of privacy and security are primordial to ensure the survival of a free and open society.
Cryptology is a main building block of any security solution, and at the heart of projects such as electronic identity and health cards, access control, digital content distribution or electronic voting, to mention only a few important applications. During the past decades, public-key cryptology has established itself as a research topic in computer science; tools of theoretical computer science are employed to “prove” the security of cryptographic primitives such as encryption or digital signatures and of more complex protocols. It is often forgotten, however, that all practically relevant public-key cryptosystems are rooted in pure mathematics, in particular, number theory and arithmetic geometry. In fact, the socalled security “proofs” are all conditional to the algorithmic untractability of certain number theoretic problems, such as factorisation of large integers or discrete logarithms in algebraic curves. Unfortunately, there is a large cultural gap between computer scientists using a black-box security reduction to a supposedly hard problem in algorithmic number theory and number theorists, who are often interested in solving small and easy instances of the same problem. The theoretical grounds on which current algorithmic number theory operates are actually rather shaky, and cryptologists are generally unaware of this fact.
The central goal of ANTICS is to rebuild algorithmic number theory on the firm grounds of theoretical computer science."
Summary
"During the past twenty years, we have witnessed profound technological changes, summarised under the terms of digital revolution or entering the information age. It is evident that these technological changes will have a deep societal impact, and questions of privacy and security are primordial to ensure the survival of a free and open society.
Cryptology is a main building block of any security solution, and at the heart of projects such as electronic identity and health cards, access control, digital content distribution or electronic voting, to mention only a few important applications. During the past decades, public-key cryptology has established itself as a research topic in computer science; tools of theoretical computer science are employed to “prove” the security of cryptographic primitives such as encryption or digital signatures and of more complex protocols. It is often forgotten, however, that all practically relevant public-key cryptosystems are rooted in pure mathematics, in particular, number theory and arithmetic geometry. In fact, the socalled security “proofs” are all conditional to the algorithmic untractability of certain number theoretic problems, such as factorisation of large integers or discrete logarithms in algebraic curves. Unfortunately, there is a large cultural gap between computer scientists using a black-box security reduction to a supposedly hard problem in algorithmic number theory and number theorists, who are often interested in solving small and easy instances of the same problem. The theoretical grounds on which current algorithmic number theory operates are actually rather shaky, and cryptologists are generally unaware of this fact.
The central goal of ANTICS is to rebuild algorithmic number theory on the firm grounds of theoretical computer science."
Max ERC Funding
1 453 507 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym AR.C.H.I.VES
Project A comparative history of archives in late medieval and early modern Italy
Researcher (PI) Filippo Luciano Carlo De Vivo
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary Most historians work in archives, but generally have not made archives into their primary object of research. While we tend to be preoccupied by documentary loss, what is striking is the sheer amount of paperwork preserved over the centuries. We need to study the reasons for this preservation.
This project wishes to study the history of the archives and of the chanceries that oversaw their production storage and organization in late medieval and early modern Italy: essentially from the creation of the first chanceries in city-states in the late twelfth century to the opening of the Archivi di Stato that, after the ancient states’ dissolution, preserved documents as tools for scholarship rather than administration. Because of its fragmented political history, concentrating on Italy means having access to the archives of a wide variety of regimes; in turn, as institutions pursuing similar functions, archives lend themselves to comparison and therefore such research may help us overcome the traditional disconnectedness in the study of Italy’s past.
The project proposes to break significantly new ground, first, by adopting a comparative approach through the in-depth analysis of seven case studies and, second, by contextualising the study of archives away from institutional history in a wider social and cultural context, by focusing on six themes researched in six successive phases: 1) the political role of archives, and the efforts devoted by governments to their development; 2) their organization, subdivisions, referencing systems; 3) the material culture of documents and physical repositories as well as spatial locations; 4) the social characteristiscs of the staff; 5) the archives’ place in society, including their access and misuse; 6) their use by historians. As implied in the choice of these themes, the project is deliberately interdisciplinary, and aims at the mutually beneficial exchange between archivists, social, political cultural and art historians.
Summary
Most historians work in archives, but generally have not made archives into their primary object of research. While we tend to be preoccupied by documentary loss, what is striking is the sheer amount of paperwork preserved over the centuries. We need to study the reasons for this preservation.
This project wishes to study the history of the archives and of the chanceries that oversaw their production storage and organization in late medieval and early modern Italy: essentially from the creation of the first chanceries in city-states in the late twelfth century to the opening of the Archivi di Stato that, after the ancient states’ dissolution, preserved documents as tools for scholarship rather than administration. Because of its fragmented political history, concentrating on Italy means having access to the archives of a wide variety of regimes; in turn, as institutions pursuing similar functions, archives lend themselves to comparison and therefore such research may help us overcome the traditional disconnectedness in the study of Italy’s past.
The project proposes to break significantly new ground, first, by adopting a comparative approach through the in-depth analysis of seven case studies and, second, by contextualising the study of archives away from institutional history in a wider social and cultural context, by focusing on six themes researched in six successive phases: 1) the political role of archives, and the efforts devoted by governments to their development; 2) their organization, subdivisions, referencing systems; 3) the material culture of documents and physical repositories as well as spatial locations; 4) the social characteristiscs of the staff; 5) the archives’ place in society, including their access and misuse; 6) their use by historians. As implied in the choice of these themes, the project is deliberately interdisciplinary, and aims at the mutually beneficial exchange between archivists, social, political cultural and art historians.
Max ERC Funding
1 107 070 €
Duration
Start date: 2012-02-01, End date: 2016-07-31
Project acronym ARABCOMMAPH
Project Arabic Commentaries on the Hippocratic Aphorisms
Researcher (PI) Peter Ernst Pormann
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary The Hippocratic Aphorisms have exerted a singular influence over generations of physicians both in the East and in the West. Galen (d. c. 216) produced an extensive commentary on this text, as did other medical authors writing in Greek, Latin, Arabic, and Hebrew. The Arabic tradition is particularly rich, with more than a dozen commentaries extant in over a hundred manuscripts. These Arabic commentaries did not merely contain scholastic debates, but constituted important venues for innovation and change. Moreover, they impacted on medical practice, as the Aphorisms were so popular that both doctors and their patients knew them by heart. Despite their importance for medical theory and practice, previous scholarship on them has barely scratched the surface. Put succinctly, the present project breaks new ground by conducting an in-depth study of this tradition through a highly innovative methodology: it approaches the available evidence as a corpus, to be constituted electronically, and to be analysed in an interdisciplinary way.
We propose to survey the manuscript tradition of the Arabic commentaries on the Hippocratic Aphorisms, beginning with Ḥunayn ibn ʾIsḥāq’s Arabic translation of Galen’s commentary. On the basis of this philological survey that will employ a new approach to stemmatics, we shall produce provisional electronic XML editions of the commentaries. These texts will constitute the corpus, some 600,000 words long, that we shall investigate through the latest IT tools to address a set of interdisciplinary problems: textual criticism of the Greek sources; Graeco-Arabic translation technique; methods of quotation; hermeneutic procedures; development of medical theory; medical practice; and social history of medicine. Both in approach and scope, the project will bring about a paradigm shift in our study of exegetical cultures in Arabic, and the role that commentaries played in the transmission and transformation of scientific knowledge.
Summary
The Hippocratic Aphorisms have exerted a singular influence over generations of physicians both in the East and in the West. Galen (d. c. 216) produced an extensive commentary on this text, as did other medical authors writing in Greek, Latin, Arabic, and Hebrew. The Arabic tradition is particularly rich, with more than a dozen commentaries extant in over a hundred manuscripts. These Arabic commentaries did not merely contain scholastic debates, but constituted important venues for innovation and change. Moreover, they impacted on medical practice, as the Aphorisms were so popular that both doctors and their patients knew them by heart. Despite their importance for medical theory and practice, previous scholarship on them has barely scratched the surface. Put succinctly, the present project breaks new ground by conducting an in-depth study of this tradition through a highly innovative methodology: it approaches the available evidence as a corpus, to be constituted electronically, and to be analysed in an interdisciplinary way.
We propose to survey the manuscript tradition of the Arabic commentaries on the Hippocratic Aphorisms, beginning with Ḥunayn ibn ʾIsḥāq’s Arabic translation of Galen’s commentary. On the basis of this philological survey that will employ a new approach to stemmatics, we shall produce provisional electronic XML editions of the commentaries. These texts will constitute the corpus, some 600,000 words long, that we shall investigate through the latest IT tools to address a set of interdisciplinary problems: textual criticism of the Greek sources; Graeco-Arabic translation technique; methods of quotation; hermeneutic procedures; development of medical theory; medical practice; and social history of medicine. Both in approach and scope, the project will bring about a paradigm shift in our study of exegetical cultures in Arabic, and the role that commentaries played in the transmission and transformation of scientific knowledge.
Max ERC Funding
1 499 968 €
Duration
Start date: 2012-02-01, End date: 2017-07-31
Project acronym ASAP
Project Adaptive Security and Privacy
Researcher (PI) Bashar Nuseibeh
Host Institution (HI) THE OPEN UNIVERSITY
Call Details Advanced Grant (AdG), PE6, ERC-2011-ADG_20110209
Summary With the prevalence of mobile computing devices and the increasing availability of pervasive services, ubiquitous computing (Ubicomp) is a reality for many people. This reality is generating opportunities for people to interact socially in new and richer ways, and to work more effectively in a variety of new environments. More generally, Ubicomp infrastructures – controlled by software – will determine users’ access to critical services.
With these opportunities come higher risks of misuse by malicious agents. Therefore, the role and design of software for managing use and protecting against misuse is critical, and the engineering of software that is both functionally effective while safe guarding user assets from harm is a key challenge. Indeed the very nature of Ubicomp means that software must adapt to the changing needs of users and their environment, and, more critically, to the different threats to users’ security and privacy.
ASAP proposes to radically re-conceptualise software engineering for Ubicomp in ways that are cognisant of the changing functional needs of users, of the changing threats to user assets, and of the changing relationships between them. We propose to deliver adaptive software capabilities for supporting users in managing their privacy requirements, and adaptive software capabilities to deliver secure software that underpin those requirements. A key novelty of our approach is its holistic treatment of security and human behaviour. To achieve this, it draws upon contributions from requirements engineering, security & privacy engineering, and human-computer interaction. Our aim is to contribute to software engineering that empowers and protects Ubicomp users. Underpinning our approach will be the development of representations of security and privacy problem structures that capture user requirements, the context in which those requirements arise, and the adaptive software that aims to meet those requirements.
Summary
With the prevalence of mobile computing devices and the increasing availability of pervasive services, ubiquitous computing (Ubicomp) is a reality for many people. This reality is generating opportunities for people to interact socially in new and richer ways, and to work more effectively in a variety of new environments. More generally, Ubicomp infrastructures – controlled by software – will determine users’ access to critical services.
With these opportunities come higher risks of misuse by malicious agents. Therefore, the role and design of software for managing use and protecting against misuse is critical, and the engineering of software that is both functionally effective while safe guarding user assets from harm is a key challenge. Indeed the very nature of Ubicomp means that software must adapt to the changing needs of users and their environment, and, more critically, to the different threats to users’ security and privacy.
ASAP proposes to radically re-conceptualise software engineering for Ubicomp in ways that are cognisant of the changing functional needs of users, of the changing threats to user assets, and of the changing relationships between them. We propose to deliver adaptive software capabilities for supporting users in managing their privacy requirements, and adaptive software capabilities to deliver secure software that underpin those requirements. A key novelty of our approach is its holistic treatment of security and human behaviour. To achieve this, it draws upon contributions from requirements engineering, security & privacy engineering, and human-computer interaction. Our aim is to contribute to software engineering that empowers and protects Ubicomp users. Underpinning our approach will be the development of representations of security and privacy problem structures that capture user requirements, the context in which those requirements arise, and the adaptive software that aims to meet those requirements.
Max ERC Funding
2 499 041 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym BABE
Project Bodies across borders: oral and visual memory in Europe and beyond
Researcher (PI) Luisella Passerini
Host Institution (HI) EUROPEAN UNIVERSITY INSTITUTE
Call Details Advanced Grant (AdG), SH6, ERC-2011-ADG_20110406
Summary This project intends to study intercultural connections in contemporary Europe, engaging both native and ‘new’ Europeans. These connections are woven through the faculties of embodied subjects – memory, visuality and mobility – and concern the movement of people, ideas and images across the borders of European nation-states. These faculties are connected with that of affect, an increasingly important concept in history and the social sciences. Memory will be understood not only as oral or direct memory, but also as cultural memory, embodied in various cultural products. Our study aims to understand new forms of European identity, as these develop in an increasingly diasporic world. Europe today is not only a key site of immigration, after having been for centuries an area of emigration, but also a crucial point of arrival in a global network designed by mobile human beings.
Three parts will make up the project. The first will engage with bodies, their gendered dimension, performative capacities and connection to place. It will explore the ways certain bodies are ‘emplaced’ as ‘European’, while others are marked as alien, and contrast these discourses with the counter-narratives by visual artists. The second part will extend further the reflection on the role of the visual arts in challenging an emergent ‘Fortress Europe’ but also in re-imagining the memory of European colonialism. The work of some key artists will be shown to students in Italy and the Netherlands, both recent migrants and ‘natives’, creating an ‘induced reception’. The final part of the project will look at alternative imaginations of Europe, investigating the oral memories and ‘mental maps’ created by two migrant communities in Europe: from Peru and from the Horn of Africa.
Examining the heterogeneous micro-productions of mobility – whether ‘real’ or imagined/envisioned – will thus yield important lessons for the historical understanding of inclusion and exclusion in today’s Europe.
Summary
This project intends to study intercultural connections in contemporary Europe, engaging both native and ‘new’ Europeans. These connections are woven through the faculties of embodied subjects – memory, visuality and mobility – and concern the movement of people, ideas and images across the borders of European nation-states. These faculties are connected with that of affect, an increasingly important concept in history and the social sciences. Memory will be understood not only as oral or direct memory, but also as cultural memory, embodied in various cultural products. Our study aims to understand new forms of European identity, as these develop in an increasingly diasporic world. Europe today is not only a key site of immigration, after having been for centuries an area of emigration, but also a crucial point of arrival in a global network designed by mobile human beings.
Three parts will make up the project. The first will engage with bodies, their gendered dimension, performative capacities and connection to place. It will explore the ways certain bodies are ‘emplaced’ as ‘European’, while others are marked as alien, and contrast these discourses with the counter-narratives by visual artists. The second part will extend further the reflection on the role of the visual arts in challenging an emergent ‘Fortress Europe’ but also in re-imagining the memory of European colonialism. The work of some key artists will be shown to students in Italy and the Netherlands, both recent migrants and ‘natives’, creating an ‘induced reception’. The final part of the project will look at alternative imaginations of Europe, investigating the oral memories and ‘mental maps’ created by two migrant communities in Europe: from Peru and from the Horn of Africa.
Examining the heterogeneous micro-productions of mobility – whether ‘real’ or imagined/envisioned – will thus yield important lessons for the historical understanding of inclusion and exclusion in today’s Europe.
Max ERC Funding
1 488 501 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym BIONET
Project Network Topology Complements Genome as a Source of Biological Information
Researcher (PI) Natasa Przulj
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary Genetic sequences have had an enormous impact on our understanding of biology. The expectation is that biological network data will have a similar impact. However, progress is hindered by a lack of sophisticated graph theoretic tools that will mine these large networked datasets.
In recent breakthrough work at the boundary of computer science and biology supported by my USA NSF CAREER award, I developed sensitive network analysis, comparison and embedding tools which demonstrated that protein-protein interaction networks of eukaryotes are best modeled by geometric graphs. Also, they established phenotypically validated, unprecedented link between network topology and biological function and disease. Now I propose to substantially extend these preliminary results and design sensitive and robust network alignment methods that will lead to uncovering unknown biology and evolutionary relationships. The potential ground-breaking impact of such network alignment tools could be parallel to the impact the BLAST family of sequence alignment tools that have revolutionized our understanding of biological systems and therapeutics. Furthermore, I propose to develop additional sophisticated graph theoretic techniques to mine network data and hence complement biological information that can be extracted from sequence. I propose to exploit these new techniques for biological applications in collaboration with experimentalists at Imperial College London: 1. aligning biological networks of species whose genomes are closely related, but that have very different phenotypes, in order to uncover systems-level factors that contribute to pronounced differences; 2. compare and contrast stress response pathways and metabolic pathways in bacteria in a unified systems-level framework and exploit the findings for: (a) bioengineering of micro-organisms for industrial applications (production of bio-fuels, bioremediation, production of biopolymers); (b) biomedical applications.
Summary
Genetic sequences have had an enormous impact on our understanding of biology. The expectation is that biological network data will have a similar impact. However, progress is hindered by a lack of sophisticated graph theoretic tools that will mine these large networked datasets.
In recent breakthrough work at the boundary of computer science and biology supported by my USA NSF CAREER award, I developed sensitive network analysis, comparison and embedding tools which demonstrated that protein-protein interaction networks of eukaryotes are best modeled by geometric graphs. Also, they established phenotypically validated, unprecedented link between network topology and biological function and disease. Now I propose to substantially extend these preliminary results and design sensitive and robust network alignment methods that will lead to uncovering unknown biology and evolutionary relationships. The potential ground-breaking impact of such network alignment tools could be parallel to the impact the BLAST family of sequence alignment tools that have revolutionized our understanding of biological systems and therapeutics. Furthermore, I propose to develop additional sophisticated graph theoretic techniques to mine network data and hence complement biological information that can be extracted from sequence. I propose to exploit these new techniques for biological applications in collaboration with experimentalists at Imperial College London: 1. aligning biological networks of species whose genomes are closely related, but that have very different phenotypes, in order to uncover systems-level factors that contribute to pronounced differences; 2. compare and contrast stress response pathways and metabolic pathways in bacteria in a unified systems-level framework and exploit the findings for: (a) bioengineering of micro-organisms for industrial applications (production of bio-fuels, bioremediation, production of biopolymers); (b) biomedical applications.
Max ERC Funding
1 638 175 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym Boom & Bust Cycles
Project Boom and Bust Cycles in Asset Prices: Real Implications and Monetary Policy Options
Researcher (PI) Klaus Adam
Host Institution (HI) UNIVERSITAET MANNHEIM
Call Details Starting Grant (StG), SH1, ERC-2011-StG_20101124
Summary I seek increasing our understanding of the origin of asset price booms and bust cycles and propose constructing structural dynamic equilibrium models that allow formalizing their interaction with the dynamics of consumption, hours worked, the current account, stock market trading activity, and monetary policy. For this purpose I propose developing macroeconomic models that relax the assumption of common knowledge of beliefs and preferences, incorporating instead subjective beliefs and learning about market behavior. These features allow for sustained deviations of asset prices from fundamentals in a setting where all agents behave individually rational.
The first research project derives the derivative price implications of asset price models with learning agents and determines the limits to arbitrage required so that learning models are consistent with the existence of only weak incentives for improving forecasts and beliefs. The second project introduces housing, collateral constraints and open economy features into existing asset pricing models under learning to explain a range of cross-sectional facts about the behavior of the current account that have been observed in the recent housing boom and bust cycle. The third project constructs quantitatively plausible macro asset pricing models that can explain the dynamics of consumption and hours worked jointly with the occurrence of asset price boom and busts cycles. The forth project develops a set of monetary policy models allowing to study the interaction between monetary policies, the real economy and asset prices, and determines how monetary policy should optimally react to asset price movements. The last project explains the aggregate trading patterns on stock exchanges over boom and bust cycles and improves our understanding of the forces supporting the large cross-sectional heterogeneity in return expectations revealed in survey data.
Summary
I seek increasing our understanding of the origin of asset price booms and bust cycles and propose constructing structural dynamic equilibrium models that allow formalizing their interaction with the dynamics of consumption, hours worked, the current account, stock market trading activity, and monetary policy. For this purpose I propose developing macroeconomic models that relax the assumption of common knowledge of beliefs and preferences, incorporating instead subjective beliefs and learning about market behavior. These features allow for sustained deviations of asset prices from fundamentals in a setting where all agents behave individually rational.
The first research project derives the derivative price implications of asset price models with learning agents and determines the limits to arbitrage required so that learning models are consistent with the existence of only weak incentives for improving forecasts and beliefs. The second project introduces housing, collateral constraints and open economy features into existing asset pricing models under learning to explain a range of cross-sectional facts about the behavior of the current account that have been observed in the recent housing boom and bust cycle. The third project constructs quantitatively plausible macro asset pricing models that can explain the dynamics of consumption and hours worked jointly with the occurrence of asset price boom and busts cycles. The forth project develops a set of monetary policy models allowing to study the interaction between monetary policies, the real economy and asset prices, and determines how monetary policy should optimally react to asset price movements. The last project explains the aggregate trading patterns on stock exchanges over boom and bust cycles and improves our understanding of the forces supporting the large cross-sectional heterogeneity in return expectations revealed in survey data.
Max ERC Funding
769 440 €
Duration
Start date: 2011-09-01, End date: 2017-04-30
Project acronym BRiCPT
Project Basic Research in Cryptographic Protocol Theory
Researcher (PI) Jesper Buus Nielsen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary In cryptographic protocol theory, we consider a situation where a number of entities want to solve some problem over a computer network. Each entity has some secret data it does not want the other entities to learn, yet, they all want to learn something about the common set of data. In an electronic election, they want to know the number of yes-votes without revealing who voted what. For instance, in an electronic auction, they want to find the winner without leaking the bids of the losers.
A main focus of the project is to develop new techniques for solving such protocol problems. We are in particular interested in techniques which can automatically construct a protocol solving a problem given only a description of what the problem is. My focus will be theoretical basic research, but I believe that advancing the theory of secure protocol compilers will have an immense impact on the practice of developing secure protocols for practice.
When one develops complex protocols, it is important to be able to verify their correctness before they are deployed, in particular so, when the purpose of the protocols is to protect information. If and when an error is found and corrected, the sensitive data will possibly already be compromised. Therefore, cryptographic protocol theory develops models of what it means for a protocol to be secure, and techniques for analyzing whether a given protocol is secure or not.
A main focuses of the project is to develop better security models, as existing security models either suffer from the problem that it is possible to prove some protocols secure which are not secure in practice, or they suffer from the problem that it is impossible to prove security of some protocol which are believed to be secure in practice. My focus will again be on theoretical basic research, but I believe that better security models are important for advancing a practice where protocols are verified as secure before deployed.
Summary
In cryptographic protocol theory, we consider a situation where a number of entities want to solve some problem over a computer network. Each entity has some secret data it does not want the other entities to learn, yet, they all want to learn something about the common set of data. In an electronic election, they want to know the number of yes-votes without revealing who voted what. For instance, in an electronic auction, they want to find the winner without leaking the bids of the losers.
A main focus of the project is to develop new techniques for solving such protocol problems. We are in particular interested in techniques which can automatically construct a protocol solving a problem given only a description of what the problem is. My focus will be theoretical basic research, but I believe that advancing the theory of secure protocol compilers will have an immense impact on the practice of developing secure protocols for practice.
When one develops complex protocols, it is important to be able to verify their correctness before they are deployed, in particular so, when the purpose of the protocols is to protect information. If and when an error is found and corrected, the sensitive data will possibly already be compromised. Therefore, cryptographic protocol theory develops models of what it means for a protocol to be secure, and techniques for analyzing whether a given protocol is secure or not.
A main focuses of the project is to develop better security models, as existing security models either suffer from the problem that it is possible to prove some protocols secure which are not secure in practice, or they suffer from the problem that it is impossible to prove security of some protocol which are believed to be secure in practice. My focus will again be on theoretical basic research, but I believe that better security models are important for advancing a practice where protocols are verified as secure before deployed.
Max ERC Funding
1 171 019 €
Duration
Start date: 2011-12-01, End date: 2016-11-30