Project acronym CANCER SIGNALOSOMES
Project Spatially and temporally regulated membrane complexes in cancer cell invasion and cytokinesis
Researcher (PI) Johanna Ivaska
Host Institution (HI) TEKNOLOGIAN TUTKIMUSKESKUS VTT
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Cancer progression, characterized by uncontrolled proliferation and motility of cells, is a complex and deadly process. Integrins, a major cell surface adhesion receptor family, are transmembrane proteins known to regulate cell behaviour by transducing extracellular signals to cytoplasmic protein complexes. We and others have shown that recruitment of specific protein complexes by the cytoplasmic domains of integrins is important in tumorigenesis. Here our aim is to study three interrelated processes in cancer progression which involve integrin signalling, but which have not been elucidated earlier at all. 1) Integrins in cell division (cytokinesis). Since coordinated action of the cytoskeleton and membranes is needed both for cell division and motility, shared integrin functions can regulate both events. 2) Dynamic integrin signalosomes at the leading edge of invading cells. Spatially and temporally regulated, integrin-protein complexes at the front of infiltrating cells are likely to dictate the movement of cancer cells in tissues. 3) Transmembrane segments of integrins as scaffolds for integrin signalling. In addition to cytosolic proteins, integrins most likely interact with proteins within the membrane resulting into new signalling modalities. In this proposal we will use innovative, modern and even unconventional techniques (such as RNAi and live-cell arrays detecting integrin traffic, cell motility and multiplication, laser-microdissection, proteomics and bacterial-two-hybrid screens) to unravel these new integrin functions, for which we have preliminary evidence. Each project will give fundamentally novel mechanistic insight into the role of integrins in cancer. Moreover, these interdisciplinary new openings will increase our understanding in cancer progression in general and will open new possibilities for therapeutic intervention targeting both cancer proliferation and dissemination in the body.
Summary
Cancer progression, characterized by uncontrolled proliferation and motility of cells, is a complex and deadly process. Integrins, a major cell surface adhesion receptor family, are transmembrane proteins known to regulate cell behaviour by transducing extracellular signals to cytoplasmic protein complexes. We and others have shown that recruitment of specific protein complexes by the cytoplasmic domains of integrins is important in tumorigenesis. Here our aim is to study three interrelated processes in cancer progression which involve integrin signalling, but which have not been elucidated earlier at all. 1) Integrins in cell division (cytokinesis). Since coordinated action of the cytoskeleton and membranes is needed both for cell division and motility, shared integrin functions can regulate both events. 2) Dynamic integrin signalosomes at the leading edge of invading cells. Spatially and temporally regulated, integrin-protein complexes at the front of infiltrating cells are likely to dictate the movement of cancer cells in tissues. 3) Transmembrane segments of integrins as scaffolds for integrin signalling. In addition to cytosolic proteins, integrins most likely interact with proteins within the membrane resulting into new signalling modalities. In this proposal we will use innovative, modern and even unconventional techniques (such as RNAi and live-cell arrays detecting integrin traffic, cell motility and multiplication, laser-microdissection, proteomics and bacterial-two-hybrid screens) to unravel these new integrin functions, for which we have preliminary evidence. Each project will give fundamentally novel mechanistic insight into the role of integrins in cancer. Moreover, these interdisciplinary new openings will increase our understanding in cancer progression in general and will open new possibilities for therapeutic intervention targeting both cancer proliferation and dissemination in the body.
Max ERC Funding
1 529 369 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym COALA
Project Comprehensive molecular characterization of secondary organic aerosol formation in the atmosphere
Researcher (PI) Mikael Ehn
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Key words: Atmospheric secondary organic aerosol, chemical ionization mass spectrometry
The increase in anthropogenic atmospheric aerosol since the industrial revolution has considerably mitigated the global warming caused by concurrent anthropogenic greenhouse gas emissions. However, the uncertainty in the magnitude of the aerosol climate influence is larger than that of any other man-made climate-perturbing component.
Secondary organic aerosol (SOA) is one of the most prominent aerosol types, yet a detailed mechanistic understanding of its formation process is still lacking. We recently presented the ground-breaking discovery of a new important compound group in our publication in Nature: a prompt and abundant source of extremely low-volatility organic compounds (ELVOC), able to explain the majority of the SOA formed from important atmospheric precursors.
Quantifying the atmospheric role of ELVOCs requires further focused studies and I will start a research group with the main task of providing a comprehensive, quantitative and mechanistic understanding of the formation and evolution of SOA. Our recent discovery of an important missing component of SOA highlights the need for comprehensive chemical characterization of both the gas and particle phase composition.
This project will use state-of-the-art chemical ionization mass spectrometry (CIMS), which was critical also in the detection of the ELVOCs. We will extend the applicability of CIMS techniques and conduct innovative experiments in both laboratory and field settings using a novel suite of instrumentation to achieve the goals set out in this project.
We will provide unprecedented insights into the compounds and mechanisms producing SOA, helping to decrease the uncertainties in assessing the magnitude of aerosol effects on climate. Anthropogenic SOA contributes strongly to air quality deterioration as well and therefore our results will find direct applicability also in this extremely important field.
Summary
Key words: Atmospheric secondary organic aerosol, chemical ionization mass spectrometry
The increase in anthropogenic atmospheric aerosol since the industrial revolution has considerably mitigated the global warming caused by concurrent anthropogenic greenhouse gas emissions. However, the uncertainty in the magnitude of the aerosol climate influence is larger than that of any other man-made climate-perturbing component.
Secondary organic aerosol (SOA) is one of the most prominent aerosol types, yet a detailed mechanistic understanding of its formation process is still lacking. We recently presented the ground-breaking discovery of a new important compound group in our publication in Nature: a prompt and abundant source of extremely low-volatility organic compounds (ELVOC), able to explain the majority of the SOA formed from important atmospheric precursors.
Quantifying the atmospheric role of ELVOCs requires further focused studies and I will start a research group with the main task of providing a comprehensive, quantitative and mechanistic understanding of the formation and evolution of SOA. Our recent discovery of an important missing component of SOA highlights the need for comprehensive chemical characterization of both the gas and particle phase composition.
This project will use state-of-the-art chemical ionization mass spectrometry (CIMS), which was critical also in the detection of the ELVOCs. We will extend the applicability of CIMS techniques and conduct innovative experiments in both laboratory and field settings using a novel suite of instrumentation to achieve the goals set out in this project.
We will provide unprecedented insights into the compounds and mechanisms producing SOA, helping to decrease the uncertainties in assessing the magnitude of aerosol effects on climate. Anthropogenic SOA contributes strongly to air quality deterioration as well and therefore our results will find direct applicability also in this extremely important field.
Max ERC Funding
1 892 221 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym GASPARCON
Project Molecular steps of gas-to-particle conversion: From oxidation to precursors, clusters and secondary aerosol particles.
Researcher (PI) Mikko SIPILÄ
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2016-STG
Summary Atmospheric aerosol particles impact Earth’s climate, by directly scattering sunlight and indirectly by affecting cloud properties. The largest uncertainties in climate change projections are associated with the atmospheric aerosol system that has been altered by anthropogenic activities. A major source of that uncertainty involves the formation of secondary particles and cloud condensation nuclei from natural and anthropogenic emissions of volatile compounds. This research challenge persists despite significant efforts within recent decades.
I will build a research group that aims to resolve the atmospheric oxidation processes that convert volatile trace gases to particle precursor vapours, clusters and new aerosol particles. We will create novel measurement techniques and utilize the tremendous potential of mass spectrometry for detection of i) particle precursor vapours ii) oxidants, both conventional but also recently discovered stabilized Criegee intermediates, and, most importantly, iii) newly formed clusters. These methods and instrumentation will be applied for resolving the initial steps of new particle formation on molecular level from oxidation to clusters and stable aerosol particles. To reach these goals, targeted laboratory and field experiments together with long term field measurements will be performed employing the state-of-the-art instrumentation developed.
Principal outcomes of this project include i) new experimental methods and techniques vital for atmospheric research and a deep understanding of ii) oxidation pathways producing aerosol particle precursors, iii) the initial molecular steps of new particle formation and iv) mechanisms of growth of freshly formed clusters toward larger sizes, particularly in the crucial size range of a few nanometers. The conceptual understanding obtained during this project will open multiple new research horizons from oxidation chemistry to Earth system modeling.
Summary
Atmospheric aerosol particles impact Earth’s climate, by directly scattering sunlight and indirectly by affecting cloud properties. The largest uncertainties in climate change projections are associated with the atmospheric aerosol system that has been altered by anthropogenic activities. A major source of that uncertainty involves the formation of secondary particles and cloud condensation nuclei from natural and anthropogenic emissions of volatile compounds. This research challenge persists despite significant efforts within recent decades.
I will build a research group that aims to resolve the atmospheric oxidation processes that convert volatile trace gases to particle precursor vapours, clusters and new aerosol particles. We will create novel measurement techniques and utilize the tremendous potential of mass spectrometry for detection of i) particle precursor vapours ii) oxidants, both conventional but also recently discovered stabilized Criegee intermediates, and, most importantly, iii) newly formed clusters. These methods and instrumentation will be applied for resolving the initial steps of new particle formation on molecular level from oxidation to clusters and stable aerosol particles. To reach these goals, targeted laboratory and field experiments together with long term field measurements will be performed employing the state-of-the-art instrumentation developed.
Principal outcomes of this project include i) new experimental methods and techniques vital for atmospheric research and a deep understanding of ii) oxidation pathways producing aerosol particle precursors, iii) the initial molecular steps of new particle formation and iv) mechanisms of growth of freshly formed clusters toward larger sizes, particularly in the crucial size range of a few nanometers. The conceptual understanding obtained during this project will open multiple new research horizons from oxidation chemistry to Earth system modeling.
Max ERC Funding
1 953 790 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym ISOBOREAL
Project Towards Understanding the Impact of Climate Change on Eurasian Boreal Forests: a Novel Stable Isotope Approach
Researcher (PI) Katja Teresa RINNE-GARMSTON
Host Institution (HI) LUONNONVARAKESKUS
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary The vast boreal forests play a critical role in the carbon cycle. As a consequence of increasing temperature and atmospheric CO2, forest growth and subsequently carbon sequestration may be strongly affected. It is thus crucial to understand and predict the consequences of climate change on these ecosystems. Stable isotope analysis of tree rings represents a versatile archive where the effects of environmental changes are recorded. The main goal of the project is to obtain a better understanding of δ13C and δ18O in tree rings that can be used to infer the response of forests to climate change. The goal is achieved by a detailed analysis of the incorporation and fractionation of isotopes in trees using four novel methods: (1) We will measure compound-specific δ13C and δ18O of leaf sugars and (2) combine these with intra-annual δ13C and δ18O analysis of tree rings. The approaches are enabled by methodological developments made by me and ISOBOREAL collaborators (Rinne et al. 2012, Lehmann et al. 2016, Loader et al. in prep.). Our aim is to determine δ13C and δ18O dynamics of individual sugars in response to climatic and physiological factors, and to define how these signals are altered before being stored in tree rings. The improved mechanistic understanding will be applied on tree ring isotope chronologies to infer the response of the studied forests to climate change. (3) The fact that δ18O in tree rings is a mixture of source and leaf water signals is a major problem for its application on climate studies. To solve this we aim to separate the two signals using position-specific δ18O analysis on tree ring cellulose for the first time, which we will achieve by developing novel methods. (4) We will for the first time link the climate signal both in leaf sugars and annual rings with measured ecosystem exchange of greenhouse gases CO2 and H2O using eddy-covariance techniques.
Summary
The vast boreal forests play a critical role in the carbon cycle. As a consequence of increasing temperature and atmospheric CO2, forest growth and subsequently carbon sequestration may be strongly affected. It is thus crucial to understand and predict the consequences of climate change on these ecosystems. Stable isotope analysis of tree rings represents a versatile archive where the effects of environmental changes are recorded. The main goal of the project is to obtain a better understanding of δ13C and δ18O in tree rings that can be used to infer the response of forests to climate change. The goal is achieved by a detailed analysis of the incorporation and fractionation of isotopes in trees using four novel methods: (1) We will measure compound-specific δ13C and δ18O of leaf sugars and (2) combine these with intra-annual δ13C and δ18O analysis of tree rings. The approaches are enabled by methodological developments made by me and ISOBOREAL collaborators (Rinne et al. 2012, Lehmann et al. 2016, Loader et al. in prep.). Our aim is to determine δ13C and δ18O dynamics of individual sugars in response to climatic and physiological factors, and to define how these signals are altered before being stored in tree rings. The improved mechanistic understanding will be applied on tree ring isotope chronologies to infer the response of the studied forests to climate change. (3) The fact that δ18O in tree rings is a mixture of source and leaf water signals is a major problem for its application on climate studies. To solve this we aim to separate the two signals using position-specific δ18O analysis on tree ring cellulose for the first time, which we will achieve by developing novel methods. (4) We will for the first time link the climate signal both in leaf sugars and annual rings with measured ecosystem exchange of greenhouse gases CO2 and H2O using eddy-covariance techniques.
Max ERC Funding
1 814 610 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym MEMETRE
Project From processes to modelling of methane emissions from trees
Researcher (PI) Mari PIHLATIE
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary Atmospheric concentration of the strong greenhouse gas methane (CH4) is rising with an increased annual growth rate. Biosphere has an important role in the global CH4 budget, but high uncertainties remain in the strength of its different sink and source components. Among the natural sources, the contribution of vegetation to the global CH4 budget is the least well understood. Role of trees to the CH4 budget of forest ecosystems has long been overlooked due to the perception that trees do not play a role in the CH4 dynamics. Methanogenic Archaea were long considered as the sole CH4 producing organisms, while new findings of aerobic CH4 production in terrestrial vegetation and in fungi show our incomplete understanding of the CH4 cycling processes. Enclosure measurements from trees reveal that trees can emit CH4 and may substantially contribute to the net CH4 exchange of forests.
The main aim of MEMETRE project is to raise the process-based understanding of CH4 exchange in boreal and temperate forests to the level where we can construct a sound process model for the soil-tree-atmosphere CH4 exchange. We will achieve this by novel laboratory and field experiment focusing on newly identified processes, quantifying CH4 fluxes, seasonal and daily variability and drivers of CH4 at leaf-level, tree and ecosystem level. We use novel CH4 flux measurement techniques to identify the roles of fungal and methanogenic production and transport mechanisms to the CH4 emission from trees, and we synthesize the experimental work to build a process model including CH4 exchange processes within trees and the soil, transport of CH4 between the soil and the trees, and transport of CH4 within the trees. The project will revolutionize our understanding of CH4 flux dynamics in forest ecosystems. It will significantly narrow down the high uncertainties in boreal and temperate forests for their contribution to the global CH4 budget.
Summary
Atmospheric concentration of the strong greenhouse gas methane (CH4) is rising with an increased annual growth rate. Biosphere has an important role in the global CH4 budget, but high uncertainties remain in the strength of its different sink and source components. Among the natural sources, the contribution of vegetation to the global CH4 budget is the least well understood. Role of trees to the CH4 budget of forest ecosystems has long been overlooked due to the perception that trees do not play a role in the CH4 dynamics. Methanogenic Archaea were long considered as the sole CH4 producing organisms, while new findings of aerobic CH4 production in terrestrial vegetation and in fungi show our incomplete understanding of the CH4 cycling processes. Enclosure measurements from trees reveal that trees can emit CH4 and may substantially contribute to the net CH4 exchange of forests.
The main aim of MEMETRE project is to raise the process-based understanding of CH4 exchange in boreal and temperate forests to the level where we can construct a sound process model for the soil-tree-atmosphere CH4 exchange. We will achieve this by novel laboratory and field experiment focusing on newly identified processes, quantifying CH4 fluxes, seasonal and daily variability and drivers of CH4 at leaf-level, tree and ecosystem level. We use novel CH4 flux measurement techniques to identify the roles of fungal and methanogenic production and transport mechanisms to the CH4 emission from trees, and we synthesize the experimental work to build a process model including CH4 exchange processes within trees and the soil, transport of CH4 between the soil and the trees, and transport of CH4 within the trees. The project will revolutionize our understanding of CH4 flux dynamics in forest ecosystems. It will significantly narrow down the high uncertainties in boreal and temperate forests for their contribution to the global CH4 budget.
Max ERC Funding
1 908 652 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym MOCAPAF
Project Role of Molecular Clusters in Atmospheric Particle Formation
Researcher (PI) Hanna Vehkamäki
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Climate change is currently one of the central scientific issues in the world, and the ability to reliably forecast climate is crucial for making political decisions that affect the lives of billions of people. Aerosols remain the dominant uncertainty in predicting radiative forcing and future climate change, and also have adverse effects on human health and visibility. One of the least-well understood aerosol-related processes is nucleation: the formation of new particles from condensable vapours. While nucleation is related primarily to neutral clusters, state-of-the-art experimental methods measure only charged clusters.
The main scientific objectives of this project are 1) to understand the chemical composition of charged and especially neutral atmospheric clusters from molecular to multi-nanometre scale, and explain the mechanism by which they nucleate, and 2) to direct current intense instrument development and provide theoretical tools to maximize the information on neutral clusters that can be obtained from experimental results on charged clusters.
Our scientific plan consists of a multilevel computational effort to provide formation rates and properties of atmospheric clusters and particles to aerosol dynamic and climate modellers. To capture the properties of the smallest clusters, we need to perform quantum chemical calculations, combined with simulations on cluster formation kinetics. Unfortunately, these methods are computationally far too demanding to describe the entire nucleation process. Thus, we will feed quantum chemical results to classical thermodynamic models, the results of which in turn must be parameterized for efficient use in larger-scale models.
Summary
Climate change is currently one of the central scientific issues in the world, and the ability to reliably forecast climate is crucial for making political decisions that affect the lives of billions of people. Aerosols remain the dominant uncertainty in predicting radiative forcing and future climate change, and also have adverse effects on human health and visibility. One of the least-well understood aerosol-related processes is nucleation: the formation of new particles from condensable vapours. While nucleation is related primarily to neutral clusters, state-of-the-art experimental methods measure only charged clusters.
The main scientific objectives of this project are 1) to understand the chemical composition of charged and especially neutral atmospheric clusters from molecular to multi-nanometre scale, and explain the mechanism by which they nucleate, and 2) to direct current intense instrument development and provide theoretical tools to maximize the information on neutral clusters that can be obtained from experimental results on charged clusters.
Our scientific plan consists of a multilevel computational effort to provide formation rates and properties of atmospheric clusters and particles to aerosol dynamic and climate modellers. To capture the properties of the smallest clusters, we need to perform quantum chemical calculations, combined with simulations on cluster formation kinetics. Unfortunately, these methods are computationally far too demanding to describe the entire nucleation process. Thus, we will feed quantum chemical results to classical thermodynamic models, the results of which in turn must be parameterized for efficient use in larger-scale models.
Max ERC Funding
1 476 418 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym NUCLEARACTIN
Project Actin as the Master Organizer of Nuclear Structure and Function
Researcher (PI) Maria Kristina Vartiainen
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), LS1, ERC-2012-StG_20111109
Summary Unlike previously thought the nucleus is a highly compartmentalized organelle. Both the genome and processes associated with it show non-random distribution within the nucleus. This compartmentalization has a fundamental impact on nuclear processes. However, the mechanisms driving this organization are poorly understood. I hypothesize that actin plays a key role in this process. Nevertheless, the true potential of nuclear actin has not been fully appreciated, due to two fundamental open questions in this field, namely 1) what is the biological significance of nuclear actin and 2) what is the molecular mechanism by which actin operates in the nucleus? I intend to address these key questions by manipulating actin specifically in the nucleus, and by identifying nuclear actin binding partners, respectively. My lab has recently identified the nuclear import mechanism for actin, which offers us a unique tool to manipulate nuclear actin. We will therefore create cell lines with decreased/increased nuclear actin, and analyze the consequences by using cell biological and gene expression tools, combined with deep sequencing. This will disclose the genes that depend on actin for their expression, and reveal the biological significance of nuclear actin in organizing the general nuclear landscape. To unravel the mechanisms by which actin functions in the nucleus, we will implement a novel multi-readout, fluorescence microscopy screen to identify nuclear actin binding proteins, which will be analyzed by different biochemical methods. This approach will reveal how actin is connected to nuclear machineries, and what biochemical features of actin are required to power the essential nuclear processes. These techniques will significantly broaden our understanding on the nuclear functions of actin, and thus likely reveal molecular mechanisms that regulate nuclear organization, which are highly relevant to basic biological processes, such as cell differentiation and epigenetics.
Summary
Unlike previously thought the nucleus is a highly compartmentalized organelle. Both the genome and processes associated with it show non-random distribution within the nucleus. This compartmentalization has a fundamental impact on nuclear processes. However, the mechanisms driving this organization are poorly understood. I hypothesize that actin plays a key role in this process. Nevertheless, the true potential of nuclear actin has not been fully appreciated, due to two fundamental open questions in this field, namely 1) what is the biological significance of nuclear actin and 2) what is the molecular mechanism by which actin operates in the nucleus? I intend to address these key questions by manipulating actin specifically in the nucleus, and by identifying nuclear actin binding partners, respectively. My lab has recently identified the nuclear import mechanism for actin, which offers us a unique tool to manipulate nuclear actin. We will therefore create cell lines with decreased/increased nuclear actin, and analyze the consequences by using cell biological and gene expression tools, combined with deep sequencing. This will disclose the genes that depend on actin for their expression, and reveal the biological significance of nuclear actin in organizing the general nuclear landscape. To unravel the mechanisms by which actin functions in the nucleus, we will implement a novel multi-readout, fluorescence microscopy screen to identify nuclear actin binding proteins, which will be analyzed by different biochemical methods. This approach will reveal how actin is connected to nuclear machineries, and what biochemical features of actin are required to power the essential nuclear processes. These techniques will significantly broaden our understanding on the nuclear functions of actin, and thus likely reveal molecular mechanisms that regulate nuclear organization, which are highly relevant to basic biological processes, such as cell differentiation and epigenetics.
Max ERC Funding
1 491 484 €
Duration
Start date: 2012-11-01, End date: 2018-08-31
Project acronym QAPPA
Project Quantifying the atmospheric implications of the solid phase and phase transitions of secondary organic aerosols
Researcher (PI) Annele Kirsi Katriina Virtanen
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary In our ground-breaking paper published in Nature we showed, that the atmospheric Secondary Organic Aerosol (SOA) particles formed in boreal forest can be amorphous solid in their physical phase. Our result has already re-directed the SOA related research. In the several follow-up studies, it has been shown that SOA particles generated in the laboratory chamber from different pre-cursors and in various conditions are amorphous solid.
My ultimate task is to quantify the atmospheric implications of the phase state of SOA particles. Solid phase of the particles implies surface-confined chemistry and kinetic vapour uptake limitations because mass transport (diffusion) of reactants within the aerosol particle bulk becomes the rate limiting step. The diffusivity of the molecules in particle bulk depends on the viscosity of the SOA material. Hence, it would be a scientific break-through, if the kinetic limitations or the viscosity of the SOA particles could be estimated since these factors are a key to quantify the atmospheric implications of amorphous solid phase of the particles.
To achieve the final goal of the research, measurement method development is needed as currently there is no method to quantify the viscosity of the SOA particles, or to study the kinetic limitations and surface-confined chemistry caused by the solid phase of nanometer sized SOA particles. The methodology that will be developed in the proposed study, aims ambitiously to quantify the essential factors affecting the atmospheric processes of the SOA particles. The developed methodology will be use in extensive measurement campaigns performed both in SOA chambers and in atmospheric measurement sites in Europe and in US maximising the global significance of the results gained in this study.
The project enables two scientific breakthroughs: 1) the new methodology applicable in the field of nanoparticle research and 2) the quantified atmospheric implications of the amorphous solid phase of particles.
Summary
In our ground-breaking paper published in Nature we showed, that the atmospheric Secondary Organic Aerosol (SOA) particles formed in boreal forest can be amorphous solid in their physical phase. Our result has already re-directed the SOA related research. In the several follow-up studies, it has been shown that SOA particles generated in the laboratory chamber from different pre-cursors and in various conditions are amorphous solid.
My ultimate task is to quantify the atmospheric implications of the phase state of SOA particles. Solid phase of the particles implies surface-confined chemistry and kinetic vapour uptake limitations because mass transport (diffusion) of reactants within the aerosol particle bulk becomes the rate limiting step. The diffusivity of the molecules in particle bulk depends on the viscosity of the SOA material. Hence, it would be a scientific break-through, if the kinetic limitations or the viscosity of the SOA particles could be estimated since these factors are a key to quantify the atmospheric implications of amorphous solid phase of the particles.
To achieve the final goal of the research, measurement method development is needed as currently there is no method to quantify the viscosity of the SOA particles, or to study the kinetic limitations and surface-confined chemistry caused by the solid phase of nanometer sized SOA particles. The methodology that will be developed in the proposed study, aims ambitiously to quantify the essential factors affecting the atmospheric processes of the SOA particles. The developed methodology will be use in extensive measurement campaigns performed both in SOA chambers and in atmospheric measurement sites in Europe and in US maximising the global significance of the results gained in this study.
The project enables two scientific breakthroughs: 1) the new methodology applicable in the field of nanoparticle research and 2) the quantified atmospheric implications of the amorphous solid phase of particles.
Max ERC Funding
1 499 612 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym SHESTRUCT
Project Understanding the structure and stability of heavy and superheavy elements
Researcher (PI) Paul Thomas Greenlees
Host Institution (HI) JYVASKYLAN YLIOPISTO
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary "The aim of the project is to further our understanding of the structure and stability of atomic nuclei at the extreme upper end of the chart of the nuclides. One of the major goals of contemporary Nuclear Physics experiments is to locate and chart the fabled superheavy element ""Island of Stability"". Experiments which aim to directly produce the heaviest elements may provide only a limited number of observables, such as decay modes or half-lives. Detailed Nuclear Structure investigations provide extensive data which can be used as a stringent test of modern self-consistent theories. Such theories require input from the study of nuclei with extreme proton-to-neutron ratios. The upper part of the chart of the nuclides is one region in which this data is much sought after. The project will employ state-of-the-art spectrometers at the Accelerator Laboratory of the University of Jyväskylä, Finland (JYFL) to acquire such data. The spectrometers are part of a multi-national collaboration of European institutes. Results obtained in the course of the project will have a direct impact on current nuclear structure theories. The unique nature of the facilities at JYFL means that it will be impossible to obtain data of comparable quality elsewhere in the world. The project should yield a large number of publications and result in the training of several Ph.D students. The students will benefit from the fact that the Accelerator Laboratory is part of a large and well-respected University."
Summary
"The aim of the project is to further our understanding of the structure and stability of atomic nuclei at the extreme upper end of the chart of the nuclides. One of the major goals of contemporary Nuclear Physics experiments is to locate and chart the fabled superheavy element ""Island of Stability"". Experiments which aim to directly produce the heaviest elements may provide only a limited number of observables, such as decay modes or half-lives. Detailed Nuclear Structure investigations provide extensive data which can be used as a stringent test of modern self-consistent theories. Such theories require input from the study of nuclei with extreme proton-to-neutron ratios. The upper part of the chart of the nuclides is one region in which this data is much sought after. The project will employ state-of-the-art spectrometers at the Accelerator Laboratory of the University of Jyväskylä, Finland (JYFL) to acquire such data. The spectrometers are part of a multi-national collaboration of European institutes. Results obtained in the course of the project will have a direct impact on current nuclear structure theories. The unique nature of the facilities at JYFL means that it will be impossible to obtain data of comparable quality elsewhere in the world. The project should yield a large number of publications and result in the training of several Ph.D students. The students will benefit from the fact that the Accelerator Laboratory is part of a large and well-respected University."
Max ERC Funding
1 249 608 €
Duration
Start date: 2008-09-01, End date: 2014-02-28
Project acronym SURFACE
Project The unexplored world of aerosol surfaces and their impacts.
Researcher (PI) Nonne PRISLE
Host Institution (HI) OULUN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2016-STG
Summary We are changing the composition of Earth’s atmosphere, with profound consequences for the environment and our wellbeing. Tiny aerosol particles are globally responsible for much of the health effects and mortality related to air pollution and play key roles in regulating Earth’s climate via their critical influence on both radiation balance and cloud formation. Every single cloud droplet has been nucleated on the surface of an aerosol particle. Aerosols and droplets provide the media for condensed-phase chemistry in the atmosphere, but large gaps remain in our understanding of their formation, transformations, and climate interactions. Surface properties may play crucial roles in these processes, but currently next to nothing is known about the surfaces of atmospheric aerosols and cloud droplets and their impacts are almost entirely unconstrained. My recent work strongly suggests that such surfaces are significantly different from their associated bulk material and that these unique properties can impact aerosol processes all the way to the global scale. Very few surface-specific properties are currently considered when evaluating aerosol effects on atmospheric chemistry and global climate. Novel developments of cutting-edge computational and experimental methods, in particular synchrotron-based photoelectron spectroscopy, now for the first time makes direct molecular-level characterizations of atmospheric surfaces feasible. This project will demonstrate and quantify potential surface impacts in the atmosphere, by first directly characterizing realistic atmospheric surfaces, and then trace fingerprints of specific surface properties in a hierarchy of experimental and modelled aerosol processes and atmospheric effects. Successful demonstrations of unique aerosol surface fingerprints will constitute truly novel insights into a currently uncharted area of the atmospheric system and identify an entirely new frontier in aerosol research and atmospheric science.
Summary
We are changing the composition of Earth’s atmosphere, with profound consequences for the environment and our wellbeing. Tiny aerosol particles are globally responsible for much of the health effects and mortality related to air pollution and play key roles in regulating Earth’s climate via their critical influence on both radiation balance and cloud formation. Every single cloud droplet has been nucleated on the surface of an aerosol particle. Aerosols and droplets provide the media for condensed-phase chemistry in the atmosphere, but large gaps remain in our understanding of their formation, transformations, and climate interactions. Surface properties may play crucial roles in these processes, but currently next to nothing is known about the surfaces of atmospheric aerosols and cloud droplets and their impacts are almost entirely unconstrained. My recent work strongly suggests that such surfaces are significantly different from their associated bulk material and that these unique properties can impact aerosol processes all the way to the global scale. Very few surface-specific properties are currently considered when evaluating aerosol effects on atmospheric chemistry and global climate. Novel developments of cutting-edge computational and experimental methods, in particular synchrotron-based photoelectron spectroscopy, now for the first time makes direct molecular-level characterizations of atmospheric surfaces feasible. This project will demonstrate and quantify potential surface impacts in the atmosphere, by first directly characterizing realistic atmospheric surfaces, and then trace fingerprints of specific surface properties in a hierarchy of experimental and modelled aerosol processes and atmospheric effects. Successful demonstrations of unique aerosol surface fingerprints will constitute truly novel insights into a currently uncharted area of the atmospheric system and identify an entirely new frontier in aerosol research and atmospheric science.
Max ERC Funding
1 499 626 €
Duration
Start date: 2017-03-01, End date: 2022-02-28