Project acronym 2D-CHEM
Project Two-Dimensional Chemistry towards New Graphene Derivatives
Researcher (PI) Michal Otyepka
Host Institution (HI) UNIVERZITA PALACKEHO V OLOMOUCI
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Summary
The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Max ERC Funding
1 831 103 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym ALK7
Project Metabolic control by the TGF-² superfamily receptor ALK7: A novel regulator of insulin secretion, fat accumulation and energy balance
Researcher (PI) Carlos Ibanez
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary The aim of this proposal is to understand a novel regulatory signaling network controlling insulin secretion, fat accumulation and energy balance centered around selected components of the TGF-² signaling system, including Activins A and B, GDF-3 and their receptors ALK7 and ALK4. Recent results from my laboratory indicate that these molecules are part of paracrine signaling networks that control important functions in pancreatic islets and adipose tissue through feedback inhibition and feed-forward regulation. These discoveries have open up a new research area with important implications for the understanding of metabolic networks and the treatment of human metabolic syndromes, such as diabetes and obesity.
To drive progress in this new research area beyond the state-of-the-art it is proposed to: i) Elucidate the molecular mechanisms by which Activins regulate Ca2+ influx and insulin secretion in pancreatic ²-cells; ii) Elucidate the molecular mechanisms underlying the effects of GDF-3 on adipocyte metabolism, turnover and fat accumulation; iii) Investigate the interplay between insulin levels and fat deposition in the development of insulin resistance using mutant mice lacking Activin B and GDF-3; iv) Investigate tissue-specific contributions of ALK7 and ALK4 signaling to metabolic control by generating and characterizing conditional mutant mice; v) Investigate the effects of specific and reversible inactivation of ALK7 and ALK4 on metabolic regulation using a novel chemical-genetic approach based on analog-sensitive alleles.
This is research of a high-gain/high-risk nature. It is posed to open unique opportunities for further exploration of complex metabolic networks. The development of drugs capable of enhancing insulin secretion, limiting fat accumulation and ameliorating diet-induced obesity by targeting components of the ALK7 signaling network will find a strong rationale in the results of the proposed work.
Summary
The aim of this proposal is to understand a novel regulatory signaling network controlling insulin secretion, fat accumulation and energy balance centered around selected components of the TGF-² signaling system, including Activins A and B, GDF-3 and their receptors ALK7 and ALK4. Recent results from my laboratory indicate that these molecules are part of paracrine signaling networks that control important functions in pancreatic islets and adipose tissue through feedback inhibition and feed-forward regulation. These discoveries have open up a new research area with important implications for the understanding of metabolic networks and the treatment of human metabolic syndromes, such as diabetes and obesity.
To drive progress in this new research area beyond the state-of-the-art it is proposed to: i) Elucidate the molecular mechanisms by which Activins regulate Ca2+ influx and insulin secretion in pancreatic ²-cells; ii) Elucidate the molecular mechanisms underlying the effects of GDF-3 on adipocyte metabolism, turnover and fat accumulation; iii) Investigate the interplay between insulin levels and fat deposition in the development of insulin resistance using mutant mice lacking Activin B and GDF-3; iv) Investigate tissue-specific contributions of ALK7 and ALK4 signaling to metabolic control by generating and characterizing conditional mutant mice; v) Investigate the effects of specific and reversible inactivation of ALK7 and ALK4 on metabolic regulation using a novel chemical-genetic approach based on analog-sensitive alleles.
This is research of a high-gain/high-risk nature. It is posed to open unique opportunities for further exploration of complex metabolic networks. The development of drugs capable of enhancing insulin secretion, limiting fat accumulation and ameliorating diet-induced obesity by targeting components of the ALK7 signaling network will find a strong rationale in the results of the proposed work.
Max ERC Funding
2 462 154 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym ALPAM
Project Atomic-Level Physics of Advanced Materials
Researcher (PI) Börje Johansson
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Advanced Grant (AdG), PE5, ERC-2008-AdG
Summary Most of the technological materials have been developed by very expensive and cumbersome trial and error methods. On the other hand, computer based theoretical design of advanced materials is an area where rapid and extensive developments are taking place. Within my group new theoretical tools have now been established which are extremely well suited to the study of complex materials. In this approach basic quantum mechanical theories are used to describe fundamental properties of alloys and compounds. The utilization of such calculations to investigate possible optimizations of certain key properties represents a major departure from the traditional design philosophy. The purpose of my project is to build up a new competence in the field of computer-aided simulations of advanced materials. The main goal will be to achieve a deep understanding of the behaviour of complex metallic systems under equilibrium and non-equilibrium conditions at the atomic level by studying their electronic, magnetic and atomic structure using the most modern and advanced computational methods. This will enable us to establish a set of materials parameters and composition-structure-property relations that are needed for materials optimization.
The research will be focused on fundamental technological properties related to defects in advanced metallic alloys (high-performance steels, superalloys, and refractory, energy related and geochemical materials) and alloy phases (solid solutions, intermetallic compounds), which will be studied by means of parameter free atomistic simulations combined with continuum modelling. As a first example, we will study the Fe-Cr system, which is of great interest to industry as well as in connection to nuclear waste. The Fe-Cr-Ni system will form another large group of materials under the aegis of this project. Special emphasis will also be placed on those Fe-alloys which exist under extreme conditions and are possible candidates for the Earth core.
Summary
Most of the technological materials have been developed by very expensive and cumbersome trial and error methods. On the other hand, computer based theoretical design of advanced materials is an area where rapid and extensive developments are taking place. Within my group new theoretical tools have now been established which are extremely well suited to the study of complex materials. In this approach basic quantum mechanical theories are used to describe fundamental properties of alloys and compounds. The utilization of such calculations to investigate possible optimizations of certain key properties represents a major departure from the traditional design philosophy. The purpose of my project is to build up a new competence in the field of computer-aided simulations of advanced materials. The main goal will be to achieve a deep understanding of the behaviour of complex metallic systems under equilibrium and non-equilibrium conditions at the atomic level by studying their electronic, magnetic and atomic structure using the most modern and advanced computational methods. This will enable us to establish a set of materials parameters and composition-structure-property relations that are needed for materials optimization.
The research will be focused on fundamental technological properties related to defects in advanced metallic alloys (high-performance steels, superalloys, and refractory, energy related and geochemical materials) and alloy phases (solid solutions, intermetallic compounds), which will be studied by means of parameter free atomistic simulations combined with continuum modelling. As a first example, we will study the Fe-Cr system, which is of great interest to industry as well as in connection to nuclear waste. The Fe-Cr-Ni system will form another large group of materials under the aegis of this project. Special emphasis will also be placed on those Fe-alloys which exist under extreme conditions and are possible candidates for the Earth core.
Max ERC Funding
2 000 000 €
Duration
Start date: 2009-03-01, End date: 2014-02-28
Project acronym ANGIOFAT
Project New mechanisms of angiogenesis modulators in switching between white and brown adipose tissues
Researcher (PI) Yihai Cao
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS4, ERC-2009-AdG
Summary Understanding the molecular mechanisms underlying adipose blood vessel growth or regression opens new fundamentally insight into novel therapeutic options for the treatment of obesity and its related metabolic diseases such as type 2 diabetes and cancer. Unlike any other tissues in the body, the adipose tissue constantly experiences expansion and shrinkage throughout the adult life. Adipocytes in the white adipose tissue have the ability to switch into metabolically highly active brown-like adipocytes. Brown adipose tissue (BAT) contains significantly higher numbers of microvessels than white adipose tissue (WAT) in order to adopt the high rates of metabolism. Thus, an angiogenic phenotype has to be switched on during the transition from WAT into BAT. We have found that acclimation of mice in cold could induce transition from inguinal and epidedymal WAT into BAT by upregulation of angiogenic factor expression and down-regulations of angiogenesis inhibitors (Xue et al, Cell Metabolism, 2009). The transition from WAT into BAT is dependent on vascular endothelial growth factor (VEGF) that primarily targets on vascular endothelial cells via a tissue hypoxia-independent mechanism. VEGF blockade significantly alters adipose tissue metabolism. In another genetic model, we show similar findings that angiogenesis is crucial to mediate the transition from WAT into BAT (Xue et al, PNAS, 2008). Here we propose that the vascular tone determines the metabolic switch between WAT and BAT. Characterization of these novel angiogenic pathways may reveal new mechanisms underlying development of obesity- and metabolism-related disease complications and may define novel therapeutic targets. Thus, the benefit of this research proposal is enormous and is aimed to treat the most common and highly risk human health conditions in the modern time.
Summary
Understanding the molecular mechanisms underlying adipose blood vessel growth or regression opens new fundamentally insight into novel therapeutic options for the treatment of obesity and its related metabolic diseases such as type 2 diabetes and cancer. Unlike any other tissues in the body, the adipose tissue constantly experiences expansion and shrinkage throughout the adult life. Adipocytes in the white adipose tissue have the ability to switch into metabolically highly active brown-like adipocytes. Brown adipose tissue (BAT) contains significantly higher numbers of microvessels than white adipose tissue (WAT) in order to adopt the high rates of metabolism. Thus, an angiogenic phenotype has to be switched on during the transition from WAT into BAT. We have found that acclimation of mice in cold could induce transition from inguinal and epidedymal WAT into BAT by upregulation of angiogenic factor expression and down-regulations of angiogenesis inhibitors (Xue et al, Cell Metabolism, 2009). The transition from WAT into BAT is dependent on vascular endothelial growth factor (VEGF) that primarily targets on vascular endothelial cells via a tissue hypoxia-independent mechanism. VEGF blockade significantly alters adipose tissue metabolism. In another genetic model, we show similar findings that angiogenesis is crucial to mediate the transition from WAT into BAT (Xue et al, PNAS, 2008). Here we propose that the vascular tone determines the metabolic switch between WAT and BAT. Characterization of these novel angiogenic pathways may reveal new mechanisms underlying development of obesity- and metabolism-related disease complications and may define novel therapeutic targets. Thus, the benefit of this research proposal is enormous and is aimed to treat the most common and highly risk human health conditions in the modern time.
Max ERC Funding
2 411 547 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym BBBARRIER
Project Mechanisms of regulation of the blood-brain barrier; towards opening and closing the barrier on demand
Researcher (PI) Björn Christer Betsholtz
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Advanced Grant (AdG), LS4, ERC-2011-ADG_20110310
Summary In the bone-enclosed CNS, increased vascular permeability may cause life-threatening tissue swelling, and/or ischemia and inflammation which compromise tissue repair after trauma or stroke. The brain vasculature possesses several unique features collectively named the blood-brain barrier (BBB) in which passive permeability is almost completely abolished and replaced by a complex of specific transport mechanisms. The BBB is necessary to uphold the specific milieu necessary for neuronal function. Whereas breakdown of the BBB is part of many CNS diseases, including stroke, neuroinflammation, trauma and neurodegenerative disorders, its molecular mechanisms and consequences are unclear and debated. Conversely, the intact BBB is a huge obstacle for drug delivery to the brain. Research on the BBB therefore has two seemingly opposing aims: 1) to seal a damaged BBB and protect the brain from toxic blood products, and 2) to open the BBB “on demand” for drug delivery. A major problem in the BBB field has been the lack of in vivo animal models for molecular and functional studies. So far, available in vitro models are not recapitulating the in vivo BBB. Our recent work on mouse models lacking pericytes, a BBB-associated cell type, demonstrates a specific role for pericytes in the development and regulation of the mammalian BBB. These animal models are the first ones showing a general and significant BBB impairment in adulthood, and as such they provide a unique opportunity to address molecular mechanisms of BBB disruption in disease and in drug transport across the BBB. Importantly, the new models and tools that we have developed allow us to search for relevant druggable mechanisms and molecular targets in the BBB. The long-term goals of this proposal are to develop molecular strategies and tools to open and close the BBB “on demand” for drug delivery to the CNS, and to explore the importance and mechanisms of BBB dysfunction in neurodegenerative diseases and stroke.
Summary
In the bone-enclosed CNS, increased vascular permeability may cause life-threatening tissue swelling, and/or ischemia and inflammation which compromise tissue repair after trauma or stroke. The brain vasculature possesses several unique features collectively named the blood-brain barrier (BBB) in which passive permeability is almost completely abolished and replaced by a complex of specific transport mechanisms. The BBB is necessary to uphold the specific milieu necessary for neuronal function. Whereas breakdown of the BBB is part of many CNS diseases, including stroke, neuroinflammation, trauma and neurodegenerative disorders, its molecular mechanisms and consequences are unclear and debated. Conversely, the intact BBB is a huge obstacle for drug delivery to the brain. Research on the BBB therefore has two seemingly opposing aims: 1) to seal a damaged BBB and protect the brain from toxic blood products, and 2) to open the BBB “on demand” for drug delivery. A major problem in the BBB field has been the lack of in vivo animal models for molecular and functional studies. So far, available in vitro models are not recapitulating the in vivo BBB. Our recent work on mouse models lacking pericytes, a BBB-associated cell type, demonstrates a specific role for pericytes in the development and regulation of the mammalian BBB. These animal models are the first ones showing a general and significant BBB impairment in adulthood, and as such they provide a unique opportunity to address molecular mechanisms of BBB disruption in disease and in drug transport across the BBB. Importantly, the new models and tools that we have developed allow us to search for relevant druggable mechanisms and molecular targets in the BBB. The long-term goals of this proposal are to develop molecular strategies and tools to open and close the BBB “on demand” for drug delivery to the CNS, and to explore the importance and mechanisms of BBB dysfunction in neurodegenerative diseases and stroke.
Max ERC Funding
2 499 427 €
Duration
Start date: 2012-08-01, End date: 2017-07-31
Project acronym BETAIMAGE
Project An in vivo imaging approach to understand pancreatic beta-cell signal-transduction
Researcher (PI) Per-Olof Berggren
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS4, ERC-2013-ADG
Summary The challenge in cell physiology/pathology today is to translate in vitro findings to the living organism. We have developed a unique approach where signal-transduction can be investigated in vivo non-invasively, longitudinally at single cell resolution, using the anterior chamber of the eye as a natural body window for imaging. We will use this approach to understand how the universally important and highly complex signal Ca2+ is regulated in the pancreatic beta-cell, while localized in the vascularized and innervated islet of Langerhans, and how that affects the insulin secretory machinery in vivo. Engrafted islets in the eye take on identical innervation- and vascularization patterns as those in the pancreas and are proficient in regulating glucose homeostasis in the animal. Since the pancreatic islet constitutes a micro-organ, this imaging approach offers a seminal model system to understand Ca2+ signaling in individual cells at the organ level in real life. We will test the hypothesis that the Ca2+-signal has a key role in pancreatic beta-cell function and survival in vivo and that perturbation in the Ca2+-signal serves as a common denominator for beta-cell pathology associated with impaired glucose homeostasis and diabetes. Of special interest is how innervation impacts on Ca2+-dynamics and the integration of autocrine, paracrine and endocrine signals in fine-tuning the Ca2+-signal with regard to beta-cell function and survival. We aim to define key defects in the machinery regulating Ca2+-dynamics in association with the autoimmune reaction, inflammation and obesity eventually resulting in diabetes. Our imaging platform will be applied to clarify in vivo regulation of Ca2+-dynamics in both healthy and diabetic human beta-cells. To define novel drugable targets for treatment of diabetes, it is crucial to identify similarities and differences in the molecular machinery regulating the in vivo Ca2+-signal in the human and in the rodent beta-cell.
Summary
The challenge in cell physiology/pathology today is to translate in vitro findings to the living organism. We have developed a unique approach where signal-transduction can be investigated in vivo non-invasively, longitudinally at single cell resolution, using the anterior chamber of the eye as a natural body window for imaging. We will use this approach to understand how the universally important and highly complex signal Ca2+ is regulated in the pancreatic beta-cell, while localized in the vascularized and innervated islet of Langerhans, and how that affects the insulin secretory machinery in vivo. Engrafted islets in the eye take on identical innervation- and vascularization patterns as those in the pancreas and are proficient in regulating glucose homeostasis in the animal. Since the pancreatic islet constitutes a micro-organ, this imaging approach offers a seminal model system to understand Ca2+ signaling in individual cells at the organ level in real life. We will test the hypothesis that the Ca2+-signal has a key role in pancreatic beta-cell function and survival in vivo and that perturbation in the Ca2+-signal serves as a common denominator for beta-cell pathology associated with impaired glucose homeostasis and diabetes. Of special interest is how innervation impacts on Ca2+-dynamics and the integration of autocrine, paracrine and endocrine signals in fine-tuning the Ca2+-signal with regard to beta-cell function and survival. We aim to define key defects in the machinery regulating Ca2+-dynamics in association with the autoimmune reaction, inflammation and obesity eventually resulting in diabetes. Our imaging platform will be applied to clarify in vivo regulation of Ca2+-dynamics in both healthy and diabetic human beta-cells. To define novel drugable targets for treatment of diabetes, it is crucial to identify similarities and differences in the molecular machinery regulating the in vivo Ca2+-signal in the human and in the rodent beta-cell.
Max ERC Funding
2 499 590 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym BODY-OWNERSHIP
Project Neural mechanisms of body ownership and the projection of ownership onto artificial bodies
Researcher (PI) H. Henrik Ehrsson
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary How do we recognize that our limbs are part of our own body, and why do we feel that one’s self is located inside the body? These fundamental questions have been discussed in theology, philosophy and psychology for millennia. The aim of my ground-breaking research programme is to identify the neuronal mechanisms that produce the sense of ownership of the body, and the processes responsible for the feeling that the self is located inside the physical body. To solve these questions I will adopt an inter-disciplinary approach using state-of-the-art methods from the fields of imaging neuroscience, experimental psychology, computer science and robotics. My first hypothesis is that the mechanism for body ownership is the integration of information from different sensory modalities (vision, touch and muscle sense) in multi-sensory brain areas (ventral premotor and intraparietal cortex). My second hypothesis is that the sense of where you are located in the environment is mediated by allocentric spatial representations in medial temporal lobes. To test this, I will use perceptual illusions and virtual-reality techniques that allow me to manipulate body ownership and the perceived location of the self, in conjunction with non-invasive recordings of brain activity in healthy humans. Functional magnetic resonance imaging and electroencephalography will be used to identify the neuronal correlates of ownership and ‘in-body experiences’, while transcranial magnetic stimulation will be used to examine the causal relationship between neural activity and ownership. It is no overstatement to say that my pioneering work could define a new sub-field in cognitive neuroscience dealing with how the brain represents the self. These basic scientific discoveries will be used in new frontier applications. For example, the development of a prosthetic limb that feels just like a real limb, and a method of controlling humanoid robots by the illusion of ‘becoming the robot’.
Summary
How do we recognize that our limbs are part of our own body, and why do we feel that one’s self is located inside the body? These fundamental questions have been discussed in theology, philosophy and psychology for millennia. The aim of my ground-breaking research programme is to identify the neuronal mechanisms that produce the sense of ownership of the body, and the processes responsible for the feeling that the self is located inside the physical body. To solve these questions I will adopt an inter-disciplinary approach using state-of-the-art methods from the fields of imaging neuroscience, experimental psychology, computer science and robotics. My first hypothesis is that the mechanism for body ownership is the integration of information from different sensory modalities (vision, touch and muscle sense) in multi-sensory brain areas (ventral premotor and intraparietal cortex). My second hypothesis is that the sense of where you are located in the environment is mediated by allocentric spatial representations in medial temporal lobes. To test this, I will use perceptual illusions and virtual-reality techniques that allow me to manipulate body ownership and the perceived location of the self, in conjunction with non-invasive recordings of brain activity in healthy humans. Functional magnetic resonance imaging and electroencephalography will be used to identify the neuronal correlates of ownership and ‘in-body experiences’, while transcranial magnetic stimulation will be used to examine the causal relationship between neural activity and ownership. It is no overstatement to say that my pioneering work could define a new sub-field in cognitive neuroscience dealing with how the brain represents the self. These basic scientific discoveries will be used in new frontier applications. For example, the development of a prosthetic limb that feels just like a real limb, and a method of controlling humanoid robots by the illusion of ‘becoming the robot’.
Max ERC Funding
909 850 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym CHROMTISOL
Project Towards New Generation of Solid-State Photovoltaic Cell: Harvesting Nanotubular Titania and Hybrid Chromophores
Researcher (PI) Jan Macak
Host Institution (HI) UNIVERZITA PARDUBICE
Call Details Starting Grant (StG), PE5, ERC-2014-STG
Summary In photovoltaics (PVs), a significant scientific and technological attention has been given to technologies that have the potential to boost the solar-to-electricity conversion efficiency and to power recently unpowerable devices and objects. The research of various solar cell concepts for diversified applications (building integrated PVs, powering mobile devices) has recently resulted in many innovations. However, designs and concepts of solar cells fulfilling stringent criteria of efficiency, stability, low prize, flexibility, transparency, tunable cell size, esthetics, are still lacking.
Herein, the research focus is given to a new physical concept of a solar cell that explores extremely promising materials, yet unseen and unexplored in a joint device, whose combination may solve traditional solar cells drawbacks (carrier recombination, narrow light absorption).
It features a high surface area interface (higher than any other known PVs concept) based on ordered anodic TiO2 nanotube arrays, homogenously infilled with nanolayers of high absorption coefficient crystalline chalcogenide or organic chromophores using different techniques, yet unexplored for this purpose. After addition of supporting constituents, a solid-state solar cell with an extremely large incident area for the solar light absorption and optimized electron pathways will be created. The CHROMTISOL solar cell concept bears a large potential to outperform existing thin film photovoltaic technologies and concepts due to unique combination of materials and their complementary properties.
The project aims towards important scientific findings in highly interdisciplinary fields. Being extremely challenging and in the same time risky, it is based on feasible ideas and steps, that will result in exciting achievements.
The principal investigator, Jan Macak, has an outstanding research profile in the field of self-organized anodic nanostructures and is an experienced researcher in the photovoltaic field
Summary
In photovoltaics (PVs), a significant scientific and technological attention has been given to technologies that have the potential to boost the solar-to-electricity conversion efficiency and to power recently unpowerable devices and objects. The research of various solar cell concepts for diversified applications (building integrated PVs, powering mobile devices) has recently resulted in many innovations. However, designs and concepts of solar cells fulfilling stringent criteria of efficiency, stability, low prize, flexibility, transparency, tunable cell size, esthetics, are still lacking.
Herein, the research focus is given to a new physical concept of a solar cell that explores extremely promising materials, yet unseen and unexplored in a joint device, whose combination may solve traditional solar cells drawbacks (carrier recombination, narrow light absorption).
It features a high surface area interface (higher than any other known PVs concept) based on ordered anodic TiO2 nanotube arrays, homogenously infilled with nanolayers of high absorption coefficient crystalline chalcogenide or organic chromophores using different techniques, yet unexplored for this purpose. After addition of supporting constituents, a solid-state solar cell with an extremely large incident area for the solar light absorption and optimized electron pathways will be created. The CHROMTISOL solar cell concept bears a large potential to outperform existing thin film photovoltaic technologies and concepts due to unique combination of materials and their complementary properties.
The project aims towards important scientific findings in highly interdisciplinary fields. Being extremely challenging and in the same time risky, it is based on feasible ideas and steps, that will result in exciting achievements.
The principal investigator, Jan Macak, has an outstanding research profile in the field of self-organized anodic nanostructures and is an experienced researcher in the photovoltaic field
Max ERC Funding
1 644 380 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym DeFiNER
Project Nucleotide Excision Repair: Decoding its Functional Role in Mammals
Researcher (PI) Georgios Garinis
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Genome maintenance, chromatin remodelling and transcription are tightly linked biological processes that are currently poorly understood and vastly unexplored. Nucleotide excision repair (NER) is a major DNA repair pathway that mammalian cells employ to maintain their genome intact and faithfully transmit it into their progeny. Besides cancer and aging, however, defects in NER give rise to developmental disorders whose clinical heterogeneity and varying severity can only insufficiently be explained by the DNA repair defect. Recent work reveals that NER factors play a role, in addition to DNA repair, in transcription and the three-dimensional organization of our genome. Indeed, NER factors are now known to function in the regulation of gene expression, the transcriptional reprogramming of pluripotent stem cells and the fine-tuning of growth hormones during mammalian development. In this regard, the non-random organization of our genome, chromatin and the process of transcription itself are expected to play paramount roles in how NER factors coordinate, prioritize and execute their distinct tasks during development and disease progression. At present, however, no solid evidence exists as to how NER is functionally involved in such complex processes, what are the NER-associated protein complexes and underlying gene networks or how NER factors operate within the complex chromatin architecture. This is primarily due to our difficulties in dissecting the diverse functional contributions of NER proteins in an intact organism. Here, we propose to use a unique series of knock-in, transgenic and NER progeroid mice to decode the functional role of NER in mammals, thus paving the way for understanding how genome maintenance pathways are connected to developmental defects and disease mechanisms in vivo.
Summary
Genome maintenance, chromatin remodelling and transcription are tightly linked biological processes that are currently poorly understood and vastly unexplored. Nucleotide excision repair (NER) is a major DNA repair pathway that mammalian cells employ to maintain their genome intact and faithfully transmit it into their progeny. Besides cancer and aging, however, defects in NER give rise to developmental disorders whose clinical heterogeneity and varying severity can only insufficiently be explained by the DNA repair defect. Recent work reveals that NER factors play a role, in addition to DNA repair, in transcription and the three-dimensional organization of our genome. Indeed, NER factors are now known to function in the regulation of gene expression, the transcriptional reprogramming of pluripotent stem cells and the fine-tuning of growth hormones during mammalian development. In this regard, the non-random organization of our genome, chromatin and the process of transcription itself are expected to play paramount roles in how NER factors coordinate, prioritize and execute their distinct tasks during development and disease progression. At present, however, no solid evidence exists as to how NER is functionally involved in such complex processes, what are the NER-associated protein complexes and underlying gene networks or how NER factors operate within the complex chromatin architecture. This is primarily due to our difficulties in dissecting the diverse functional contributions of NER proteins in an intact organism. Here, we propose to use a unique series of knock-in, transgenic and NER progeroid mice to decode the functional role of NER in mammals, thus paving the way for understanding how genome maintenance pathways are connected to developmental defects and disease mechanisms in vivo.
Max ERC Funding
1 995 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym DIPOLAR ROTOR ARRAY
Project Regular Arrays of Artificial Surface-Mounted Dipolar Molecular Rotors
Researcher (PI) Josef Michl
Host Institution (HI) USTAV ORGANICKE CHEMIE A BIOCHEMIE, AV CR, V.V.I.
Call Details Advanced Grant (AdG), PE5, ERC-2008-AdG
Summary We propose a feasibility demonstration of an unprecedented concept: preparation of regular two-dimensional arrays of artificial surface-mounted dipolar molecular rotors and control of their coherent motion by the application of an outside electric field. The proposal involves a highly interdisciplinary endeavor, which requires experience in synthesis (preparation of molecular rotors), surface chemistry (assembly of rotors into arrays on surfaces), surface spectroscopy and scanning microscopy (characterization of rotor arrays on surfaces), and theory (modeling of rotor dynamics). The principal investigator is presently actively working and publishing in all of these subdisciplines.
Summary
We propose a feasibility demonstration of an unprecedented concept: preparation of regular two-dimensional arrays of artificial surface-mounted dipolar molecular rotors and control of their coherent motion by the application of an outside electric field. The proposal involves a highly interdisciplinary endeavor, which requires experience in synthesis (preparation of molecular rotors), surface chemistry (assembly of rotors into arrays on surfaces), surface spectroscopy and scanning microscopy (characterization of rotor arrays on surfaces), and theory (modeling of rotor dynamics). The principal investigator is presently actively working and publishing in all of these subdisciplines.
Max ERC Funding
2 457 600 €
Duration
Start date: 2009-02-01, End date: 2014-07-31