Project acronym AIDA
Project An Illumination of the Dark Ages: modeling reionization and interpreting observations
Researcher (PI) Andrei Albert Mesinger
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Call Details Starting Grant (StG), PE9, ERC-2014-STG
Summary "Understanding the dawn of the first galaxies and how their light permeated the early Universe is at the very frontier of modern astrophysical cosmology. Generous resources, including ambitions observational programs, are being devoted to studying these epochs of Cosmic Dawn (CD) and Reionization (EoR). In order to interpret these observations, we propose to build on our widely-used, semi-numeric simulation tool, 21cmFAST, and apply it to observations. Using sub-grid, semi-analytic models, we will incorporate additional physical processes governing the evolution of sources and sinks of ionizing photons. The resulting state-of-the-art simulations will be well poised to interpret topical observations of quasar spectra and the cosmic 21cm signal. They would be both physically-motivated and fast, allowing us to rapidly explore astrophysical parameter space. We will statistically quantify the resulting degeneracies and constraints, providing a robust answer to the question, ""What can we learn from EoR/CD observations?"" As an end goal, these investigations will help us understand when the first generations of galaxies formed, how they drove the EoR, and what are the associated large-scale observational signatures."
Summary
"Understanding the dawn of the first galaxies and how their light permeated the early Universe is at the very frontier of modern astrophysical cosmology. Generous resources, including ambitions observational programs, are being devoted to studying these epochs of Cosmic Dawn (CD) and Reionization (EoR). In order to interpret these observations, we propose to build on our widely-used, semi-numeric simulation tool, 21cmFAST, and apply it to observations. Using sub-grid, semi-analytic models, we will incorporate additional physical processes governing the evolution of sources and sinks of ionizing photons. The resulting state-of-the-art simulations will be well poised to interpret topical observations of quasar spectra and the cosmic 21cm signal. They would be both physically-motivated and fast, allowing us to rapidly explore astrophysical parameter space. We will statistically quantify the resulting degeneracies and constraints, providing a robust answer to the question, ""What can we learn from EoR/CD observations?"" As an end goal, these investigations will help us understand when the first generations of galaxies formed, how they drove the EoR, and what are the associated large-scale observational signatures."
Max ERC Funding
1 468 750 €
Duration
Start date: 2015-05-01, End date: 2021-01-31
Project acronym BIOSMA
Project Mathematics for Shape Memory Technologies in Biomechanics
Researcher (PI) Ulisse Stefanelli
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary Shape Memory Alloys (SMAs) are nowadays widely exploited for the realization of innovative devices and have a great impact on the development of a variety of biomedical applications ranging from orthodontic archwires to vascular stents. The design, realization, and optimization of such devices are quite demanding tasks. Mathematics is involved in this process as a major tool in order to let the modeling more accurate, the numerical simulations more reliable, and the design more effective. Many material properties of SMAs such as martensitic reorientation, training, and ferromagnetic behavior, are still to be properly and efficiently addressed. Therefore, new modeling ideas, along with original analytical and numerical techniques, are required. This project is aimed at addressing novel mathematical issues in order to move from experimental materials results toward the solution of real-scale biomechanical Engineering problems. The research focus will be multidisciplinary and include modeling, analytic, numerical, and computational issues. A progress in the macroscopic description of SMAs, the computational simulation of real-scale SMA devices, and the optimization of the production processes will contribute to advance in the direction of innovative applications.
Summary
Shape Memory Alloys (SMAs) are nowadays widely exploited for the realization of innovative devices and have a great impact on the development of a variety of biomedical applications ranging from orthodontic archwires to vascular stents. The design, realization, and optimization of such devices are quite demanding tasks. Mathematics is involved in this process as a major tool in order to let the modeling more accurate, the numerical simulations more reliable, and the design more effective. Many material properties of SMAs such as martensitic reorientation, training, and ferromagnetic behavior, are still to be properly and efficiently addressed. Therefore, new modeling ideas, along with original analytical and numerical techniques, are required. This project is aimed at addressing novel mathematical issues in order to move from experimental materials results toward the solution of real-scale biomechanical Engineering problems. The research focus will be multidisciplinary and include modeling, analytic, numerical, and computational issues. A progress in the macroscopic description of SMAs, the computational simulation of real-scale SMA devices, and the optimization of the production processes will contribute to advance in the direction of innovative applications.
Max ERC Funding
700 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym BISMUTH
Project Breaking Inversion Symmetry in Magnets: Understand via THeory
Researcher (PI) Silvia Picozzi
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary Multiferroics (i.e. materials where ferroelectricity and magnetism coexist) are presently drawing enormous interests, due to their technologically-relevant multifunctional character and to the astoundingly rich playground for fundamental condensed-matter physics they constitute. Here, we put forward several concepts on how to break inversion symmetry and achieve sizable ferroelectricity in collinear magnets; our approach is corroborated via first-principles calculations as tools to quantitatively estimate relevant ferroelectric and magnetic properties as well as to reveal ab-initio the main mechanisms behind the dipolar and magnetic orders. In closer detail, we focus on the interplay between ferroelectricity and electronic degrees of freedom in magnets, i.e. on those cases where spin- or orbital- or charge-ordering can be the driving force for a spontaneous polarization to develop. Antiferromagnetism will be considered as a primary mechanism for lifting inversion symmetry; however, the effects of charge disproportionation and orbital ordering will also be studied by examining a wide class of materials, including ortho-manganites with E-type spin-arrangement, non-E-type antiferromagnets, nickelates, etc. Finally, as an example of materials-design accessible to our ab-initio approach, we use “chemistry” to break inversion symmetry by artificially constructing an oxide superlattice and propose a way to switch, via an electric field, from antiferromagnetism to ferrimagnetism. To our knowledge, the link between electronic degrees of freedom and ferroelectricity in collinear magnets is an almost totally unexplored field by ab-initio methods; indeed, its clear understanding and optimization would lead to a scientific breakthrough in the multiferroics area. Technologically, it would pave the way to materials design of magnetic ferroelectrics with properties persisting above room temperature and, therefore, to a novel generation of electrically-controlled spintronic devices
Summary
Multiferroics (i.e. materials where ferroelectricity and magnetism coexist) are presently drawing enormous interests, due to their technologically-relevant multifunctional character and to the astoundingly rich playground for fundamental condensed-matter physics they constitute. Here, we put forward several concepts on how to break inversion symmetry and achieve sizable ferroelectricity in collinear magnets; our approach is corroborated via first-principles calculations as tools to quantitatively estimate relevant ferroelectric and magnetic properties as well as to reveal ab-initio the main mechanisms behind the dipolar and magnetic orders. In closer detail, we focus on the interplay between ferroelectricity and electronic degrees of freedom in magnets, i.e. on those cases where spin- or orbital- or charge-ordering can be the driving force for a spontaneous polarization to develop. Antiferromagnetism will be considered as a primary mechanism for lifting inversion symmetry; however, the effects of charge disproportionation and orbital ordering will also be studied by examining a wide class of materials, including ortho-manganites with E-type spin-arrangement, non-E-type antiferromagnets, nickelates, etc. Finally, as an example of materials-design accessible to our ab-initio approach, we use “chemistry” to break inversion symmetry by artificially constructing an oxide superlattice and propose a way to switch, via an electric field, from antiferromagnetism to ferrimagnetism. To our knowledge, the link between electronic degrees of freedom and ferroelectricity in collinear magnets is an almost totally unexplored field by ab-initio methods; indeed, its clear understanding and optimization would lead to a scientific breakthrough in the multiferroics area. Technologically, it would pave the way to materials design of magnetic ferroelectrics with properties persisting above room temperature and, therefore, to a novel generation of electrically-controlled spintronic devices
Max ERC Funding
684 000 €
Duration
Start date: 2008-05-01, End date: 2012-04-30
Project acronym BUCOPHSYS
Project Bottom-up hybrid control and planning synthesis with application to multi-robot multi-human coordination
Researcher (PI) DIMOS Dimarogonas
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE7, ERC-2014-STG
Summary Current control applications necessitate the treatment of systems with multiple interconnected components, rather than the traditional single component paradigm that has been studied extensively. The individual subsystems may need to fulfil different and possibly conflicting specifications in a real-time manner. At the same time, they may need to fulfill coupled constraints that are defined as relations between their states. Towards this end, the need for methods for decentralized control at the continuous level and planning at the task level becomes apparent. We aim here towards unification of these two complementary approaches. Existing solutions rely on a top down centralized approach. We instead consider here a decentralized, bottom-up solution to the problem. The approach relies on three layers of interaction. In the first layer, agents aim at coordinating in order to fulfil their coupled constraints with limited communication exchange of their state information and design of appropriate feedback controllers; in the second layer, agents coordinate in order to mutually satisfy their discrete tasks through exchange of the corresponding plans in the form of automata; in the third and most challenging layer, the communication exchange for coordination now includes both continuous state and discrete plan/abstraction information. The results will be demonstrated in a scenario involving multiple (possibly human) users and multiple robots.
The unification will yield a completely decentralized system, in which the bottom up approach to define tasks, the consideration of coupled constraints and their combination towards distributed hybrid control and planning in a coordinated fashion require for
new ways of thinking and approaches to analysis and constitute the proposal a beyond the SoA and groundbreaking approach to the fields of control and computer science.
Summary
Current control applications necessitate the treatment of systems with multiple interconnected components, rather than the traditional single component paradigm that has been studied extensively. The individual subsystems may need to fulfil different and possibly conflicting specifications in a real-time manner. At the same time, they may need to fulfill coupled constraints that are defined as relations between their states. Towards this end, the need for methods for decentralized control at the continuous level and planning at the task level becomes apparent. We aim here towards unification of these two complementary approaches. Existing solutions rely on a top down centralized approach. We instead consider here a decentralized, bottom-up solution to the problem. The approach relies on three layers of interaction. In the first layer, agents aim at coordinating in order to fulfil their coupled constraints with limited communication exchange of their state information and design of appropriate feedback controllers; in the second layer, agents coordinate in order to mutually satisfy their discrete tasks through exchange of the corresponding plans in the form of automata; in the third and most challenging layer, the communication exchange for coordination now includes both continuous state and discrete plan/abstraction information. The results will be demonstrated in a scenario involving multiple (possibly human) users and multiple robots.
The unification will yield a completely decentralized system, in which the bottom up approach to define tasks, the consideration of coupled constraints and their combination towards distributed hybrid control and planning in a coordinated fashion require for
new ways of thinking and approaches to analysis and constitute the proposal a beyond the SoA and groundbreaking approach to the fields of control and computer science.
Max ERC Funding
1 498 729 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym COMPLEXLIGHT
Project Light and complexity
Researcher (PI) Claudio Conti
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary The project is aimed at funding a multi-disciplinary laboratory on nonlinear optics and photonics in soft-colloidal materials and on “complex lightwave systems”. A team of talented young researchers, divided among experiments, theory, parallel computation and nano-fabrication is involved. The proposed research will foster several breakthrough discoveries from soft-matter to biophysics, from nonlinear and integrated optics to the science of complexity and cryptography. The underlying vision is driven by the physics of complex systems, those displaying a large number of thermodynamically equivalent states and emergent properties. There are 4 original and high-impact activities, which explore applicative potentialities: 1) sub-wavelength light filaments in soft- and bio-matter; 2) lasers in soft-matter and bio-tissues; 3) control of soft-matter lasers by light filaments; 4) complex lightwave systems, encryption by nano-structured disordered lasers. Activity 1 will lead to ultra-thin re-addressable light beams (sub-wavelength spatial solitons) propagating in soft- and bio-matter that can be used in laser-surgery, matter manipulation and able to guide high power laser pulses; activity 2 attains novel structural diagnostic techniques in bone tissue surpassing limits of nuclear magnetic resonance imaging, and assesses the field of lasers in soft-materials; activity 3 will demonstrate the control of self-organization processes in soft-matter by light filaments probed by laser emission; activity 4 is based on specific features mutuated from spin-glass theory, and will realize a novel cryptographic technique superior to chaotic systems in terms of security. Activity 1 and 2 are propaedeutic to the others. The team is composed by the Principal Investigator (P.I.), 4 post-doctoral researchers and 3 Ph.D. students. The budget will be used for paying the P.I., two post-doctoral positions, laser sources, high performance computing facilities, and instrumentation.
Summary
The project is aimed at funding a multi-disciplinary laboratory on nonlinear optics and photonics in soft-colloidal materials and on “complex lightwave systems”. A team of talented young researchers, divided among experiments, theory, parallel computation and nano-fabrication is involved. The proposed research will foster several breakthrough discoveries from soft-matter to biophysics, from nonlinear and integrated optics to the science of complexity and cryptography. The underlying vision is driven by the physics of complex systems, those displaying a large number of thermodynamically equivalent states and emergent properties. There are 4 original and high-impact activities, which explore applicative potentialities: 1) sub-wavelength light filaments in soft- and bio-matter; 2) lasers in soft-matter and bio-tissues; 3) control of soft-matter lasers by light filaments; 4) complex lightwave systems, encryption by nano-structured disordered lasers. Activity 1 will lead to ultra-thin re-addressable light beams (sub-wavelength spatial solitons) propagating in soft- and bio-matter that can be used in laser-surgery, matter manipulation and able to guide high power laser pulses; activity 2 attains novel structural diagnostic techniques in bone tissue surpassing limits of nuclear magnetic resonance imaging, and assesses the field of lasers in soft-materials; activity 3 will demonstrate the control of self-organization processes in soft-matter by light filaments probed by laser emission; activity 4 is based on specific features mutuated from spin-glass theory, and will realize a novel cryptographic technique superior to chaotic systems in terms of security. Activity 1 and 2 are propaedeutic to the others. The team is composed by the Principal Investigator (P.I.), 4 post-doctoral researchers and 3 Ph.D. students. The budget will be used for paying the P.I., two post-doctoral positions, laser sources, high performance computing facilities, and instrumentation.
Max ERC Funding
1 085 000 €
Duration
Start date: 2008-05-01, End date: 2013-04-30
Project acronym CurvedSusy
Project Dynamics of Supersymmetry in Curved Space
Researcher (PI) Guido Festuccia
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), PE2, ERC-2014-STG
Summary Quantum field theory provides a theoretical framework to explain quantitatively natural phenomena as diverse as the fluctuations in the cosmic microwave background, superconductivity, and elementary particle interactions in colliders. Even if we use quantum field theories in different settings, their structure and dynamics are still largely mysterious. Weakly coupled systems can be studied perturbatively, however many natural phenomena are characterized by strong self-interactions (e.g. high T superconductors, nuclear forces) and their analysis requires going beyond perturbation theory. Supersymmetric field theories are very interesting in this respect because they can be studied exactly even at strong coupling and their dynamics displays phenomena like confinement or the breaking of chiral symmetries that occur in nature and are very difficult to study analytically.
Recently it was realized that many interesting insights on the dynamics of supersymmetric field theories can be obtained by placing these theories in curved space preserving supersymmetry. These advances have opened new research avenues but also left many important questions unanswered. The aim of our research programme will be to clarify the dynamics of supersymmetric field theories in curved space and use this knowledge to establish new exact results for strongly coupled supersymmetric gauge theories. The novelty of our approach resides in the systematic use of the interplay between the physical properties of a supersymmetric theory and the geometrical properties of the space-time it lives in. The analytical results we will obtain, while derived for very symmetric theories, can be used as a guide in understanding the dynamics of many physical systems. Besides providing new tools to address the dynamics of quantum field theory at strong coupling this line of investigation could lead to new connections between Physics and Mathematics.
Summary
Quantum field theory provides a theoretical framework to explain quantitatively natural phenomena as diverse as the fluctuations in the cosmic microwave background, superconductivity, and elementary particle interactions in colliders. Even if we use quantum field theories in different settings, their structure and dynamics are still largely mysterious. Weakly coupled systems can be studied perturbatively, however many natural phenomena are characterized by strong self-interactions (e.g. high T superconductors, nuclear forces) and their analysis requires going beyond perturbation theory. Supersymmetric field theories are very interesting in this respect because they can be studied exactly even at strong coupling and their dynamics displays phenomena like confinement or the breaking of chiral symmetries that occur in nature and are very difficult to study analytically.
Recently it was realized that many interesting insights on the dynamics of supersymmetric field theories can be obtained by placing these theories in curved space preserving supersymmetry. These advances have opened new research avenues but also left many important questions unanswered. The aim of our research programme will be to clarify the dynamics of supersymmetric field theories in curved space and use this knowledge to establish new exact results for strongly coupled supersymmetric gauge theories. The novelty of our approach resides in the systematic use of the interplay between the physical properties of a supersymmetric theory and the geometrical properties of the space-time it lives in. The analytical results we will obtain, while derived for very symmetric theories, can be used as a guide in understanding the dynamics of many physical systems. Besides providing new tools to address the dynamics of quantum field theory at strong coupling this line of investigation could lead to new connections between Physics and Mathematics.
Max ERC Funding
1 145 879 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym DEDOM
Project Development of Density Functional Theory methods for Organic Metal Interaction
Researcher (PI) Fabio Della Sala
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary First principles Density-Functional Theory (DFT) methods have been widely applied for computing electronic and optical properties of different systems. Recently theoretical modeling of metal-organic interfaces received a much attention due to their importance in different nanoscience fields. However, common (i.e. local and semi-local) approximations to the exchange-correlation (XC) functional of DFT show several shortcomings in describing metal-organic energy-levels alignment and thus charge-transfer. Aim of the DEDOM (DEvelopment of Density functional theory methods for Organic Metal interaction) project is to elaborate new theoretical methods beyond the current state-of-the-art for the description of the electronic and optical properties of organic molecules linked or deposited on metal surfaces or metal nanoparticles. This task includes: i) the development of new and efficient XC functionals, based on optimized effective potential (OEP) and including exact-exchange and correlation from many-body theory, to obtain an accurate description of charge-transfer between organic molecules and metal surfaces; ii) the investigation of optical properties, including light-emission, of organic molecules on metal surfaces using Time-Dependent DFT; iii) the description of metals using Green’s functions and multi-scale approaches to investigate metal-induced modification of the optical properties of organic molecules, including fluorescence quenching or enhancement due to the coupling of electronic excitations to plasmons. The DEDOM project is theoretically and technically extremely challenging due to the use of unconventional orbital-dependent XC-functionals and it requires a strong interdisciplinary effort, joining solid-state physics, theoretical chemistry, electromagnetic engineering and implementation of advanced computational techniques. If successful, it will represent a major progress in the theoretical description of organic-metal interfaces.
Summary
First principles Density-Functional Theory (DFT) methods have been widely applied for computing electronic and optical properties of different systems. Recently theoretical modeling of metal-organic interfaces received a much attention due to their importance in different nanoscience fields. However, common (i.e. local and semi-local) approximations to the exchange-correlation (XC) functional of DFT show several shortcomings in describing metal-organic energy-levels alignment and thus charge-transfer. Aim of the DEDOM (DEvelopment of Density functional theory methods for Organic Metal interaction) project is to elaborate new theoretical methods beyond the current state-of-the-art for the description of the electronic and optical properties of organic molecules linked or deposited on metal surfaces or metal nanoparticles. This task includes: i) the development of new and efficient XC functionals, based on optimized effective potential (OEP) and including exact-exchange and correlation from many-body theory, to obtain an accurate description of charge-transfer between organic molecules and metal surfaces; ii) the investigation of optical properties, including light-emission, of organic molecules on metal surfaces using Time-Dependent DFT; iii) the description of metals using Green’s functions and multi-scale approaches to investigate metal-induced modification of the optical properties of organic molecules, including fluorescence quenching or enhancement due to the coupling of electronic excitations to plasmons. The DEDOM project is theoretically and technically extremely challenging due to the use of unconventional orbital-dependent XC-functionals and it requires a strong interdisciplinary effort, joining solid-state physics, theoretical chemistry, electromagnetic engineering and implementation of advanced computational techniques. If successful, it will represent a major progress in the theoretical description of organic-metal interfaces.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-07-01, End date: 2013-12-31
Project acronym ERIKLINDAHLERC2007
Project Multiscale and Distributed Computing Algorithms for Biomolecular Simulation and Efficient Free Energy Calculations
Researcher (PI) Erik Lindahl
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary The long-term goal of our research is to advance the state-of-the-art in molecular simulation algorithms by 4-5 orders of magnitude, particularly in the context of the GROMACS software we are developing. This is an immense challenge, but with huge potential rewards: it will be an amazing virtual microscope for basic chemistry, polymer and material science research; it could help us understand the molecular basis of diseases such as Creutzfeldt-Jacob, and it would enable rational design rather than random screening for future drugs. To realize it, we will focus on four critical topics: • ALGORITHMS FOR SIMULATION ON GRAPHICS AND OTHER STREAMING PROCESSORS: Graphics cards and the test Intel 80-core chip are not only the most powerful processors available, but this type of streaming architectures will power many supercomputers in 3-5 years, and it is thus critical that we design new “streamable” MD algorithms. • MULTISCALE MODELING: We will develop virtual-site-based methods to bridge atomic and mesoscopic dynamics, QM/MM, and mixed explicit/implicit solvent models with water layers around macromolecules. • MULTI-LEVEL PARALLEL & DISTRIBUTED SIMULATION: Distributed computing provides virtually infinite computer power, but has been limited to small systems. We will address this by combining SMP parallelization and Markov State Models that partition phase space into transition/local dynamics to enable distributed simulation of arbitrary systems. • EFFICIENT FREE ENERGY CALCULATIONS: We will design algorithms for multi-conformational parallel sampling, implement Bennett Acceptance Ratios in Gromacs, correction terms for PME lattice sums, and combine standard force fields with polarization/multipoles, e.g. Amoeba. We have a very strong track record of converting methodological advances into applications, and the results will have impact on a wide range of fields from biomolecules and polymer science through material simulations and nanotechnology.
Summary
The long-term goal of our research is to advance the state-of-the-art in molecular simulation algorithms by 4-5 orders of magnitude, particularly in the context of the GROMACS software we are developing. This is an immense challenge, but with huge potential rewards: it will be an amazing virtual microscope for basic chemistry, polymer and material science research; it could help us understand the molecular basis of diseases such as Creutzfeldt-Jacob, and it would enable rational design rather than random screening for future drugs. To realize it, we will focus on four critical topics: • ALGORITHMS FOR SIMULATION ON GRAPHICS AND OTHER STREAMING PROCESSORS: Graphics cards and the test Intel 80-core chip are not only the most powerful processors available, but this type of streaming architectures will power many supercomputers in 3-5 years, and it is thus critical that we design new “streamable” MD algorithms. • MULTISCALE MODELING: We will develop virtual-site-based methods to bridge atomic and mesoscopic dynamics, QM/MM, and mixed explicit/implicit solvent models with water layers around macromolecules. • MULTI-LEVEL PARALLEL & DISTRIBUTED SIMULATION: Distributed computing provides virtually infinite computer power, but has been limited to small systems. We will address this by combining SMP parallelization and Markov State Models that partition phase space into transition/local dynamics to enable distributed simulation of arbitrary systems. • EFFICIENT FREE ENERGY CALCULATIONS: We will design algorithms for multi-conformational parallel sampling, implement Bennett Acceptance Ratios in Gromacs, correction terms for PME lattice sums, and combine standard force fields with polarization/multipoles, e.g. Amoeba. We have a very strong track record of converting methodological advances into applications, and the results will have impact on a wide range of fields from biomolecules and polymer science through material simulations and nanotechnology.
Max ERC Funding
992 413 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym FEMTOSCOPY
Project Femtosecond Raman Spectroscopy: ultrafast transformations in physics, chemistry and biology
Researcher (PI) Tullio Scopigno
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary We propose the construction and development of a femtosecond broadband stimulated Raman setup to tackle ultra fast chemical, physical and biological processes taking advantage of the top-notch structural sensitivity inherent to the Raman process. The use of a pump-probe stimulated scheme will allow to overcome time-energy restrictions dictated by the uncertainty principle, enabling to reach the femtosecond timescale with energy resolutions which would pertain to the picosecond time domain in the Heisenberg sense. Protein dynamics span several orders of magnitude extending up to macroscopic timescales, the recipes to tailor properties of rubbers and polymers relevant for human timescales are covered by more than 500000 patents, rust reaction occurs over several days, and lethal brain strokes often lead to death within 24 hours on average. The lowest hierarchical level of such processes, however, is hidden in the very act of atomic motion and chemical binding such as the single bond dynamics in a peptide backbone, the monomer cross-linking elemental reactions, the energy flow and re-distribution in a hydrogen bond network, or the oxygen binding to heme proteins, all performing on the femtosecond stage. Mastering these processes is the essence of femtochemistry, born around the backbone of the femtosecond laser technology and boosted by scientific activity which led to the Nobel prize of Prof. A. Zewail in 1999. The new capabilities offered by femtosecond sources have often left behind in the race traditional spectroscopies, which hardly follow the growing emergence of new challenging problems in which the traditional distinction between biology, chemistry and physics is smeared out by the common ultra short timescale. The set up of a non conventional femtosecond Raman technique will be the initiating event for the establishment of a research group of interdisciplinary nature toiling over unsolved problems in which the ultrafast facet plays a key role.
Summary
We propose the construction and development of a femtosecond broadband stimulated Raman setup to tackle ultra fast chemical, physical and biological processes taking advantage of the top-notch structural sensitivity inherent to the Raman process. The use of a pump-probe stimulated scheme will allow to overcome time-energy restrictions dictated by the uncertainty principle, enabling to reach the femtosecond timescale with energy resolutions which would pertain to the picosecond time domain in the Heisenberg sense. Protein dynamics span several orders of magnitude extending up to macroscopic timescales, the recipes to tailor properties of rubbers and polymers relevant for human timescales are covered by more than 500000 patents, rust reaction occurs over several days, and lethal brain strokes often lead to death within 24 hours on average. The lowest hierarchical level of such processes, however, is hidden in the very act of atomic motion and chemical binding such as the single bond dynamics in a peptide backbone, the monomer cross-linking elemental reactions, the energy flow and re-distribution in a hydrogen bond network, or the oxygen binding to heme proteins, all performing on the femtosecond stage. Mastering these processes is the essence of femtochemistry, born around the backbone of the femtosecond laser technology and boosted by scientific activity which led to the Nobel prize of Prof. A. Zewail in 1999. The new capabilities offered by femtosecond sources have often left behind in the race traditional spectroscopies, which hardly follow the growing emergence of new challenging problems in which the traditional distinction between biology, chemistry and physics is smeared out by the common ultra short timescale. The set up of a non conventional femtosecond Raman technique will be the initiating event for the establishment of a research group of interdisciplinary nature toiling over unsolved problems in which the ultrafast facet plays a key role.
Max ERC Funding
1 544 400 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym GEOPDES
Project Innovative compatible discretization techniques for Partial Differential Equations
Researcher (PI) Annalisa Buffa
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary Partial Differential Equations (PDEs) are one of the most powerful mathematical modeling tool and their use spans from life science to engineering and physics. In abstract terms, PDEs describe the distribution of a field on a physical domain. The Finite Element Method (FEM) is by large the most popular technique for the computer-based simulation of PDEs and hinges on the assumption that the discretized domain and field are represented both by means of piecewise polynomials. Such an isoparametric feature is at the very core of FEM. However, CAD software, used in industry for geometric modeling, typically describes physical domains by means of Non-Uniform Rational B-Splines (NURBS) and the interface of CAD output with FEM calls for expensive re-meshing methods that result in approximate representation of domains. This project aims at developing isoparametric techniques based on NURBS for simulating PDEs arising in electromagnetics, fluid dynamics and elasticity. We will consider discretization schemes that are compatible in the sense that the discretized models embody conservation principles of the underlying physical phenomenon (e.g. charge in electromagnetism, mass and momentum in fluid motion and elasticity). The key benefits of NURBS-based methods are: exact representation of the physical domain, direct use of the CAD output, a substantial increase of the accuracy-to-computational-effort ratio. NURBS schemes start appearing in the Engineering literature and preliminary results show that they hold great promises. However, their understanding is still in infancy and sound mathematical groundings are crucial to quantitatively assess the performance of NURBS techniques and to design new effective computational schemes. Our research will combine competencies in different fields of mathematics besides numerical analysis, such as functional analysis and differential geometry, and will embrace theoretical issues as well as computational testing.
Summary
Partial Differential Equations (PDEs) are one of the most powerful mathematical modeling tool and their use spans from life science to engineering and physics. In abstract terms, PDEs describe the distribution of a field on a physical domain. The Finite Element Method (FEM) is by large the most popular technique for the computer-based simulation of PDEs and hinges on the assumption that the discretized domain and field are represented both by means of piecewise polynomials. Such an isoparametric feature is at the very core of FEM. However, CAD software, used in industry for geometric modeling, typically describes physical domains by means of Non-Uniform Rational B-Splines (NURBS) and the interface of CAD output with FEM calls for expensive re-meshing methods that result in approximate representation of domains. This project aims at developing isoparametric techniques based on NURBS for simulating PDEs arising in electromagnetics, fluid dynamics and elasticity. We will consider discretization schemes that are compatible in the sense that the discretized models embody conservation principles of the underlying physical phenomenon (e.g. charge in electromagnetism, mass and momentum in fluid motion and elasticity). The key benefits of NURBS-based methods are: exact representation of the physical domain, direct use of the CAD output, a substantial increase of the accuracy-to-computational-effort ratio. NURBS schemes start appearing in the Engineering literature and preliminary results show that they hold great promises. However, their understanding is still in infancy and sound mathematical groundings are crucial to quantitatively assess the performance of NURBS techniques and to design new effective computational schemes. Our research will combine competencies in different fields of mathematics besides numerical analysis, such as functional analysis and differential geometry, and will embrace theoretical issues as well as computational testing.
Max ERC Funding
750 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30