Project acronym APOLLO
Project Advanced Signal Processing Technologies for Wireless Powered Communications
Researcher (PI) Ioannis Krikidis
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Consolidator Grant (CoG), PE7, ERC-2018-COG
Summary Wireless power transfer (WPT), pioneered by Tesla, is an idea at least as old as radio communications. However, on the one hand, due to health concerns and the large antenna dimensions required for transmission of high energy levels, until recently WPT has been limited mostly to very short distance applications. On the other hand, recent advances in silicon technology have significantly reduced the energy needs of electronic systems, making WPT over radio waves a potential source of energy for low power devices. Although WPT through radio waves has already found various short-range applications (such as the radio-frequency identification technology, healthcare monitoring etc.), its integration as a building block in the operation of wireless communications systems is still unexploited. On the other hand, conventional radio wave based information and energy transmissions have largely been designed separately. However, many applications can benefit from simultaneous wireless information and power transfer (SWIPT).
The overall objective of the APOLLO project is to study the integration of WPT/SWIPT technology into future wireless communication systems. Compared to past and current research efforts in this area, our technical approach is deeply interdisciplinary and more comprehensive, combining the expertise of wireless communications, control theory, information theory, optimization, and electronics/microwave engineering.
The key outcomes of the project include: 1) a rigorous and complete mathematical theory for WPT/SWIPT via information/communication/control theoretic studies; 2) new physical and cross-layer mechanisms that will enable the integration of WPT/SWIPT into future communication systems; 3) new network architectures that will fully exploit potential benefits of WPT/SWIPT; and 4) development of a proof-of-concept by implementing highly-efficient and multi-band metamaterial energy harvesting sensors for SWIPT.
Summary
Wireless power transfer (WPT), pioneered by Tesla, is an idea at least as old as radio communications. However, on the one hand, due to health concerns and the large antenna dimensions required for transmission of high energy levels, until recently WPT has been limited mostly to very short distance applications. On the other hand, recent advances in silicon technology have significantly reduced the energy needs of electronic systems, making WPT over radio waves a potential source of energy for low power devices. Although WPT through radio waves has already found various short-range applications (such as the radio-frequency identification technology, healthcare monitoring etc.), its integration as a building block in the operation of wireless communications systems is still unexploited. On the other hand, conventional radio wave based information and energy transmissions have largely been designed separately. However, many applications can benefit from simultaneous wireless information and power transfer (SWIPT).
The overall objective of the APOLLO project is to study the integration of WPT/SWIPT technology into future wireless communication systems. Compared to past and current research efforts in this area, our technical approach is deeply interdisciplinary and more comprehensive, combining the expertise of wireless communications, control theory, information theory, optimization, and electronics/microwave engineering.
The key outcomes of the project include: 1) a rigorous and complete mathematical theory for WPT/SWIPT via information/communication/control theoretic studies; 2) new physical and cross-layer mechanisms that will enable the integration of WPT/SWIPT into future communication systems; 3) new network architectures that will fully exploit potential benefits of WPT/SWIPT; and 4) development of a proof-of-concept by implementing highly-efficient and multi-band metamaterial energy harvesting sensors for SWIPT.
Max ERC Funding
1 930 625 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym C8
Project Consistent computation of the chemistry-cloud continuum and climate change in Cyprus
Researcher (PI) Johannes Lelieveld
Host Institution (HI) THE CYPRUS RESEARCH AND EDUCATIONAL FOUNDATION
Call Details Advanced Grant (AdG), PE10, ERC-2008-AdG
Summary We have developed a new numerical method to consistently compute atmospheric trace gas and aerosol chemistry and cloud processes. The method is computationally efficient so that it can be used in climate models. For the first time cloud droplet formation on multi-component particles can be represented based on first principles rather than parameterisations. This allows for a direct coupling in models between aerosol chemical composition and the continuum between hazes and clouds as a function of ambient relative humidity. We will apply the method in a new nested global-limited area model system to study atmospheric chemistry climate interactions and anthropogenic influences. We will focus on the Mediterranean region because it is a hot spot in climate change exposed to drying and air pollution. The limited area model will also be applied as cloud-resolving model to study aerosol influences on precipitation and storm development. By simulating realistic meteorological conditions at high spatial resolution our method can be straightforwardly tested against observations. Central questions are: - How does the simulated haze-cloud continuum compare with remote sensing measurements and what is the consequence of abandoning the traditional and artificial distinction between aerosols and clouds? - How are cloud and precipitation formation influenced by atmospheric chemical composition changes? - To what extent do haze and cloud formation in polluted air exert forcings of synoptic meteorological conditions and climate? - Can aerosol pollution in the Mediterranean region exacerbate the predicted and observed drying in a changing climate? The model system is user-friendly and will facilitate air quality and climate studies by regional scientists. The project will be part of the Energy, Environment and Water Centre of the newly founded Cyprus Institute, provide input to climate impact assessments and contribute to a regional outreach programme.
Summary
We have developed a new numerical method to consistently compute atmospheric trace gas and aerosol chemistry and cloud processes. The method is computationally efficient so that it can be used in climate models. For the first time cloud droplet formation on multi-component particles can be represented based on first principles rather than parameterisations. This allows for a direct coupling in models between aerosol chemical composition and the continuum between hazes and clouds as a function of ambient relative humidity. We will apply the method in a new nested global-limited area model system to study atmospheric chemistry climate interactions and anthropogenic influences. We will focus on the Mediterranean region because it is a hot spot in climate change exposed to drying and air pollution. The limited area model will also be applied as cloud-resolving model to study aerosol influences on precipitation and storm development. By simulating realistic meteorological conditions at high spatial resolution our method can be straightforwardly tested against observations. Central questions are: - How does the simulated haze-cloud continuum compare with remote sensing measurements and what is the consequence of abandoning the traditional and artificial distinction between aerosols and clouds? - How are cloud and precipitation formation influenced by atmospheric chemical composition changes? - To what extent do haze and cloud formation in polluted air exert forcings of synoptic meteorological conditions and climate? - Can aerosol pollution in the Mediterranean region exacerbate the predicted and observed drying in a changing climate? The model system is user-friendly and will facilitate air quality and climate studies by regional scientists. The project will be part of the Energy, Environment and Water Centre of the newly founded Cyprus Institute, provide input to climate impact assessments and contribute to a regional outreach programme.
Max ERC Funding
2 196 000 €
Duration
Start date: 2009-01-01, End date: 2014-12-31
Project acronym CHANGE-POINT TESTS
Project New Results on Structural Change Tests: Theory and Applications
Researcher (PI) Elena Andreou
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary The research project has two broad objectives and provides novel results in the literature of structural change or change-point tests. The first objective is to provide two new methods for restoring the non-monotone power problem of a large family of structural breaks tests that have been widely used in econometrics and statistics, as well as to show that these methods have additional contributions and can be extended to: (i) tests for a change in persistence, (ii) partial sums tests of cointegration and (iii) tests for changes in dynamic volatility models. The significance of these methods is demonstrated via the consistency of the long-run variance estimator which scales the change-point statistics, the asymptotic properties of the tests, their finite sample performance and their relevance in empirical applications and policy analysis. The second objective is threefold: First, to show that ignoring structural changes in financial time series yields biased and inconsistent risk management (Value at Risk, VaR and Excess Shortfall, ES) estimates and consequently leads to investment misallocations. Second, to propose methods for evaluating the stability of financial time series sequentially or on-line which can be used as a quality control procedure for financial risk management as well as to show that monitoring implied volatilities yields early warning indicators of a changing risk structure. Moreover we show that model averaging in the presence of structural breaks as well as other model uncertainties involved in risk management estimates, can provide robust estimates of VaR and ES. New results are derived on the optimal weights for model averaging in the context of dynamic volatility models and asymmetric loss functions. Third, we propose a novel way to construct prediction-based change-point statistics that reduce the detection delay of existing sequential tests and provide a probability about the likelihood of a structural change.
Summary
The research project has two broad objectives and provides novel results in the literature of structural change or change-point tests. The first objective is to provide two new methods for restoring the non-monotone power problem of a large family of structural breaks tests that have been widely used in econometrics and statistics, as well as to show that these methods have additional contributions and can be extended to: (i) tests for a change in persistence, (ii) partial sums tests of cointegration and (iii) tests for changes in dynamic volatility models. The significance of these methods is demonstrated via the consistency of the long-run variance estimator which scales the change-point statistics, the asymptotic properties of the tests, their finite sample performance and their relevance in empirical applications and policy analysis. The second objective is threefold: First, to show that ignoring structural changes in financial time series yields biased and inconsistent risk management (Value at Risk, VaR and Excess Shortfall, ES) estimates and consequently leads to investment misallocations. Second, to propose methods for evaluating the stability of financial time series sequentially or on-line which can be used as a quality control procedure for financial risk management as well as to show that monitoring implied volatilities yields early warning indicators of a changing risk structure. Moreover we show that model averaging in the presence of structural breaks as well as other model uncertainties involved in risk management estimates, can provide robust estimates of VaR and ES. New results are derived on the optimal weights for model averaging in the context of dynamic volatility models and asymmetric loss functions. Third, we propose a novel way to construct prediction-based change-point statistics that reduce the detection delay of existing sequential tests and provide a probability about the likelihood of a structural change.
Max ERC Funding
517 200 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym EUROEMP
Project Employment in Europe
Researcher (PI) Christoforos Pissarides
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Advanced Grant (AdG), SH1, ERC-2012-ADG_20120411
Summary "The first part of this project is about employment in Europe, including the new members of the European Union. Both the level of employment and the type of jobs created will be examined. A thorough study of institutional structures and policies is proposed, with a view to arriving at conclusions about their influence on job creation and about the best policy needed to achieve national or European-level employment objectives. Job creation is investigated at the two-digit level and male and female employment, wage inequality and the role of policy will be studied in depth. The research will build on solid theoretical microfoundations taking into account the choices available to firms and workers/consumers about working at home or in the market and buying domestic or foreign goods. The project has a second part about unemployment, with special emphasis on recession. The same emphasis on institutions and policies as for employment is given to this part. A key component of the project is new theory on the evolution of institutions and policies in markets with friction, and on the impact that the policy changes that took place after the recession of the 1980s have had on the responses of European labour markets to the recent recession. Special attention will be given to the formerly planned economies and the reasons for their slow convergence to the western economies."
Summary
"The first part of this project is about employment in Europe, including the new members of the European Union. Both the level of employment and the type of jobs created will be examined. A thorough study of institutional structures and policies is proposed, with a view to arriving at conclusions about their influence on job creation and about the best policy needed to achieve national or European-level employment objectives. Job creation is investigated at the two-digit level and male and female employment, wage inequality and the role of policy will be studied in depth. The research will build on solid theoretical microfoundations taking into account the choices available to firms and workers/consumers about working at home or in the market and buying domestic or foreign goods. The project has a second part about unemployment, with special emphasis on recession. The same emphasis on institutions and policies as for employment is given to this part. A key component of the project is new theory on the evolution of institutions and policies in markets with friction, and on the impact that the policy changes that took place after the recession of the 1980s have had on the responses of European labour markets to the recent recession. Special attention will be given to the formerly planned economies and the reasons for their slow convergence to the western economies."
Max ERC Funding
2 200 143 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym FAULT-ADAPTIVE
Project Fault-Adaptive Monitoring and Control of Complex Distributed Dynamical Systems
Researcher (PI) Marios Polycarpou
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Advanced Grant (AdG), PE7, ERC-2011-ADG_20110209
Summary "The emergence of networked embedded systems and sensor/actuator networks has facilitated the development of advanced monitoring and control applications, where a large amount of sensor data is collected and processed in real-time in order to activate the appropriate actuators and achieve the desired control objectives. However, in situations where a fault arises in some of the components (e.g., sensors, actuators, communication links), or an unexpected event occurs in the environment, this may lead to a serious degradation in performance or, even worse, to an overall system failure. There is a need to develop a systematic framework to enhance the reliability, fault-tolerance and sustainability of complex distributed dynamical systems through the use of fault-adaptive monitoring and control methods. The work proposed here will contribute to the development of such a framework with emphasis on applications related to critical infrastructure systems (e.g., power, water, telecommunications and transportation systems). It will provide an innovative approach based on the use of networked intelligent agent systems, where the state of the infrastructure is monitored and controlled by a network of sensors and actuators with cooperating agents for fault diagnosis and fault tolerant control. A hierarchical fault diagnosis architecture will be developed, with neighbouring fault diagnosis agents cooperating at a local level, while transmitting their information, as needed, to a regional monitoring agent, responsible for integrating in real-time local information into a large-scale “picture” of the health of the infrastructure. A key motivation is to exploit spatial and temporal correlations between measured variables using learning methods, and to develop the tools and design methodologies that will prevent relatively “small” faults or unexpected events from causing significant disruption or complete system failures in complex distributed dynamical systems."
Summary
"The emergence of networked embedded systems and sensor/actuator networks has facilitated the development of advanced monitoring and control applications, where a large amount of sensor data is collected and processed in real-time in order to activate the appropriate actuators and achieve the desired control objectives. However, in situations where a fault arises in some of the components (e.g., sensors, actuators, communication links), or an unexpected event occurs in the environment, this may lead to a serious degradation in performance or, even worse, to an overall system failure. There is a need to develop a systematic framework to enhance the reliability, fault-tolerance and sustainability of complex distributed dynamical systems through the use of fault-adaptive monitoring and control methods. The work proposed here will contribute to the development of such a framework with emphasis on applications related to critical infrastructure systems (e.g., power, water, telecommunications and transportation systems). It will provide an innovative approach based on the use of networked intelligent agent systems, where the state of the infrastructure is monitored and controlled by a network of sensors and actuators with cooperating agents for fault diagnosis and fault tolerant control. A hierarchical fault diagnosis architecture will be developed, with neighbouring fault diagnosis agents cooperating at a local level, while transmitting their information, as needed, to a regional monitoring agent, responsible for integrating in real-time local information into a large-scale “picture” of the health of the infrastructure. A key motivation is to exploit spatial and temporal correlations between measured variables using learning methods, and to develop the tools and design methodologies that will prevent relatively “small” faults or unexpected events from causing significant disruption or complete system failures in complex distributed dynamical systems."
Max ERC Funding
2 035 200 €
Duration
Start date: 2012-04-01, End date: 2018-03-31
Project acronym MQC
Project Methods for Quantum Computing
Researcher (PI) Andris Ambainis
Host Institution (HI) LATVIJAS UNIVERSITATE
Call Details Advanced Grant (AdG), PE6, ERC-2012-ADG_20120216
Summary "Quantum information science (QIS) is a young research area at the frontier of both computer science and physics. It studies what happens when we apply the principles of quantum mechanics to problems in computer science and information processing. This has resulted in many unexpected discoveries and opened up new frontiers.
Quantum algorithms (such as Shor’s factoring algorithm) can solve computational problems that are intractable for conventional computers. Quantum mechanics also enables quantum cryptography which provides an ultimate degree of security that cannot be achieved by conventional methods. These developments have generated an enormous interest both in building a quantum computer and exploring the mathematical foundations of quantum information.
We will study computer science aspects of QIS. Our first goal is to develop new quantum algorithms and, more generally, new algorithmic techniques for developing quantum algorithms. We will explore a variety of new ideas: quantum walks, span programs, learning graphs, linear equation solving, computing by transforming quantum states.
Secondly, we will study the limits of quantum computing. We will look at various classes of computational problems and analyze what are the biggest speedups that quantum algorithms can achieve. We will also work on identifying computational problems which are hard even for a quantum computer. Such problems can serve as a basis for cryptography that would be secure against quantum computers.
Thirdly, the ideas from quantum information can lead to very surprising connections between different fields. The mathematical methods from quantum information can be applied to solve purely classical (non-quantum) problems in computer science. The ideas from computer science can be used to study the complexity of physical systems in quantum mechanics. We think that both of those directions have the potential for unexpected breakthroughs and we will pursue both of them."
Summary
"Quantum information science (QIS) is a young research area at the frontier of both computer science and physics. It studies what happens when we apply the principles of quantum mechanics to problems in computer science and information processing. This has resulted in many unexpected discoveries and opened up new frontiers.
Quantum algorithms (such as Shor’s factoring algorithm) can solve computational problems that are intractable for conventional computers. Quantum mechanics also enables quantum cryptography which provides an ultimate degree of security that cannot be achieved by conventional methods. These developments have generated an enormous interest both in building a quantum computer and exploring the mathematical foundations of quantum information.
We will study computer science aspects of QIS. Our first goal is to develop new quantum algorithms and, more generally, new algorithmic techniques for developing quantum algorithms. We will explore a variety of new ideas: quantum walks, span programs, learning graphs, linear equation solving, computing by transforming quantum states.
Secondly, we will study the limits of quantum computing. We will look at various classes of computational problems and analyze what are the biggest speedups that quantum algorithms can achieve. We will also work on identifying computational problems which are hard even for a quantum computer. Such problems can serve as a basis for cryptography that would be secure against quantum computers.
Thirdly, the ideas from quantum information can lead to very surprising connections between different fields. The mathematical methods from quantum information can be applied to solve purely classical (non-quantum) problems in computer science. The ideas from computer science can be used to study the complexity of physical systems in quantum mechanics. We think that both of those directions have the potential for unexpected breakthroughs and we will pursue both of them."
Max ERC Funding
1 360 980 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym OSSMA
Project Multiple Systems of Spatial Memory: Their role in Reasoning and Action
Researcher (PI) Marios Avraamides
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Starting Grant (StG), SH3, ERC-2007-StG
Summary The goal of the proposed project is to examine how the locations of the objects that constitute our environments are represented in memory and how such memories are used to support our actions in space. During the last three decades of research this topic has received a lot of attention by scientists from many disciplines, and over the years a number of theories have been formulated. However, our understanding of the nature and functioning of spatial memory still continues to change. More importantly, there exist empirical findings from two concentrations of research within spatial cognition that seem conflicting at first glance. On one hand, studies examining the organizational structure of spatial memory have shown that memories are encoded using allocentric reference frames; that is reference frames that encode the spatial relations among the objects of an environment. On the other hand, studies focusing on how people stay oriented towards their surroundings during locomotion suggest that egocentric representations (i.e., representations coding self-to-object relations) are involved. Recent models of spatial cognition have attempted to reconcile these findings by proposing multiple systems for spatial memory. In this project we will carry our a series of experiments in an attempt to gather empirical data to test the predictions of various theoretical models including a biologically-plausible two-system account of spatial memory that we have recently proposed (Avraamides & Kelly, in press). Drawing heavily from the literature on Stimulus-Response compatibility, this account combines the use of egocentric and allocentric representations to account for a wealth of data from all areas of spatial cognition.
Summary
The goal of the proposed project is to examine how the locations of the objects that constitute our environments are represented in memory and how such memories are used to support our actions in space. During the last three decades of research this topic has received a lot of attention by scientists from many disciplines, and over the years a number of theories have been formulated. However, our understanding of the nature and functioning of spatial memory still continues to change. More importantly, there exist empirical findings from two concentrations of research within spatial cognition that seem conflicting at first glance. On one hand, studies examining the organizational structure of spatial memory have shown that memories are encoded using allocentric reference frames; that is reference frames that encode the spatial relations among the objects of an environment. On the other hand, studies focusing on how people stay oriented towards their surroundings during locomotion suggest that egocentric representations (i.e., representations coding self-to-object relations) are involved. Recent models of spatial cognition have attempted to reconcile these findings by proposing multiple systems for spatial memory. In this project we will carry our a series of experiments in an attempt to gather empirical data to test the predictions of various theoretical models including a biologically-plausible two-system account of spatial memory that we have recently proposed (Avraamides & Kelly, in press). Drawing heavily from the literature on Stimulus-Response compatibility, this account combines the use of egocentric and allocentric representations to account for a wealth of data from all areas of spatial cognition.
Max ERC Funding
500 000 €
Duration
Start date: 2008-10-01, End date: 2013-06-30
Project acronym ReEngineeringCancer
Project Re-engineering the tumor microenvironment to alleviate mechanical stresses and improve chemotherapy
Researcher (PI) Triantafyllos Stylianopoulos
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary Current chemotherapeutic agents are potent enough to kill cancer cells. Nonetheless, failure of chemotherapies for many cancers (e.g. breast and pancreatic cancers and various sarcomas) is primarily because these agents cannot reach cancer cells in amounts sufficient to cause complete cure. The abnormal microenvironment of these tumors drastically reduces perfusion and results in insufficient delivery of therapeutic agents. Tumor structural abnormalities is in large part an effect of mechanical stresses developed within the tumor due to unchecked cancer cell proliferation that strains the tumor microenvironment. Alleviation of these stresses has the potential to normalize the tumor, enhance delivery of drugs and improve treatment efficacy. Here, I propose to test the hypothesis that re-engineering the tumor microenvironment with stress-alleviating drugs has the potential to enhance chemotherapy. To explore this hypothesis, I will make use of a mixture of cutting-edge computational and experimental techniques. I will develop sophisticated models for the biomechanical response of tumors to analyze how stresses are generated and transmitted during tumor progression. Subsequently, I will perform animal studies to validate model predictions and indentify the drug that more effectively alleviates stress levels, normalizes the tumor microenvironment and improves chemotherapy. Successful completion of this research will reveal the mechanisms for stress generation and storage in tumors and will lead to new strategies for the use of chemotherapy.
Summary
Current chemotherapeutic agents are potent enough to kill cancer cells. Nonetheless, failure of chemotherapies for many cancers (e.g. breast and pancreatic cancers and various sarcomas) is primarily because these agents cannot reach cancer cells in amounts sufficient to cause complete cure. The abnormal microenvironment of these tumors drastically reduces perfusion and results in insufficient delivery of therapeutic agents. Tumor structural abnormalities is in large part an effect of mechanical stresses developed within the tumor due to unchecked cancer cell proliferation that strains the tumor microenvironment. Alleviation of these stresses has the potential to normalize the tumor, enhance delivery of drugs and improve treatment efficacy. Here, I propose to test the hypothesis that re-engineering the tumor microenvironment with stress-alleviating drugs has the potential to enhance chemotherapy. To explore this hypothesis, I will make use of a mixture of cutting-edge computational and experimental techniques. I will develop sophisticated models for the biomechanical response of tumors to analyze how stresses are generated and transmitted during tumor progression. Subsequently, I will perform animal studies to validate model predictions and indentify the drug that more effectively alleviates stress levels, normalizes the tumor microenvironment and improves chemotherapy. Successful completion of this research will reveal the mechanisms for stress generation and storage in tumors and will lead to new strategies for the use of chemotherapy.
Max ERC Funding
1 440 360 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym Sol-Pro
Project Solution Processed Next Generation Photovoltaics
Researcher (PI) Stylianos (Stelios) Choulis
Host Institution (HI) TECHNOLOGIKO PANEPISTIMIO KYPROU
Call Details Consolidator Grant (CoG), PE8, ERC-2014-CoG
Summary The profound advantages of printed photovoltaics (PVs), such as their light weight, mechanical flexibility in addition to the small energy demand, and low cost equipment requirements for roll-to-roll mass production, characterise them as a dominant candidate source for future electrical power. Over the last few years, the discovery of novel solution processed electronic materials and device structures boosted PV power conversion efficiency values. Despite that, power conversion efficiency is not a 'stand-alone' product development target for next generation PVs. Lifetime, cost, flexibility and non-toxicity have to be equally considered, regarding the technological progress of solution processed PVs. The ambit of the Sol-Pro research programme is to re-design solution processed PV components relevant to the above product development targets. Based on this, processing specifications as a function of the electronic material properties will be established and provide valuable input for flexible PV applications. Adjusting the material characteristics and device design is crucial to achieve the proposed high performance PV targets. As a consequence, a number of high-level objectives concerning processing/materials/electrodes/interfaces, relevant to product development targets of next generation solution processed PVs, are aimed for within the proposed ERC programme.
Summary
The profound advantages of printed photovoltaics (PVs), such as their light weight, mechanical flexibility in addition to the small energy demand, and low cost equipment requirements for roll-to-roll mass production, characterise them as a dominant candidate source for future electrical power. Over the last few years, the discovery of novel solution processed electronic materials and device structures boosted PV power conversion efficiency values. Despite that, power conversion efficiency is not a 'stand-alone' product development target for next generation PVs. Lifetime, cost, flexibility and non-toxicity have to be equally considered, regarding the technological progress of solution processed PVs. The ambit of the Sol-Pro research programme is to re-design solution processed PV components relevant to the above product development targets. Based on this, processing specifications as a function of the electronic material properties will be established and provide valuable input for flexible PV applications. Adjusting the material characteristics and device design is crucial to achieve the proposed high performance PV targets. As a consequence, a number of high-level objectives concerning processing/materials/electrodes/interfaces, relevant to product development targets of next generation solution processed PVs, are aimed for within the proposed ERC programme.
Max ERC Funding
1 840 940 €
Duration
Start date: 2015-07-01, End date: 2020-06-30