Project acronym 14Constraint
Project Radiocarbon constraints for models of C cycling in terrestrial ecosystems: from process understanding to global benchmarking
Researcher (PI) Susan Trumbore
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE10, ERC-2015-AdG
Summary The overall goal of 14Constraint is to enhance the availability and use of radiocarbon data as constraints for process-based understanding of the age distribution of carbon in and respired by soils and ecosystems. Carbon enters ecosystems by a single process, photosynthesis. It returns by a range of processes that depend on plant allocation and turnover, the efficiency and rate of litter decomposition and the mechanisms stabilizing C in soils. Thus the age distribution of respired CO2 and the age of C residing in plants, litter and soils are diagnostic properties of ecosystems that provide key constraints for testing carbon cycle models. Radiocarbon, especially the transit of ‘bomb’ 14C created in the 1960s, is a powerful tool for tracing C exchange on decadal to centennial timescales. 14Constraint will assemble a global database of existing radiocarbon data (WP1) and demonstrate how they can constrain and test ecosystem carbon cycle models. WP2 will fill data gaps and add new data from sites in key biomes that have ancillary data sufficient to construct belowground C and 14C budgets. These detailed investigations will focus on the role of time lags caused in necromass and fine roots, as well as the dynamics of deep soil C. Spatial extrapolation beyond the WP2 sites will require sampling along global gradients designed to explore the relative roles of mineralogy, vegetation and climate on the age of C in and respired from soil (WP3). Products of this 14Constraint will include the first publicly available global synthesis of terrestrial 14C data, and will add over 5000 new measurements. This project is urgently needed before atmospheric 14C levels decline to below 1950 levels as expected in the next decade.
Summary
The overall goal of 14Constraint is to enhance the availability and use of radiocarbon data as constraints for process-based understanding of the age distribution of carbon in and respired by soils and ecosystems. Carbon enters ecosystems by a single process, photosynthesis. It returns by a range of processes that depend on plant allocation and turnover, the efficiency and rate of litter decomposition and the mechanisms stabilizing C in soils. Thus the age distribution of respired CO2 and the age of C residing in plants, litter and soils are diagnostic properties of ecosystems that provide key constraints for testing carbon cycle models. Radiocarbon, especially the transit of ‘bomb’ 14C created in the 1960s, is a powerful tool for tracing C exchange on decadal to centennial timescales. 14Constraint will assemble a global database of existing radiocarbon data (WP1) and demonstrate how they can constrain and test ecosystem carbon cycle models. WP2 will fill data gaps and add new data from sites in key biomes that have ancillary data sufficient to construct belowground C and 14C budgets. These detailed investigations will focus on the role of time lags caused in necromass and fine roots, as well as the dynamics of deep soil C. Spatial extrapolation beyond the WP2 sites will require sampling along global gradients designed to explore the relative roles of mineralogy, vegetation and climate on the age of C in and respired from soil (WP3). Products of this 14Constraint will include the first publicly available global synthesis of terrestrial 14C data, and will add over 5000 new measurements. This project is urgently needed before atmospheric 14C levels decline to below 1950 levels as expected in the next decade.
Max ERC Funding
2 283 747 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym A-LIFE
Project Absorbing aerosol layers in a changing climate: aging, lifetime and dynamics
Researcher (PI) Bernadett Barbara Weinzierl
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Aerosols (i.e. tiny particles suspended in the air) are regularly transported in huge amounts over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the source. Aerosols affect the atmospheric radiation budget through scattering and absorption of solar radiation and through their role as cloud/ice nuclei.
In particular, light absorption by aerosol particles such as mineral dust and black carbon (BC; thought to be the second strongest contribution to current global warming after CO2) is of fundamental importance from a climate perspective because the presence of absorbing particles (1) contributes to solar radiative forcing, (2) heats absorbing aerosol layers, (3) can evaporate clouds and (4) change atmospheric dynamics.
Considering this prominent role of aerosols, vertically-resolved in-situ data on absorbing aerosols are surprisingly scarce and aerosol-dynamic interactions are poorly understood in general. This is, as recognized in the last IPCC report, a serious barrier for taking the accuracy of climate models and predictions to the next level. To overcome this barrier, I propose to investigate aging, lifetime and dynamics of absorbing aerosol layers with a holistic end-to-end approach including laboratory studies, airborne field experiments and numerical model simulations.
Building on the internationally recognized results of my aerosol research group and my long-term experience with airborne aerosol measurements, the time seems ripe to systematically bridge the gap between in-situ measurements of aerosol microphysical and optical properties and the assessment of dynamical interactions of absorbing particles with aerosol layer lifetime through model simulations.
The outcomes of this project will provide fundamental new understanding of absorbing aerosol layers in the climate system and important information for addressing the benefits of BC emission controls for mitigating climate change.
Summary
Aerosols (i.e. tiny particles suspended in the air) are regularly transported in huge amounts over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the source. Aerosols affect the atmospheric radiation budget through scattering and absorption of solar radiation and through their role as cloud/ice nuclei.
In particular, light absorption by aerosol particles such as mineral dust and black carbon (BC; thought to be the second strongest contribution to current global warming after CO2) is of fundamental importance from a climate perspective because the presence of absorbing particles (1) contributes to solar radiative forcing, (2) heats absorbing aerosol layers, (3) can evaporate clouds and (4) change atmospheric dynamics.
Considering this prominent role of aerosols, vertically-resolved in-situ data on absorbing aerosols are surprisingly scarce and aerosol-dynamic interactions are poorly understood in general. This is, as recognized in the last IPCC report, a serious barrier for taking the accuracy of climate models and predictions to the next level. To overcome this barrier, I propose to investigate aging, lifetime and dynamics of absorbing aerosol layers with a holistic end-to-end approach including laboratory studies, airborne field experiments and numerical model simulations.
Building on the internationally recognized results of my aerosol research group and my long-term experience with airborne aerosol measurements, the time seems ripe to systematically bridge the gap between in-situ measurements of aerosol microphysical and optical properties and the assessment of dynamical interactions of absorbing particles with aerosol layer lifetime through model simulations.
The outcomes of this project will provide fundamental new understanding of absorbing aerosol layers in the climate system and important information for addressing the benefits of BC emission controls for mitigating climate change.
Max ERC Funding
1 987 980 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym A2C2
Project Atmospheric flow Analogues and Climate Change
Researcher (PI) Pascal Yiou
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary "The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Summary
"The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Max ERC Funding
1 491 457 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ABEP
Project Asset Bubbles and Economic Policy
Researcher (PI) Jaume Ventura Fontanet
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Call Details Advanced Grant (AdG), SH1, ERC-2009-AdG
Summary Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Summary
Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym ABRSEIST
Project Antibiotic Resistance: Socio-Economic Determinants and the Role of Information and Salience in Treatment Choice
Researcher (PI) Hannes ULLRICH
Host Institution (HI) DEUTSCHES INSTITUT FUR WIRTSCHAFTSFORSCHUNG DIW (INSTITUT FUR KONJUNKTURFORSCHUNG) EV
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Antibiotics have contributed to a tremendous increase in human well-being, saving many millions of lives. However, antibiotics become obsolete the more they are used as selection pressure promotes the development of resistant bacteria. The World Health Organization has proclaimed antibiotic resistance as a major global threat to public health. Today, 700,000 deaths per year are due to untreatable infections. To win the battle against antibiotic resistance, new policies affecting the supply and demand of existing and new drugs must be designed. I propose new research to identify and evaluate feasible and effective demand-side policy interventions targeting the relevant decision makers: physicians and patients. ABRSEIST will make use of a broad econometric toolset to identify mechanisms linking antibiotic resistance and consumption exploiting a unique combination of physician-patient-level antibiotic resistance, treatment, and socio-economic data. Using machine learning methods adapted for causal inference, theory-driven structural econometric analysis, and randomization in the field it will provide rigorous evidence on effective intervention designs. This research will improve our understanding of how prescribing, resistance, and the effect of antibiotic use on resistance, are distributed in the general population which has important implications for the design of targeted interventions. It will then estimate a structural model of general practitioners’ acquisition and use of information under uncertainty about resistance in prescription choice, allowing counterfactual analysis of information-improving policies such as mandatory diagnostic testing. The large-scale and structural econometric analyses allow flexible identification of physician heterogeneity, which ABRSEIST will exploit to design and evaluate targeted, randomized information nudges in the field. The result will be improved rational use and a toolset applicable in contexts of antibiotic prescribing.
Summary
Antibiotics have contributed to a tremendous increase in human well-being, saving many millions of lives. However, antibiotics become obsolete the more they are used as selection pressure promotes the development of resistant bacteria. The World Health Organization has proclaimed antibiotic resistance as a major global threat to public health. Today, 700,000 deaths per year are due to untreatable infections. To win the battle against antibiotic resistance, new policies affecting the supply and demand of existing and new drugs must be designed. I propose new research to identify and evaluate feasible and effective demand-side policy interventions targeting the relevant decision makers: physicians and patients. ABRSEIST will make use of a broad econometric toolset to identify mechanisms linking antibiotic resistance and consumption exploiting a unique combination of physician-patient-level antibiotic resistance, treatment, and socio-economic data. Using machine learning methods adapted for causal inference, theory-driven structural econometric analysis, and randomization in the field it will provide rigorous evidence on effective intervention designs. This research will improve our understanding of how prescribing, resistance, and the effect of antibiotic use on resistance, are distributed in the general population which has important implications for the design of targeted interventions. It will then estimate a structural model of general practitioners’ acquisition and use of information under uncertainty about resistance in prescription choice, allowing counterfactual analysis of information-improving policies such as mandatory diagnostic testing. The large-scale and structural econometric analyses allow flexible identification of physician heterogeneity, which ABRSEIST will exploit to design and evaluate targeted, randomized information nudges in the field. The result will be improved rational use and a toolset applicable in contexts of antibiotic prescribing.
Max ERC Funding
1 498 920 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ACAP
Project Acency Costs and Asset Pricing
Researcher (PI) Thomas Mariotti
Host Institution (HI) FONDATION JEAN-JACQUES LAFFONT,TOULOUSE SCIENCES ECONOMIQUES
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary The main objective of this research project is to contribute at bridging the gap between the two main branches of financial theory, namely corporate finance and asset pricing. It is motivated by the conviction that these two aspects of financial activity should and can be analyzed within a unified framework. This research will borrow from these two approaches in order to construct theoretical models that allow one to analyze the design and issuance of financial securities, as well as the dynamics of their valuations. Unlike asset pricing, which takes as given the price of the fundamentals, the goal is to derive security price processes from a precise description of firm’s operations and internal frictions. Regarding the latter, and in line with traditional corporate finance theory, the analysis will emphasize the role of agency costs within the firm for the design of its securities. But the analysis will be pushed one step further by studying the impact of these agency costs on key financial variables such as stock and bond prices, leverage, book-to-market ratios, default risk, or the holding of liquidities by firms. One of the contributions of this research project is to show how these variables are interrelated when firms and investors agree upon optimal financial arrangements. The final objective is to derive a rich set of testable asset pricing implications that would eventually be brought to the data.
Summary
The main objective of this research project is to contribute at bridging the gap between the two main branches of financial theory, namely corporate finance and asset pricing. It is motivated by the conviction that these two aspects of financial activity should and can be analyzed within a unified framework. This research will borrow from these two approaches in order to construct theoretical models that allow one to analyze the design and issuance of financial securities, as well as the dynamics of their valuations. Unlike asset pricing, which takes as given the price of the fundamentals, the goal is to derive security price processes from a precise description of firm’s operations and internal frictions. Regarding the latter, and in line with traditional corporate finance theory, the analysis will emphasize the role of agency costs within the firm for the design of its securities. But the analysis will be pushed one step further by studying the impact of these agency costs on key financial variables such as stock and bond prices, leverage, book-to-market ratios, default risk, or the holding of liquidities by firms. One of the contributions of this research project is to show how these variables are interrelated when firms and investors agree upon optimal financial arrangements. The final objective is to derive a rich set of testable asset pricing implications that would eventually be brought to the data.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-11-01, End date: 2014-10-31
Project acronym ACCI
Project Atmospheric Chemistry-Climate Interactions
Researcher (PI) John Adrian Pyle
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE10, ERC-2010-AdG_20100224
Summary Global change involves a large number of complex interactions between various earth system processes. In the atmosphere, one component of the earth system, there are crucial feedbacks between physical, chemical and biological processes. Thus many of the drivers of climate change depend on chemical processes in the atmosphere including, in addition to ozone and water vapour, methane, nitrous oxide, the halocarbons as well as a range of inorganic and organic aerosols. The link between chemistry and climate is two-way and changes in climate can influence atmospheric chemistry processes in a variety of ways.
Previous studies have looked at these interactions in isolation but the time is now right for more comprehensive studies. The crucial contribution that will be made here is in improving our understanding of the processes within this complex system. Process understanding has been the hallmark of my previous work. The earth system scope here will be ambitiously wide but with a similar drive to understand fundamental processes.
The ambitious programme of research is built around four interrelated questions using new state-of-the-art modelling tools: How will the composition of the stratosphere change in the future, given changes in the concentrations of ozone depleting substances and greenhouse gases? How will these changes in the stratosphere affect tropospheric composition and climate? How will the composition of the troposphere change in the future, given changes in the emissions of ozone precursors and greenhouse gases? How will these changes in the troposphere affect the troposphere-stratosphere climate system?
ACCI will break new ground in bringing all of these questions into a single modelling and diagnostic framework, enabling interrelated questions to be answered which should radically improve our overall projections for global change.
Summary
Global change involves a large number of complex interactions between various earth system processes. In the atmosphere, one component of the earth system, there are crucial feedbacks between physical, chemical and biological processes. Thus many of the drivers of climate change depend on chemical processes in the atmosphere including, in addition to ozone and water vapour, methane, nitrous oxide, the halocarbons as well as a range of inorganic and organic aerosols. The link between chemistry and climate is two-way and changes in climate can influence atmospheric chemistry processes in a variety of ways.
Previous studies have looked at these interactions in isolation but the time is now right for more comprehensive studies. The crucial contribution that will be made here is in improving our understanding of the processes within this complex system. Process understanding has been the hallmark of my previous work. The earth system scope here will be ambitiously wide but with a similar drive to understand fundamental processes.
The ambitious programme of research is built around four interrelated questions using new state-of-the-art modelling tools: How will the composition of the stratosphere change in the future, given changes in the concentrations of ozone depleting substances and greenhouse gases? How will these changes in the stratosphere affect tropospheric composition and climate? How will the composition of the troposphere change in the future, given changes in the emissions of ozone precursors and greenhouse gases? How will these changes in the troposphere affect the troposphere-stratosphere climate system?
ACCI will break new ground in bringing all of these questions into a single modelling and diagnostic framework, enabling interrelated questions to be answered which should radically improve our overall projections for global change.
Max ERC Funding
2 496 926 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym ACCLAIM
Project Aerosols effects on convective clouds and climate
Researcher (PI) Philip Stier
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE10, ERC-2011-StG_20101014
Summary Clouds play a key role in the climate system. Small anthropogenic perturbations of the cloud system potentially have large radiative effects. Aerosols perturb the global radiation budget directly, by scattering and absorption, as well as indirectly, by the modification of cloud properties and occurrence. The applicability of traditional conceptual models of indirect aerosol effects to convective clouds is disputed as cloud dynamics complicates the picture.
Strong evidence for numerous aerosol effects on convection has been established in individual disciplines: through remote sensing and in-situ observations as well as by cloud resolving and global modelling. However, a coherent scientific view of the effects of aerosols on convection has yet to be established.
The primary objective of ACCLAIM is to recast the effects of aerosols on convective clouds as basis for improved global estimates of anthropogenic climate effects. Specific objectives include: i) to unravel the governing principles of aerosol effects on convective clouds; ii) provide quantitative constraints on satellite-retrieved relationships between convective clouds and aerosols; and ultimately iii) to enable global climate models to represent the full range of anthropogenic climate perturbations and quantify the climate response to aerosol effects on convective clouds.
I have developed the research strategy of ACCLAIM to overcome disciplinary barriers in this frontier research area and seek five years of funding to establish an interdisciplinary, physics focused, research group consisting of two PostDocs, two PhD students and myself. ACCLAIM will be centred around global aerosol-convection climate modelling studies, complemented by research constraining aerosol-convection interactions through remote sensing and a process focused research strand, advancing fundamental understanding and global model parameterisations through high resolution aerosol-cloud modelling in synergy with in-situ observations.
Summary
Clouds play a key role in the climate system. Small anthropogenic perturbations of the cloud system potentially have large radiative effects. Aerosols perturb the global radiation budget directly, by scattering and absorption, as well as indirectly, by the modification of cloud properties and occurrence. The applicability of traditional conceptual models of indirect aerosol effects to convective clouds is disputed as cloud dynamics complicates the picture.
Strong evidence for numerous aerosol effects on convection has been established in individual disciplines: through remote sensing and in-situ observations as well as by cloud resolving and global modelling. However, a coherent scientific view of the effects of aerosols on convection has yet to be established.
The primary objective of ACCLAIM is to recast the effects of aerosols on convective clouds as basis for improved global estimates of anthropogenic climate effects. Specific objectives include: i) to unravel the governing principles of aerosol effects on convective clouds; ii) provide quantitative constraints on satellite-retrieved relationships between convective clouds and aerosols; and ultimately iii) to enable global climate models to represent the full range of anthropogenic climate perturbations and quantify the climate response to aerosol effects on convective clouds.
I have developed the research strategy of ACCLAIM to overcome disciplinary barriers in this frontier research area and seek five years of funding to establish an interdisciplinary, physics focused, research group consisting of two PostDocs, two PhD students and myself. ACCLAIM will be centred around global aerosol-convection climate modelling studies, complemented by research constraining aerosol-convection interactions through remote sensing and a process focused research strand, advancing fundamental understanding and global model parameterisations through high resolution aerosol-cloud modelling in synergy with in-situ observations.
Max ERC Funding
1 429 243 €
Duration
Start date: 2011-09-01, End date: 2017-02-28
Project acronym ACCLIMATE
Project Elucidating the Causes and Effects of Atlantic Circulation Changes through Model-Data Integration
Researcher (PI) Claire Waelbroeck
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary Rapid changes in ocean circulation and climate have been observed in marine sediment and ice cores, notably over the last 60 thousand years (ky), highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing.
To date, these rapid changes in climate and ocean circulation are still not fully explained. Two main obstacles prevent going beyond the current state of knowledge:
- Paleoclimatic proxy data are by essence only indirect indicators of the climatic variables, and thus can not be directly compared with model outputs;
- A 4-D (latitude, longitude, water depth, time) reconstruction of Atlantic water masses over the past 40 ky is lacking: previous studies have generated isolated records with disparate timescales which do not allow the causes of circulation changes to be identified.
Overcoming these two major limitations will lead to major breakthroughs in climate research. Concretely, I will create the first database of Atlantic deep-sea records over the last 40 ky, and extract full climatic information from these records through an innovative model-data integration scheme using an isotopic proxy forward modeling approach. The novelty and exceptional potential of this scheme is twofold: (i) it avoids hypotheses on proxy interpretation and hence suppresses or strongly reduces the errors of interpretation of paleoclimatic records; (ii) it produces states of the climate system that best explain the observations over the last 40 ky, while being consistent with the model physics.
Expected results include:
• The elucidation of the mechanisms explaining rapid changes in ocean circulation and climate over the last 40 ky,
• Improved climate model physics and parameterizations,
• The first projections of future climate changes obtained with a model able to reproduce the highly non linear behavior of the climate system observed over the last 40 ky.
Summary
Rapid changes in ocean circulation and climate have been observed in marine sediment and ice cores, notably over the last 60 thousand years (ky), highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing.
To date, these rapid changes in climate and ocean circulation are still not fully explained. Two main obstacles prevent going beyond the current state of knowledge:
- Paleoclimatic proxy data are by essence only indirect indicators of the climatic variables, and thus can not be directly compared with model outputs;
- A 4-D (latitude, longitude, water depth, time) reconstruction of Atlantic water masses over the past 40 ky is lacking: previous studies have generated isolated records with disparate timescales which do not allow the causes of circulation changes to be identified.
Overcoming these two major limitations will lead to major breakthroughs in climate research. Concretely, I will create the first database of Atlantic deep-sea records over the last 40 ky, and extract full climatic information from these records through an innovative model-data integration scheme using an isotopic proxy forward modeling approach. The novelty and exceptional potential of this scheme is twofold: (i) it avoids hypotheses on proxy interpretation and hence suppresses or strongly reduces the errors of interpretation of paleoclimatic records; (ii) it produces states of the climate system that best explain the observations over the last 40 ky, while being consistent with the model physics.
Expected results include:
• The elucidation of the mechanisms explaining rapid changes in ocean circulation and climate over the last 40 ky,
• Improved climate model physics and parameterizations,
• The first projections of future climate changes obtained with a model able to reproduce the highly non linear behavior of the climate system observed over the last 40 ky.
Max ERC Funding
3 000 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ACCRETE
Project Accretion and Early Differentiation of the Earth and Terrestrial Planets
Researcher (PI) David Crowhurst Rubie
Host Institution (HI) UNIVERSITAET BAYREUTH
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary Formation of the Earth and the other terrestrial planets of our Solar System (Mercury, Venus and Mars) commenced 4.568 billion years ago and occurred on a time scale of about 100 million years. These planets grew by the process of accretion, which involved numerous collisions with smaller (Moon- to Mars-size) bodies. Impacts with such bodies released sufficient energy to cause large-scale melting and the formation of deep “magma oceans”. Such magma oceans enabled liquid metal to separate from liquid silicate, sink and accumulate to form the metallic cores of the planets. Thus core formation in terrestrial planets was a multistage process, intimately related to the major impacts during accretion, that determined the chemistry of planetary mantles. However, until now, accretion, as modelled by astrophysicists, and core formation, as modelled by geochemists, have been treated as completely independent processes. The fundamental and crucial aim of this ambitious interdisciplinary proposal is to integrate astrophysical models of planetary accretion with geochemical models of planetary differentiation together with cosmochemical constraints obtained from meteorites. The research will involve integrating new models of planetary accretion with core formation models based on the partitioning of a large number of elements between liquid metal and liquid silicate that we will determine experimentally at pressures up to about 100 gigapascals (equivalent to 2400 km deep in the Earth). By comparing our results with the known physical and chemical characteristics of the terrestrial planets, we will obtain a comprehensive understanding of how these planets formed, grew and evolved, both physically and chemically, with time. The integration of chemistry and planetary differentiation with accretion models is a new ground-breaking concept that will lead, through synergies and feedback, to major new advances in the Earth and planetary sciences.
Summary
Formation of the Earth and the other terrestrial planets of our Solar System (Mercury, Venus and Mars) commenced 4.568 billion years ago and occurred on a time scale of about 100 million years. These planets grew by the process of accretion, which involved numerous collisions with smaller (Moon- to Mars-size) bodies. Impacts with such bodies released sufficient energy to cause large-scale melting and the formation of deep “magma oceans”. Such magma oceans enabled liquid metal to separate from liquid silicate, sink and accumulate to form the metallic cores of the planets. Thus core formation in terrestrial planets was a multistage process, intimately related to the major impacts during accretion, that determined the chemistry of planetary mantles. However, until now, accretion, as modelled by astrophysicists, and core formation, as modelled by geochemists, have been treated as completely independent processes. The fundamental and crucial aim of this ambitious interdisciplinary proposal is to integrate astrophysical models of planetary accretion with geochemical models of planetary differentiation together with cosmochemical constraints obtained from meteorites. The research will involve integrating new models of planetary accretion with core formation models based on the partitioning of a large number of elements between liquid metal and liquid silicate that we will determine experimentally at pressures up to about 100 gigapascals (equivalent to 2400 km deep in the Earth). By comparing our results with the known physical and chemical characteristics of the terrestrial planets, we will obtain a comprehensive understanding of how these planets formed, grew and evolved, both physically and chemically, with time. The integration of chemistry and planetary differentiation with accretion models is a new ground-breaking concept that will lead, through synergies and feedback, to major new advances in the Earth and planetary sciences.
Max ERC Funding
1 826 200 €
Duration
Start date: 2012-05-01, End date: 2018-04-30