Project acronym ActiveWindFarms
Project Active Wind Farms: Optimization and Control of Atmospheric Energy Extraction in Gigawatt Wind Farms
Researcher (PI) Johan Meyers
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary With the recognition that wind energy will become an important contributor to the world’s energy portfolio, several wind farms with a capacity of over 1 gigawatt are in planning phase. In the past, engineering of wind farms focused on a bottom-up approach, in which atmospheric wind availability was considered to be fixed by climate and weather. However, farms of gigawatt size slow down the Atmospheric Boundary Layer (ABL) as a whole, reducing the availability of wind at turbine hub height. In Denmark’s large off-shore farms, this leads to underperformance of turbines which can reach levels of 40%–50% compared to the same turbine in a lone-standing case. For large wind farms, the vertical structure and turbulence physics of the flow in the ABL become crucial ingredients in their design and operation. This introduces a new set of scientific challenges related to the design and control of large wind farms. The major ambition of the present research proposal is to employ optimal control techniques to control the interaction between large wind farms and the ABL, and optimize overall farm-power extraction. Individual turbines are used as flow actuators by dynamically pitching their blades using time scales ranging between 10 to 500 seconds. The application of such control efforts on the atmospheric boundary layer has never been attempted before, and introduces flow control on a physical scale which is currently unprecedented. The PI possesses a unique combination of expertise and tools enabling these developments: efficient parallel large-eddy simulations of wind farms, multi-scale turbine modeling, and gradient-based optimization in large optimization-parameter spaces using adjoint formulations. To ensure a maximum impact on the wind-engineering field, the project aims at optimal control, experimental wind-tunnel validation, and at including multi-disciplinary aspects, related to structural mechanics, power quality, and controller design.
Summary
With the recognition that wind energy will become an important contributor to the world’s energy portfolio, several wind farms with a capacity of over 1 gigawatt are in planning phase. In the past, engineering of wind farms focused on a bottom-up approach, in which atmospheric wind availability was considered to be fixed by climate and weather. However, farms of gigawatt size slow down the Atmospheric Boundary Layer (ABL) as a whole, reducing the availability of wind at turbine hub height. In Denmark’s large off-shore farms, this leads to underperformance of turbines which can reach levels of 40%–50% compared to the same turbine in a lone-standing case. For large wind farms, the vertical structure and turbulence physics of the flow in the ABL become crucial ingredients in their design and operation. This introduces a new set of scientific challenges related to the design and control of large wind farms. The major ambition of the present research proposal is to employ optimal control techniques to control the interaction between large wind farms and the ABL, and optimize overall farm-power extraction. Individual turbines are used as flow actuators by dynamically pitching their blades using time scales ranging between 10 to 500 seconds. The application of such control efforts on the atmospheric boundary layer has never been attempted before, and introduces flow control on a physical scale which is currently unprecedented. The PI possesses a unique combination of expertise and tools enabling these developments: efficient parallel large-eddy simulations of wind farms, multi-scale turbine modeling, and gradient-based optimization in large optimization-parameter spaces using adjoint formulations. To ensure a maximum impact on the wind-engineering field, the project aims at optimal control, experimental wind-tunnel validation, and at including multi-disciplinary aspects, related to structural mechanics, power quality, and controller design.
Max ERC Funding
1 499 241 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym AEROSOL
Project Astrochemistry of old stars:direct probing of unique chemical laboratories
Researcher (PI) Leen Katrien Els Decin
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Consolidator Grant (CoG), PE9, ERC-2014-CoG
Summary The gas and dust in the interstellar medium (ISM) drive the chemical evolution of galaxies, the formation of stars and planets, and the synthesis of complex prebiotic molecules. The prime birth places for this interstellar material are the winds of evolved (super)giant stars. These winds are unique chemical laboratories, in which a large variety of gas and dust species radially expand away from the star.
Recent progress on the observations of these winds has been impressive thanks to Herschel and ALMA. The next challenge is to unravel the wealth of chemical information contained in these data. This is an ambitious task since (1) a plethora of physical and chemical processes interact in a complex way, (2) laboratory data to interpret these interactions are lacking, and (3) theoretical tools to analyse the data do not meet current needs.
To boost the knowledge of the physics and chemistry characterizing these winds, I propose a world-leading multi-disciplinary project combining (1) high-quality data, (2) novel theoretical wind models, and (3) targeted laboratory experiments. The aim is to pinpoint the dominant chemical pathways, unravel the transition from gas-phase to dust species, elucidate the role of clumps on the overall wind structure, and study the reciprocal effect between various dynamical and chemical phenomena.
Now is the right time for this ambitious project thanks to the availability of (1) high-quality multi-wavelength data, including ALMA and Herschel data of the PI, (2) supercomputers enabling a homogeneous analysis of the data using sophisticated theoretical wind models, and (3) novel laboratory equipment to measure the gas-phase reaction rates of key species.
This project will have far-reaching impact on (1) the field of evolved stars, (2) the understanding of the chemical lifecycle of the ISM, (3) chemical studies of dynamically more complex systems, such as exoplanets, protostars, supernovae etc., and (4) it will guide new instrument development.
Summary
The gas and dust in the interstellar medium (ISM) drive the chemical evolution of galaxies, the formation of stars and planets, and the synthesis of complex prebiotic molecules. The prime birth places for this interstellar material are the winds of evolved (super)giant stars. These winds are unique chemical laboratories, in which a large variety of gas and dust species radially expand away from the star.
Recent progress on the observations of these winds has been impressive thanks to Herschel and ALMA. The next challenge is to unravel the wealth of chemical information contained in these data. This is an ambitious task since (1) a plethora of physical and chemical processes interact in a complex way, (2) laboratory data to interpret these interactions are lacking, and (3) theoretical tools to analyse the data do not meet current needs.
To boost the knowledge of the physics and chemistry characterizing these winds, I propose a world-leading multi-disciplinary project combining (1) high-quality data, (2) novel theoretical wind models, and (3) targeted laboratory experiments. The aim is to pinpoint the dominant chemical pathways, unravel the transition from gas-phase to dust species, elucidate the role of clumps on the overall wind structure, and study the reciprocal effect between various dynamical and chemical phenomena.
Now is the right time for this ambitious project thanks to the availability of (1) high-quality multi-wavelength data, including ALMA and Herschel data of the PI, (2) supercomputers enabling a homogeneous analysis of the data using sophisticated theoretical wind models, and (3) novel laboratory equipment to measure the gas-phase reaction rates of key species.
This project will have far-reaching impact on (1) the field of evolved stars, (2) the understanding of the chemical lifecycle of the ISM, (3) chemical studies of dynamically more complex systems, such as exoplanets, protostars, supernovae etc., and (4) it will guide new instrument development.
Max ERC Funding
2 605 897 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym AEROSPACEPHYS
Project Multiphysics models and simulations for reacting and plasma flows applied to the space exploration program
Researcher (PI) Thierry Edouard Bertrand Magin
Host Institution (HI) INSTITUT VON KARMAN DE DYNAMIQUE DES FLUIDES
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary Space exploration is one of boldest and most exciting endeavors that humanity has undertaken, and it holds enormous promise for the future. Our next challenges for the spatial conquest include bringing back samples to Earth by means of robotic missions and continuing the manned exploration program, which aims at sending human beings to Mars and bring them home safely. Inaccurate prediction of the heat-flux to the surface of the spacecraft heat shield can be fatal for the crew or the success of a robotic mission. This quantity is estimated during the design phase. An accurate prediction is a particularly complex task, regarding modelling of the following phenomena that are potential “mission killers:” 1) Radiation of the plasma in the shock layer, 2) Complex surface chemistry on the thermal protection material, 3) Flow transition from laminar to turbulent. Our poor understanding of the coupled mechanisms of radiation, ablation, and transition leads to the difficulties in flux prediction. To avoid failure and ensure safety of the astronauts and payload, engineers resort to “safety factors” to determine the thickness of the heat shield, at the expense of the mass of embarked payload. Thinking out of the box and basic research are thus necessary for advancements of the models that will better define the environment and requirements for the design and safe operation of tomorrow’s space vehicles and planetary probes for the manned space exploration. The three basic ingredients for predictive science are: 1) Physico-chemical models, 2) Computational methods, 3) Experimental data. We propose to follow a complementary approach for prediction. The proposed research aims at: “Integrating new advanced physico-chemical models and computational methods, based on a multidisciplinary approach developed together with physicists, chemists, and applied mathematicians, to create a top-notch multiphysics and multiscale numerical platform for simulations of planetary atmosphere entries, crucial to the new challenges of the manned space exploration program. Experimental data will also be used for validation, following state-of-the-art uncertainty quantification methods.”
Summary
Space exploration is one of boldest and most exciting endeavors that humanity has undertaken, and it holds enormous promise for the future. Our next challenges for the spatial conquest include bringing back samples to Earth by means of robotic missions and continuing the manned exploration program, which aims at sending human beings to Mars and bring them home safely. Inaccurate prediction of the heat-flux to the surface of the spacecraft heat shield can be fatal for the crew or the success of a robotic mission. This quantity is estimated during the design phase. An accurate prediction is a particularly complex task, regarding modelling of the following phenomena that are potential “mission killers:” 1) Radiation of the plasma in the shock layer, 2) Complex surface chemistry on the thermal protection material, 3) Flow transition from laminar to turbulent. Our poor understanding of the coupled mechanisms of radiation, ablation, and transition leads to the difficulties in flux prediction. To avoid failure and ensure safety of the astronauts and payload, engineers resort to “safety factors” to determine the thickness of the heat shield, at the expense of the mass of embarked payload. Thinking out of the box and basic research are thus necessary for advancements of the models that will better define the environment and requirements for the design and safe operation of tomorrow’s space vehicles and planetary probes for the manned space exploration. The three basic ingredients for predictive science are: 1) Physico-chemical models, 2) Computational methods, 3) Experimental data. We propose to follow a complementary approach for prediction. The proposed research aims at: “Integrating new advanced physico-chemical models and computational methods, based on a multidisciplinary approach developed together with physicists, chemists, and applied mathematicians, to create a top-notch multiphysics and multiscale numerical platform for simulations of planetary atmosphere entries, crucial to the new challenges of the manned space exploration program. Experimental data will also be used for validation, following state-of-the-art uncertainty quantification methods.”
Max ERC Funding
1 494 892 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym ALUFIX
Project Friction stir processing based local damage mitigation and healing in aluminium alloys
Researcher (PI) Aude SIMAR
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Summary
ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Max ERC Funding
1 497 447 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym BOSS-WAVES
Project Back-reaction Of Solar plaSma to WAVES
Researcher (PI) Tom VAN DOORSSELAERE
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary "The solar coronal heating problem is a long-standing astrophysical problem. The slow DC (reconnection) heating models are well developed in detailed 3D numerical simulations. The fast AC (wave) heating mechanisms have traditionally been neglected since there were no wave observations.
Since 2007, we know that the solar atmosphere is filled with transverse waves, but still we have no adequate models (except for my own 1D analytical models) for their dissipation and plasma heating by these waves. We urgently need to know the contribution of these waves to the coronal heating problem.
In BOSS-WAVES, I will innovate the AC wave heating models by utilising novel 3D numerical simulations of propagating transverse waves. From previous results in my team, I know that the inclusion of the back-reaction of the solar plasma is crucial in understanding the energy dissipation: the wave heating leads to chromospheric evaporation and plasma mixing (by the Kelvin-Helmholtz instability).
BOSS-WAVES will bring the AC heating models to the same level of state-of-the-art DC heating models.
The high-risk, high-gain goals are (1) to create a coronal loop heated by waves, starting from an "empty" corona, by evaporating chromospheric material, and (2) to pioneer models for whole active regions heated by transverse waves."
Summary
"The solar coronal heating problem is a long-standing astrophysical problem. The slow DC (reconnection) heating models are well developed in detailed 3D numerical simulations. The fast AC (wave) heating mechanisms have traditionally been neglected since there were no wave observations.
Since 2007, we know that the solar atmosphere is filled with transverse waves, but still we have no adequate models (except for my own 1D analytical models) for their dissipation and plasma heating by these waves. We urgently need to know the contribution of these waves to the coronal heating problem.
In BOSS-WAVES, I will innovate the AC wave heating models by utilising novel 3D numerical simulations of propagating transverse waves. From previous results in my team, I know that the inclusion of the back-reaction of the solar plasma is crucial in understanding the energy dissipation: the wave heating leads to chromospheric evaporation and plasma mixing (by the Kelvin-Helmholtz instability).
BOSS-WAVES will bring the AC heating models to the same level of state-of-the-art DC heating models.
The high-risk, high-gain goals are (1) to create a coronal loop heated by waves, starting from an "empty" corona, by evaporating chromospheric material, and (2) to pioneer models for whole active regions heated by transverse waves."
Max ERC Funding
1 991 960 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym BRIDGE
Project Biomimetic process design for tissue regeneration:
from bench to bedside via in silico modelling
Researcher (PI) Liesbet Geris
Host Institution (HI) UNIVERSITE DE LIEGE
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary "Tissue engineering (TE), the interdisciplinary field combining biomedical and engineering sciences in the search for functional man-made organ replacements, has key issues with the quantity and quality of the generated products. Protocols followed in the lab are mainly trial and error based, requiring a huge amount of manual interventions and lacking clear early time-point quality criteria to guide the process. As a result, these processes are very hard to scale up to industrial production levels. BRIDGE aims to fortify the engineering aspects of the TE field by adding a higher level of understanding and control to the manufacturing process (MP) through the use of in silico models. BRIDGE will focus on the bone TE field to provide proof of concept for its in silico approach.
The combination of the applicant's well-received published and ongoing work on a wide range of modelling tools in the bone field combined with the state-of-the-art experimental techniques present in the TE lab of the additional participant allows envisaging following innovation and impact:
1. proof-of-concept of the use of an in silico blue-print for the design and control of a robust modular TE MP;
2. model-derived optimised culture conditions for patient derived cell populations increasing modular robustness of in vitro chondrogenesis/endochondral ossification;
3. in silico identification of a limited set of in vitro biomarkers that is predictive of the in vivo outcome;
4. model-derived optimised culture conditions increasing quantity and quality of the in vivo outcome of the TE MP;
5. incorporation of congenital defects in the in silico MP design, constituting a further validation of BRIDGE’s in silico approach and a necessary step towards personalised medical care.
We believe that the systematic – and unprecedented – integration of (bone) TE and mathematical modelling, as proposed in BRIDGE, is required to come to a rationalized, engineering approach to design and control bone TE MPs."
Summary
"Tissue engineering (TE), the interdisciplinary field combining biomedical and engineering sciences in the search for functional man-made organ replacements, has key issues with the quantity and quality of the generated products. Protocols followed in the lab are mainly trial and error based, requiring a huge amount of manual interventions and lacking clear early time-point quality criteria to guide the process. As a result, these processes are very hard to scale up to industrial production levels. BRIDGE aims to fortify the engineering aspects of the TE field by adding a higher level of understanding and control to the manufacturing process (MP) through the use of in silico models. BRIDGE will focus on the bone TE field to provide proof of concept for its in silico approach.
The combination of the applicant's well-received published and ongoing work on a wide range of modelling tools in the bone field combined with the state-of-the-art experimental techniques present in the TE lab of the additional participant allows envisaging following innovation and impact:
1. proof-of-concept of the use of an in silico blue-print for the design and control of a robust modular TE MP;
2. model-derived optimised culture conditions for patient derived cell populations increasing modular robustness of in vitro chondrogenesis/endochondral ossification;
3. in silico identification of a limited set of in vitro biomarkers that is predictive of the in vivo outcome;
4. model-derived optimised culture conditions increasing quantity and quality of the in vivo outcome of the TE MP;
5. incorporation of congenital defects in the in silico MP design, constituting a further validation of BRIDGE’s in silico approach and a necessary step towards personalised medical care.
We believe that the systematic – and unprecedented – integration of (bone) TE and mathematical modelling, as proposed in BRIDGE, is required to come to a rationalized, engineering approach to design and control bone TE MPs."
Max ERC Funding
1 191 440 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym CAPS
Project Capillary suspensions: a novel route for versatile, cost efficient and environmentally friendly material design
Researcher (PI) Erin Crystal Koos
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary A wide variety of materials including coatings and adhesives, emerging materials for nanotechnology products, as well as everyday food products are processed or delivered as suspensions. The flow properties of such suspensions must be finely adjusted according to the demands of the respective processing techniques, even for the feel of cosmetics and the perception of food products is highly influenced by their rheological properties. The recently developed capillary suspensions concept has the potential to revolutionize product formulations and material design. When a small amount (less than 1%) of a second immiscible liquid is added to the continuous phase of a suspension, the rheological properties of the mixture are dramatically altered from a fluid-like to a gel-like state or from a weak to a strong gel and the strength can be tuned in a wide range covering orders of magnitude. Capillary suspensions can be used to create smart, tunable fluids, stabilize mixtures that would otherwise phase separate, significantly reduce the amount organic or polymeric additives, and the strong particle network can be used as a precursor for the manufacturing of cost-efficient porous ceramics and foams with unprecedented properties.
This project will investigate the influence of factors determining capillary suspension formation, the strength of these admixtures as a function of these aspects, and how capillary suspensions depend on external forces. Only such a fundamental understanding of the network formation in capillary suspensions on both the micro- and macroscopic scale will allow for the design of sophisticated new materials. The main objectives of this proposal are to quantify and predict the strength of these admixtures and then use this information to design a variety of new materials in very different application areas including, e.g., porous materials, water-based coatings, ultra low fat foods, and conductive films.
Summary
A wide variety of materials including coatings and adhesives, emerging materials for nanotechnology products, as well as everyday food products are processed or delivered as suspensions. The flow properties of such suspensions must be finely adjusted according to the demands of the respective processing techniques, even for the feel of cosmetics and the perception of food products is highly influenced by their rheological properties. The recently developed capillary suspensions concept has the potential to revolutionize product formulations and material design. When a small amount (less than 1%) of a second immiscible liquid is added to the continuous phase of a suspension, the rheological properties of the mixture are dramatically altered from a fluid-like to a gel-like state or from a weak to a strong gel and the strength can be tuned in a wide range covering orders of magnitude. Capillary suspensions can be used to create smart, tunable fluids, stabilize mixtures that would otherwise phase separate, significantly reduce the amount organic or polymeric additives, and the strong particle network can be used as a precursor for the manufacturing of cost-efficient porous ceramics and foams with unprecedented properties.
This project will investigate the influence of factors determining capillary suspension formation, the strength of these admixtures as a function of these aspects, and how capillary suspensions depend on external forces. Only such a fundamental understanding of the network formation in capillary suspensions on both the micro- and macroscopic scale will allow for the design of sophisticated new materials. The main objectives of this proposal are to quantify and predict the strength of these admixtures and then use this information to design a variety of new materials in very different application areas including, e.g., porous materials, water-based coatings, ultra low fat foods, and conductive films.
Max ERC Funding
1 489 618 €
Duration
Start date: 2013-08-01, End date: 2018-07-31
Project acronym CO2LIFE
Project BIOMIMETIC FIXATION OF CO2 AS SOURCE OF SALTS AND GLUCOSE
Researcher (PI) Patricia LUIS ALCONERO
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary The continued increase in the atmospheric concentration of CO2 due to anthropogenic emissions is leading to significant changes in climate, with the industry accounting for one-third of all the energy used globally and for almost 40% of worldwide CO2 emissions. Fast actions are required to decrease the concentration of this greenhouse gas in the atmosphere, value that has currently reaching 400 ppm. Among the technological possibilities that are on the table to reduce CO2 emissions, carbon capture and storage into geological deposits is one of the main strategies that is being applied. However, the final objective of this strategy is to remove CO2 without considering the enormous potential of this molecule as a source of carbon for the production of valuable compounds. Nature has developed an effective and equilibrated mechanism to concentrate CO2 and fixate the inorganic carbon into organic material (e.g., glucose) by means of enzymatic action. Mimicking Nature and take advantage of millions of years of evolution should be considered as a basic starting point in the development of smart and highly effective processes. In addition, the use of amino-acid salts for CO2 capture is envisaged as a potential approach to recover CO2 in the form of (bi)carbonates.
The project CO2LIFE presents the overall objective of developing a chemical process that converts carbon dioxide into valuable molecules using membrane technology. The strategy followed in this project is two-fold: i) CO2 membrane-based absorption-crystallization process on basis of using amino-acid salts, and ii) CO2 conversion into glucose or salts by using enzymes as catalysts supported on or retained by membranes. The final product, i.e. (bi)carbonates or glucose, has a large interest in the (bio)chemical industry, thus, new CO2 emissions are avoided and the carbon cycle is closed. This project will provide a technological solution at industrial scale for the removal and reutilization of CO2.
Summary
The continued increase in the atmospheric concentration of CO2 due to anthropogenic emissions is leading to significant changes in climate, with the industry accounting for one-third of all the energy used globally and for almost 40% of worldwide CO2 emissions. Fast actions are required to decrease the concentration of this greenhouse gas in the atmosphere, value that has currently reaching 400 ppm. Among the technological possibilities that are on the table to reduce CO2 emissions, carbon capture and storage into geological deposits is one of the main strategies that is being applied. However, the final objective of this strategy is to remove CO2 without considering the enormous potential of this molecule as a source of carbon for the production of valuable compounds. Nature has developed an effective and equilibrated mechanism to concentrate CO2 and fixate the inorganic carbon into organic material (e.g., glucose) by means of enzymatic action. Mimicking Nature and take advantage of millions of years of evolution should be considered as a basic starting point in the development of smart and highly effective processes. In addition, the use of amino-acid salts for CO2 capture is envisaged as a potential approach to recover CO2 in the form of (bi)carbonates.
The project CO2LIFE presents the overall objective of developing a chemical process that converts carbon dioxide into valuable molecules using membrane technology. The strategy followed in this project is two-fold: i) CO2 membrane-based absorption-crystallization process on basis of using amino-acid salts, and ii) CO2 conversion into glucose or salts by using enzymes as catalysts supported on or retained by membranes. The final product, i.e. (bi)carbonates or glucose, has a large interest in the (bio)chemical industry, thus, new CO2 emissions are avoided and the carbon cycle is closed. This project will provide a technological solution at industrial scale for the removal and reutilization of CO2.
Max ERC Funding
1 302 710 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym COCOON
Project Conformal coating of nanoporous materials
Researcher (PI) Christophe Detavernier
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), PE8, ERC-2009-StG
Summary CONTEXT - Nanoporous structures are used for application in catalysis, molecular separation, fuel cells, dye sensitized solar cells etc. Given the near molecular size of the porous network, it is extremely challenging to modify the interior surface of the pores after the nanoporous material has been synthesized.
THIS PROPOSAL - Atomic Layer Deposition (ALD) is envisioned as a novel technique for creating catalytically active sites and for controlling the pore size distribution in nanoporous materials. ALD is a self-limited growth method that is characterized by alternating exposure of the growing film to precursor vapours, resulting in the sequential deposition of (sub)monolayers. It provides atomic level control of thickness and composition, and is currently used in micro-electronics to grow films into structures with aspect ratios of up to 100 / 1. We aim to make the fundamental breakthroughs necessary to enable atomic layer deposition to engineer the composition, size and shape of the interior surface of nanoporous materials with aspect ratios in excess of 10,000 / 1.
POTENTIAL IMPACT Achieving these objectives will enable atomic level engineering of the interior surface of any porous material. We plan to focus on three specific applications where our results will have both medium and long term impacts:
- Engineering the composition of pore walls using ALD, e.g. to create catalytic sites (e.g. Al for acid sites, Ti for redox sites, or Pt, Pd or Ni)
- chemical functionalization of the pore walls with atomic level control can result in breakthrough applications in the fields of catalysis and sensors.
- Atomic level control of the size of nanopores through ALD controlling the pore size distribution of molecular sieves can potentially lead to breakthrough applications in molecular separation and filtration.
- Nanocasting replication of a mesoporous template by means of ALD can result in the mass-scale production of nanotubes.
Summary
CONTEXT - Nanoporous structures are used for application in catalysis, molecular separation, fuel cells, dye sensitized solar cells etc. Given the near molecular size of the porous network, it is extremely challenging to modify the interior surface of the pores after the nanoporous material has been synthesized.
THIS PROPOSAL - Atomic Layer Deposition (ALD) is envisioned as a novel technique for creating catalytically active sites and for controlling the pore size distribution in nanoporous materials. ALD is a self-limited growth method that is characterized by alternating exposure of the growing film to precursor vapours, resulting in the sequential deposition of (sub)monolayers. It provides atomic level control of thickness and composition, and is currently used in micro-electronics to grow films into structures with aspect ratios of up to 100 / 1. We aim to make the fundamental breakthroughs necessary to enable atomic layer deposition to engineer the composition, size and shape of the interior surface of nanoporous materials with aspect ratios in excess of 10,000 / 1.
POTENTIAL IMPACT Achieving these objectives will enable atomic level engineering of the interior surface of any porous material. We plan to focus on three specific applications where our results will have both medium and long term impacts:
- Engineering the composition of pore walls using ALD, e.g. to create catalytic sites (e.g. Al for acid sites, Ti for redox sites, or Pt, Pd or Ni)
- chemical functionalization of the pore walls with atomic level control can result in breakthrough applications in the fields of catalysis and sensors.
- Atomic level control of the size of nanopores through ALD controlling the pore size distribution of molecular sieves can potentially lead to breakthrough applications in molecular separation and filtration.
- Nanocasting replication of a mesoporous template by means of ALD can result in the mass-scale production of nanotubes.
Max ERC Funding
1 432 800 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym COUNTATOMS
Project Counting Atoms in nanomaterials
Researcher (PI) Gustaaf Van Tendeloo
Host Institution (HI) UNIVERSITEIT ANTWERPEN
Call Details Advanced Grant (AdG), PE5, ERC-2009-AdG
Summary COUNTING ATOMS IN NANOMATERIALS Advanced electron microscopy for solid state materials has evolved from a qualitative imaging setup to a quantitative scientific technique. This will allow us not only to probe and better understand the fundamental behaviour of (nano) materials at an atomic level but also to guide technology towards new horizons. The installation in 2009 of a new and unique electron microscope with a real space resolution of 50 pm and an energy resolution of 100 meV will make it possible to perform unique experiments. We believe that the position of atoms at an interface or at a surface can be determined with a precision of 1 pm; this precision is essential as input for modelling the materials properties. It will be first applied to explain the fascinating behaviour of multilayer ceramic materials. The new experimental limits will also allow us to literally count the number of atoms within an atomic columns; particularly counting the number of foreign atoms. This will not only require experimental skills, but also theoretical support. A real challenge is probing the magnetic and electronic information of a single atom column. According to theory this would be possible using ultra high resolution. This new probing technique will be of extreme importance for e.g. spintronics. Modern (nano) technology more and more requires information in 3 dimensions (3D), rather than in 2D. This is possible through electron tomography; this technique will be optimised in order to obtain sub nanometer precision. A final challenge is the study of the interface between soft matter (bio- or organic materials) and hard matter. This was hitherto impossible because of the radiation damage of the electron beam. With the possibility to lower the voltage to 80 kV and possibly 50 kV, maintaining more or less the resolution, we will hopefully be able to probe the active sites for catalysis.
Summary
COUNTING ATOMS IN NANOMATERIALS Advanced electron microscopy for solid state materials has evolved from a qualitative imaging setup to a quantitative scientific technique. This will allow us not only to probe and better understand the fundamental behaviour of (nano) materials at an atomic level but also to guide technology towards new horizons. The installation in 2009 of a new and unique electron microscope with a real space resolution of 50 pm and an energy resolution of 100 meV will make it possible to perform unique experiments. We believe that the position of atoms at an interface or at a surface can be determined with a precision of 1 pm; this precision is essential as input for modelling the materials properties. It will be first applied to explain the fascinating behaviour of multilayer ceramic materials. The new experimental limits will also allow us to literally count the number of atoms within an atomic columns; particularly counting the number of foreign atoms. This will not only require experimental skills, but also theoretical support. A real challenge is probing the magnetic and electronic information of a single atom column. According to theory this would be possible using ultra high resolution. This new probing technique will be of extreme importance for e.g. spintronics. Modern (nano) technology more and more requires information in 3 dimensions (3D), rather than in 2D. This is possible through electron tomography; this technique will be optimised in order to obtain sub nanometer precision. A final challenge is the study of the interface between soft matter (bio- or organic materials) and hard matter. This was hitherto impossible because of the radiation damage of the electron beam. With the possibility to lower the voltage to 80 kV and possibly 50 kV, maintaining more or less the resolution, we will hopefully be able to probe the active sites for catalysis.
Max ERC Funding
2 000 160 €
Duration
Start date: 2010-01-01, End date: 2014-12-31