Project acronym DEEPINSIGHT
Project Preclinical micro-endoscopy in tumors: targeting metastatic intravasation and resistance
Researcher (PI) Peter Friedl
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary Poor prognosis of cancer results from two central progression events, (i) the intravasation of cancer cells into blood vessels which leads to metastasis to distant organs and ultimately lethal tumor overload and (ii) cancer cell survival and adaptation to metabolic stress which causes resistance to anti-cancer therapy and limits life expectancy. Using a novel multiphoton microendoscope device recently developed by myself and collaborators, I here aim to overcome tissue penetration limits and identify important progression events deeply inside tumors. The hard- and software of the microendoscope will be optimized for automated position control and panoramic rotation to sample large tissue volumes and validated for stability and safety. We then will address the locations and mechanisms inside tumors that: (1) enable tumor-cell migration and penetration into blood vessels for distant metastasis and (2) mediate enhanced tumor-cell survival and resistance to experimental radiation- and chemotherapy. This basic inventory will serve to address (3) whether and how the niches for both intravasation and resistance overlap and connected with microenvironmental triggers, including defective blood vessels, signalling pathways of malnutrition and hypoxia, and tissue damage. The strategies include 3D microscopy of live fluorescent multi-color tumors and molecular reporters to record cancer cell migration, proliferation and death in the context with embedding tissue structures and metabolic signals. Once identified and characterized, (4) the niches and signals inducing intravasation and resistance (i.e. integrin adhesion receptors, cytoskeletal regulators, metabolic signalling) will be exploited as targets to enhance experimental radiation and chemotherapy. Preclinical microendoscopy will deliver new insight into cancer progression further contribute impulses to microendoscopy for disease monitoring in patients (“optical biopsy”).
Summary
Poor prognosis of cancer results from two central progression events, (i) the intravasation of cancer cells into blood vessels which leads to metastasis to distant organs and ultimately lethal tumor overload and (ii) cancer cell survival and adaptation to metabolic stress which causes resistance to anti-cancer therapy and limits life expectancy. Using a novel multiphoton microendoscope device recently developed by myself and collaborators, I here aim to overcome tissue penetration limits and identify important progression events deeply inside tumors. The hard- and software of the microendoscope will be optimized for automated position control and panoramic rotation to sample large tissue volumes and validated for stability and safety. We then will address the locations and mechanisms inside tumors that: (1) enable tumor-cell migration and penetration into blood vessels for distant metastasis and (2) mediate enhanced tumor-cell survival and resistance to experimental radiation- and chemotherapy. This basic inventory will serve to address (3) whether and how the niches for both intravasation and resistance overlap and connected with microenvironmental triggers, including defective blood vessels, signalling pathways of malnutrition and hypoxia, and tissue damage. The strategies include 3D microscopy of live fluorescent multi-color tumors and molecular reporters to record cancer cell migration, proliferation and death in the context with embedding tissue structures and metabolic signals. Once identified and characterized, (4) the niches and signals inducing intravasation and resistance (i.e. integrin adhesion receptors, cytoskeletal regulators, metabolic signalling) will be exploited as targets to enhance experimental radiation and chemotherapy. Preclinical microendoscopy will deliver new insight into cancer progression further contribute impulses to microendoscopy for disease monitoring in patients (“optical biopsy”).
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-12-01, End date: 2019-11-30
Project acronym ERC-ID
Project Excision Repair and chromatin interaction dynamics
Researcher (PI) Willem Vermeulen
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary "DNA damage is a fact of life. Lesions hamper genome function, induce mutations causing cancer and trigger senescence or cell death contributing to aging. Therefore cells are equipped with a sophisticated defence machinery: DNA Damage Response (DDR) including different repair pathways. Nucleotide excision repair (NER) is versatile repair process, eliminating helix-distorting lesions, e.g. bulky adducts and sun-induced lesions. Very cytotoxic transcription-blocking lesions are removed by a dedicated sub-pathway, transcription-coupled (TC-)NER. The impact of NER is highlighted by 4 disorders: xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and UV-sensitive syndrome (UVSS). XP patients are cancer-prone due to global-genome (GG-)NER defects, whereas CS patients, impaired in TC-NER, display progeroid features, which are thought to derive from endogenous oxidative DNA lesions hampering transcription. Consistent with this, CS cells are sensitive to oxidative agents, whereas TC-NER-deficient UVSS patients are not sensitive to oxidative agents and do not display aging features. This implies lesion-specific TC-NER, arguing for distinct operational TC-repair machineries. The relative importance of DDR pathways varies with the type of damage, cell type and stage of development determining onset of cancer and aging pathologies. The challenging ambition of this proposal is to gain in depth insight into the role of NER in protection against cancer and aging by an integral multi-disciplinary approach which includes new mouse models for novel TC-NER genes, live cell and tissue NER kinetic analyses, advanced proteomics and analysis of NER-related chromatin dynamics to dissect cross-talk with other pathways. The strength of this project is the comprehensive strategy, availability of unique tools (e.g. collection of bona fide NER mutant mice), operational top notch technical platforms for all proposed approaches and proven competence and expertise."
Summary
"DNA damage is a fact of life. Lesions hamper genome function, induce mutations causing cancer and trigger senescence or cell death contributing to aging. Therefore cells are equipped with a sophisticated defence machinery: DNA Damage Response (DDR) including different repair pathways. Nucleotide excision repair (NER) is versatile repair process, eliminating helix-distorting lesions, e.g. bulky adducts and sun-induced lesions. Very cytotoxic transcription-blocking lesions are removed by a dedicated sub-pathway, transcription-coupled (TC-)NER. The impact of NER is highlighted by 4 disorders: xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and UV-sensitive syndrome (UVSS). XP patients are cancer-prone due to global-genome (GG-)NER defects, whereas CS patients, impaired in TC-NER, display progeroid features, which are thought to derive from endogenous oxidative DNA lesions hampering transcription. Consistent with this, CS cells are sensitive to oxidative agents, whereas TC-NER-deficient UVSS patients are not sensitive to oxidative agents and do not display aging features. This implies lesion-specific TC-NER, arguing for distinct operational TC-repair machineries. The relative importance of DDR pathways varies with the type of damage, cell type and stage of development determining onset of cancer and aging pathologies. The challenging ambition of this proposal is to gain in depth insight into the role of NER in protection against cancer and aging by an integral multi-disciplinary approach which includes new mouse models for novel TC-NER genes, live cell and tissue NER kinetic analyses, advanced proteomics and analysis of NER-related chromatin dynamics to dissect cross-talk with other pathways. The strength of this project is the comprehensive strategy, availability of unique tools (e.g. collection of bona fide NER mutant mice), operational top notch technical platforms for all proposed approaches and proven competence and expertise."
Max ERC Funding
2 500 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym GLITTER
Project Glioblastoma Inhibition: Targeting Tumour-derived Extracellular-Vesicle Driven Cell-Recruitment
Researcher (PI) Thomas Wurdinger
Host Institution (HI) STICHTING VUMC
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary Glioblastomas (GBMs) are malignant brain tumours and among the most aggressive human cancers. GBMs patients have an extremely poor survival rate due to a complete absence of adequate therapies capable of efficiently targeting GBM cells inside the brain. Recently, we demonstrated that GBM cells release pro-tumoural extracellular vesicles (EVs) into the bloodstream, which emerged as important intermediates in communication with distant peripheral cells in the body. Of note, the distribution of GBM-derived EVs can now be monitored in vivo by employing a novel Cre/LoxP mouse reporter model. This sophisticated imaging model enables the visualisation of normal peripheral cells that have taken up circulating GBM-derived EVs and allows for subsequent tracking of the recruitment of these cells to the tumour. Recent studies have shown that GBM-derived EVs have the capability to manipulate non-neoplastic cells, exploiting them for tumour expansion. Moreover, we have preliminary evidence that GBM-derived EV receptor pathways can be identified and blocked, possibly causing stagnation of GBM tumour growth by preventing recruitment of essential support cells. We aim at identifying these pathways using unbiased RNAi screening, followed by interference with pro-tumoural cell recruitment, using small molecule drugs in our GBM in vivo models. Finally, circulating GBM-derived EVs and their RNA content are also efficiently captured and internalised by blood platelets (PLTs) that can act as efficient EV carriers. Hence, tumour-derived RNA in circulating EVs and PLTs, isolated from the blood of GBM mouse models and patients, may serve as non-invasive biomarkers and companion diagnostics platform. GLITTER aims to; 1) Analyse in detail the EV-driven recruitment and signalling of essential GBM support cells; 2) Halt GBM tumour growth by interference with EV-mediated recruitment of pro-tumoural non-neoplastic cells; 3) Validate the EV/PLT-based diagnostic platform.
Summary
Glioblastomas (GBMs) are malignant brain tumours and among the most aggressive human cancers. GBMs patients have an extremely poor survival rate due to a complete absence of adequate therapies capable of efficiently targeting GBM cells inside the brain. Recently, we demonstrated that GBM cells release pro-tumoural extracellular vesicles (EVs) into the bloodstream, which emerged as important intermediates in communication with distant peripheral cells in the body. Of note, the distribution of GBM-derived EVs can now be monitored in vivo by employing a novel Cre/LoxP mouse reporter model. This sophisticated imaging model enables the visualisation of normal peripheral cells that have taken up circulating GBM-derived EVs and allows for subsequent tracking of the recruitment of these cells to the tumour. Recent studies have shown that GBM-derived EVs have the capability to manipulate non-neoplastic cells, exploiting them for tumour expansion. Moreover, we have preliminary evidence that GBM-derived EV receptor pathways can be identified and blocked, possibly causing stagnation of GBM tumour growth by preventing recruitment of essential support cells. We aim at identifying these pathways using unbiased RNAi screening, followed by interference with pro-tumoural cell recruitment, using small molecule drugs in our GBM in vivo models. Finally, circulating GBM-derived EVs and their RNA content are also efficiently captured and internalised by blood platelets (PLTs) that can act as efficient EV carriers. Hence, tumour-derived RNA in circulating EVs and PLTs, isolated from the blood of GBM mouse models and patients, may serve as non-invasive biomarkers and companion diagnostics platform. GLITTER aims to; 1) Analyse in detail the EV-driven recruitment and signalling of essential GBM support cells; 2) Halt GBM tumour growth by interference with EV-mediated recruitment of pro-tumoural non-neoplastic cells; 3) Validate the EV/PLT-based diagnostic platform.
Max ERC Funding
1 299 292 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MEMPART
Project Membrane partitioning of homologous proteins
Researcher (PI) Geert Van Den Bogaart
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary My goal is to elucidate how structurally closely-related proteins are selectively partitioned in distinct membrane domains that allow localization, clustering and segregation of specific cellular activities. Although many of the mechanisms that govern membrane organization are increasingly well understood, such as lipid ‘rafts’ or protein-anchoring to the cortical cytoskeleton, these mechanisms are not sufficiently specific to account for the partitioning of closely homologous proteins in separate membrane domains. I believe that the observed highly selective membrane partitioning can only be explained by the combined action of protein-protein and protein-lipid interactions and thermodynamic properties of the membrane (length, charge, degree of hydrophobicity). I aim to gain a full understanding of how homologous proteins partition in distinct functional membrane domains by studying SNARE proteins as a model system. Different SNAREs partition in different domains with different degrees of overlap in the plasma membrane where they catalyze the final membrane fusion steps of various exocytotic pathways. I will employ quantitative super-resolution microscopy to study the effects of selective (biochemical and genetic) perturbations on SNARE partitioning in both precisely controllable artificial membranes and in PC12 cells. This will allow me to elucidate the mechanisms, contributions and interplay of individual membrane clustering mechanisms in SNARE domain organization. I then plan to demonstrate that the mechanisms of SNARE partitioning explain the membrane organization of other (homologous) proteins as well. My ultimate ambitious goal is to generate a complete model of how proteins are organized in biological membranes. I anticipate that my findings will uncover new and general mechanisms of membrane organization and, since membranes are involved in almost all cellular processes, my work may have impact on virtually all areas of the health and life sciences.
Summary
My goal is to elucidate how structurally closely-related proteins are selectively partitioned in distinct membrane domains that allow localization, clustering and segregation of specific cellular activities. Although many of the mechanisms that govern membrane organization are increasingly well understood, such as lipid ‘rafts’ or protein-anchoring to the cortical cytoskeleton, these mechanisms are not sufficiently specific to account for the partitioning of closely homologous proteins in separate membrane domains. I believe that the observed highly selective membrane partitioning can only be explained by the combined action of protein-protein and protein-lipid interactions and thermodynamic properties of the membrane (length, charge, degree of hydrophobicity). I aim to gain a full understanding of how homologous proteins partition in distinct functional membrane domains by studying SNARE proteins as a model system. Different SNAREs partition in different domains with different degrees of overlap in the plasma membrane where they catalyze the final membrane fusion steps of various exocytotic pathways. I will employ quantitative super-resolution microscopy to study the effects of selective (biochemical and genetic) perturbations on SNARE partitioning in both precisely controllable artificial membranes and in PC12 cells. This will allow me to elucidate the mechanisms, contributions and interplay of individual membrane clustering mechanisms in SNARE domain organization. I then plan to demonstrate that the mechanisms of SNARE partitioning explain the membrane organization of other (homologous) proteins as well. My ultimate ambitious goal is to generate a complete model of how proteins are organized in biological membranes. I anticipate that my findings will uncover new and general mechanisms of membrane organization and, since membranes are involved in almost all cellular processes, my work may have impact on virtually all areas of the health and life sciences.
Max ERC Funding
1 500 000 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym MICARUS
Project MicroRNA function in cardiac and metabolic disease
Researcher (PI) Eva Van Rooij
Host Institution (HI) KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAW
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary Cardiovascular disease is the primary cause of morbidity and mortality worldwide. Despite numerous treatment options the prevalence of cardiovascular indications continues to increase, underscoring the need for new therapeutic strategies.
In recent years, prominent roles of microRNAs (miRNAs) have been uncovered in a variety of cardiovascular disorders. miRNAs are short, single stranded RNAs that regulate gene expression by suppressing multiple, often related, mRNAs.
Our studies have focussed on the cardiac specific miRNA, miR-208. We showed that, in the setting of heart failure, genetic deletion as well as therapeutic inhibition of miR-208 resulted in reduced cardiac remodeling (less hypertrophy and fibrosis), the inability to upregulate beta-MHC (a sensitive marker of pathological cardiac stress) and improved survival.
Unexpectedly, mice treated with antimiR-208 displayed resistance to obesity and enhanced glucose metabolism in a mouse model of type II diabetes. These effects suggest that the heart plays a previously unrecognized role in systemic metabolic control via a miR-208 dependent mechanism.
Although these studies indicate a crucial role for miR-208 in cardiac remodeling and systemic metabolism, the mechanism of action still remains to be defined. Our preliminary gene expression data indicate a cohort of miR-208 targets to be regulated in our stress models, many of which so far have unknown or ill-studied cardiac functions.
The aim of the present proposal is to use genetics, gene expression analyses, stress models and antimiR approaches to study the relevance of downstream miR-208 targets for cardiac remodeling and total body metabolism and explore whether additional miRNAs besides miR-208 are relevant for cardiometabolic disease. Together these projects will increase our mechanistic understanding of miRNA function in cardiac and metabolic disease which will advance the clinical application of miRNA therapeutics.
Summary
Cardiovascular disease is the primary cause of morbidity and mortality worldwide. Despite numerous treatment options the prevalence of cardiovascular indications continues to increase, underscoring the need for new therapeutic strategies.
In recent years, prominent roles of microRNAs (miRNAs) have been uncovered in a variety of cardiovascular disorders. miRNAs are short, single stranded RNAs that regulate gene expression by suppressing multiple, often related, mRNAs.
Our studies have focussed on the cardiac specific miRNA, miR-208. We showed that, in the setting of heart failure, genetic deletion as well as therapeutic inhibition of miR-208 resulted in reduced cardiac remodeling (less hypertrophy and fibrosis), the inability to upregulate beta-MHC (a sensitive marker of pathological cardiac stress) and improved survival.
Unexpectedly, mice treated with antimiR-208 displayed resistance to obesity and enhanced glucose metabolism in a mouse model of type II diabetes. These effects suggest that the heart plays a previously unrecognized role in systemic metabolic control via a miR-208 dependent mechanism.
Although these studies indicate a crucial role for miR-208 in cardiac remodeling and systemic metabolism, the mechanism of action still remains to be defined. Our preliminary gene expression data indicate a cohort of miR-208 targets to be regulated in our stress models, many of which so far have unknown or ill-studied cardiac functions.
The aim of the present proposal is to use genetics, gene expression analyses, stress models and antimiR approaches to study the relevance of downstream miR-208 targets for cardiac remodeling and total body metabolism and explore whether additional miRNAs besides miR-208 are relevant for cardiometabolic disease. Together these projects will increase our mechanistic understanding of miRNA function in cardiac and metabolic disease which will advance the clinical application of miRNA therapeutics.
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym PROLONGBILESIGNALING
Project Improving Metabolism via Prolonged Bile Acid Signalling
targeting hepatic bile acid uptake to fight metabolic diseases
Researcher (PI) Konstantijn Van De Graaf
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary Bile acids play a pivotal role in energy supply as they facilitate the solubilization and absorption of fat in the intestine. Furthermore, bile acids are recently identified as important signalling molecules regulating glucose metabolism, inflammation and energy expenditure. Targeting bile acid signalling is, therefore, appealing to treat metabolic diseases such as diabetes and atherosclerosis. These disorders are potentially affecting >1 billion individuals worldwide and current options to treat them remain insufficient. I postulate that the hepatic bile acid uptake transporter NTCP (gene name SLC10A1) provides an excellent novel target to improve human health as it determines the duration of bile acid signalling by controlling how fast bile acids are removed from serum after a meal. In this proposal I will elucidate the contribution of bile acid dynamics to energy homeostasis and metabolism and identify the molecular mechanisms that regulate NTCP. My aim is to generate novel strategies to reduce hepatic bile acid uptake to prolong bile-acid signalling and increase energy expenditure, improve glucose handling and reduce atherosclerosis.
My key objectives are:
1. to determine the consequence of NTCP modulation on systemic bile acid dynamics, glucose and energy metabolism in animal models. To this end, I will perform careful metabolic analysis of a unique Slc10a1 knockout model in combination with diet-induced and genetic models for atherosclerosis and diabetes.
2. to identify novel means to inhibit NTCP-mediated bile acid uptake. To this end, I will make use of a FRET-based bile acid sensor that I recently developed to characterize the molecular regulation of hepatic bile acid uptake and to identify FDA-approved drugs that inhibit NTCP-mediated bile acid uptake.
This will establish my new research line on serum bile acid dynamics and ultimately provide new ways to treat metabolic diseases related to disturbed bile acid, lipid, glucose and energy homeostasis.
Summary
Bile acids play a pivotal role in energy supply as they facilitate the solubilization and absorption of fat in the intestine. Furthermore, bile acids are recently identified as important signalling molecules regulating glucose metabolism, inflammation and energy expenditure. Targeting bile acid signalling is, therefore, appealing to treat metabolic diseases such as diabetes and atherosclerosis. These disorders are potentially affecting >1 billion individuals worldwide and current options to treat them remain insufficient. I postulate that the hepatic bile acid uptake transporter NTCP (gene name SLC10A1) provides an excellent novel target to improve human health as it determines the duration of bile acid signalling by controlling how fast bile acids are removed from serum after a meal. In this proposal I will elucidate the contribution of bile acid dynamics to energy homeostasis and metabolism and identify the molecular mechanisms that regulate NTCP. My aim is to generate novel strategies to reduce hepatic bile acid uptake to prolong bile-acid signalling and increase energy expenditure, improve glucose handling and reduce atherosclerosis.
My key objectives are:
1. to determine the consequence of NTCP modulation on systemic bile acid dynamics, glucose and energy metabolism in animal models. To this end, I will perform careful metabolic analysis of a unique Slc10a1 knockout model in combination with diet-induced and genetic models for atherosclerosis and diabetes.
2. to identify novel means to inhibit NTCP-mediated bile acid uptake. To this end, I will make use of a FRET-based bile acid sensor that I recently developed to characterize the molecular regulation of hepatic bile acid uptake and to identify FDA-approved drugs that inhibit NTCP-mediated bile acid uptake.
This will establish my new research line on serum bile acid dynamics and ultimately provide new ways to treat metabolic diseases related to disturbed bile acid, lipid, glucose and energy homeostasis.
Max ERC Funding
1 489 320 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym RealLifeCancer
Project Challenging the gaps in global cancer concepts by a real life tumor: human childhood neuroblastoma
Researcher (PI) Rogier Versteeg
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), LS4, ERC-2013-ADG
Summary The successes of cancer research stem from the identification of oncogenes and tumour suppressor genes and the study of their pathways in animal and cell line models. Confronting these models with ‘real life’ human cancer has often been a challenge. This grant aims at integral understanding of the aggressive childhood tumor neuroblastoma. Starting point is a huge database for this tumor. We established mRNA, miRNA, CGH and SNP profiles for a series of neuroblastoma, and sequenced their whole genomes. Over 1500 mRNA profiles of cell lines with manipulated gene expression complete this resource. A novel bioinformatic platform integrated all molecular and clinical data. Several research topics have emerged: (1) Recurrent mutations were detected in neuronal growth cone genes. We will investigate whether failed neuritogenesis is oncogenic; (2) Contrary to the paradigm that cancer is caused by gene mutations, our data suggest that human tumours equally much result from chromosomal gains and losses. They proportionally change the expression of hundreds of otherwise intact genes. We will investigate how copy number changes activate oncogenic pathways. (3) Each neuroblastoma includes two cell types, which at low frequency convert into each other. They differ in mesenchymal and neuro-epithelial character, cancer pathway activation, motility and drug sensitivity and thereby are at the crossroads of cancer stem cell-, drug resistance- and metastasis-research. Transgene expression could induce transitions between both cell types in vitro, which will allow us to elucidate the wiring of both states. (4) Neuroblastoma can go in remission upon treatment, but often relapse as fatal therapy resistant tumour. This plasticity may stem from resistant mesenchymal cells, inter-conversion of cell types and continued chromosomal copy number changes. We will target pathways essential to each cell type to contain plasticity and identify therapeutic options to prepare for clinical testing.
Summary
The successes of cancer research stem from the identification of oncogenes and tumour suppressor genes and the study of their pathways in animal and cell line models. Confronting these models with ‘real life’ human cancer has often been a challenge. This grant aims at integral understanding of the aggressive childhood tumor neuroblastoma. Starting point is a huge database for this tumor. We established mRNA, miRNA, CGH and SNP profiles for a series of neuroblastoma, and sequenced their whole genomes. Over 1500 mRNA profiles of cell lines with manipulated gene expression complete this resource. A novel bioinformatic platform integrated all molecular and clinical data. Several research topics have emerged: (1) Recurrent mutations were detected in neuronal growth cone genes. We will investigate whether failed neuritogenesis is oncogenic; (2) Contrary to the paradigm that cancer is caused by gene mutations, our data suggest that human tumours equally much result from chromosomal gains and losses. They proportionally change the expression of hundreds of otherwise intact genes. We will investigate how copy number changes activate oncogenic pathways. (3) Each neuroblastoma includes two cell types, which at low frequency convert into each other. They differ in mesenchymal and neuro-epithelial character, cancer pathway activation, motility and drug sensitivity and thereby are at the crossroads of cancer stem cell-, drug resistance- and metastasis-research. Transgene expression could induce transitions between both cell types in vitro, which will allow us to elucidate the wiring of both states. (4) Neuroblastoma can go in remission upon treatment, but often relapse as fatal therapy resistant tumour. This plasticity may stem from resistant mesenchymal cells, inter-conversion of cell types and continued chromosomal copy number changes. We will target pathways essential to each cell type to contain plasticity and identify therapeutic options to prepare for clinical testing.
Max ERC Funding
2 499 803 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym Trxn-PURGE
Project Mechanisms of transcription in HIV latency; novel strategies to activate
Researcher (PI) Tokameh Mahmoudi
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary The persistence of a transcriptionally competent but latent HIV infected memory CD4+T cell reservoir, despite the effectiveness of Highly Active Antiretroviral therapy (HAART) against active virus, presents the main impediment to HIV eradication. A novel concept in HIV eradication is to activate latent virus to subsequently eliminate with HAART. Much effort has gone into identification of protein complexes that regulate HIV LTR activity. Strategies have mainly relied on candidate approaches. However, due to technical limitations, comprehensive unbiased identification of host proteins associated with and necessary for silencing of the latent HIV LTR has not been possible.
Trxn-PURGE proposes a novel multidisciplinary approach combining current knowledge of HIV transcription and new insights into eradication strategies with state of the art high though-put approaches, mycology, virology, genetics and conventional biochemistry to identify novel players in maintenance and activation of HIV transcriptional latency. We will: 1. Use a novel unbiased strategy to identify the in vivo latent LTR-bound protein complex directly from infected T cells. 2. Conduct a cell-based high-throughput Haploid genetic screen to identify novel factors essential for maintenance of HIV latency. 3. Having identified three putative activators from a limited library, we will perform a large-scale screen with unbiased library of fungal supernatants to identify molecules capable of activation of latent HIV.
These parallel approaches will identify novel molecular targets and molecules in activation of HIV transcriptional latency, which we will functionally and mechanistically characterize alone and in synergy with known compounds implicated in latent LTR activation in both 4. T cell lines and 5. primary human CD4+T cells harboring latent HIV.
By unravelling its molecular mechanisms, Trxn-PURGE will set the stage for the development of a clinical combinatorial therapy to activate latent HIV.
Summary
The persistence of a transcriptionally competent but latent HIV infected memory CD4+T cell reservoir, despite the effectiveness of Highly Active Antiretroviral therapy (HAART) against active virus, presents the main impediment to HIV eradication. A novel concept in HIV eradication is to activate latent virus to subsequently eliminate with HAART. Much effort has gone into identification of protein complexes that regulate HIV LTR activity. Strategies have mainly relied on candidate approaches. However, due to technical limitations, comprehensive unbiased identification of host proteins associated with and necessary for silencing of the latent HIV LTR has not been possible.
Trxn-PURGE proposes a novel multidisciplinary approach combining current knowledge of HIV transcription and new insights into eradication strategies with state of the art high though-put approaches, mycology, virology, genetics and conventional biochemistry to identify novel players in maintenance and activation of HIV transcriptional latency. We will: 1. Use a novel unbiased strategy to identify the in vivo latent LTR-bound protein complex directly from infected T cells. 2. Conduct a cell-based high-throughput Haploid genetic screen to identify novel factors essential for maintenance of HIV latency. 3. Having identified three putative activators from a limited library, we will perform a large-scale screen with unbiased library of fungal supernatants to identify molecules capable of activation of latent HIV.
These parallel approaches will identify novel molecular targets and molecules in activation of HIV transcriptional latency, which we will functionally and mechanistically characterize alone and in synergy with known compounds implicated in latent LTR activation in both 4. T cell lines and 5. primary human CD4+T cells harboring latent HIV.
By unravelling its molecular mechanisms, Trxn-PURGE will set the stage for the development of a clinical combinatorial therapy to activate latent HIV.
Max ERC Funding
1 499 942 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym UNICOM
Project The making and breaking of ubiquitin chains in cholesterol metabolism
Researcher (PI) Noam Zelcer
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary "Elevated levels of circulating LDL-cholesterol are a major determinant contributing to atherogenesis and coronary artery disease. Therefore, many studies address the central transcriptional pathways that regulate cholesterol metabolism. However, transcriptional regulation does not allow cells to quickly adapt to the cholesterol fluxes that they encounter. For this, rapid and reversible post-transcriptional modifications are used, in conjunction with transcriptional control. Ubiquitylation - the post-transcriptional conjugation of ubiquitin to proteins – is studied in relation to many cellular processes. Much less is known about the contribution of the ubiquitin-proteasomal-system (UPS) to regulation of lipid metabolism and development of cardiovascular disease.
I recently identified the E3-ubiquitin ligase IDOL as a novel post-transcriptional regulator of the LDLR pathway. My lab also recently identified two genes, the E3-ubiquitin ligase MARCH6 and the de-ubiquitylase USP2, for which no role in sterol metabolism was known, as important regulators of cellular cholesterol metabolism. With IDOL, these genes control key nodes of cholesterol synthesis and uptake and represent previously unrecognized mechanisms to control cholesterol homeostasis. To study the contribution of these genes to cholesterol metabolism, we will use state-of-the-art mutant mouse models, in vitro assays, and a unique collection of dyslipidemic patient material. Our goal is to characterize the contribution of these genes to cholesterol homeostasis and to examine their involvement in the development of dyslipidemia and atherosclerosis.
Investigating these novel regulatory systems will provide important mechanistic insight into the contribution of the UPS to cholesterol metabolism in health and disease. As components of the UPS are amenable to pharmacological manipulation these studies could potentially lead to novel targets for treatment of hypercholesterolemia and coronary artery disease."
Summary
"Elevated levels of circulating LDL-cholesterol are a major determinant contributing to atherogenesis and coronary artery disease. Therefore, many studies address the central transcriptional pathways that regulate cholesterol metabolism. However, transcriptional regulation does not allow cells to quickly adapt to the cholesterol fluxes that they encounter. For this, rapid and reversible post-transcriptional modifications are used, in conjunction with transcriptional control. Ubiquitylation - the post-transcriptional conjugation of ubiquitin to proteins – is studied in relation to many cellular processes. Much less is known about the contribution of the ubiquitin-proteasomal-system (UPS) to regulation of lipid metabolism and development of cardiovascular disease.
I recently identified the E3-ubiquitin ligase IDOL as a novel post-transcriptional regulator of the LDLR pathway. My lab also recently identified two genes, the E3-ubiquitin ligase MARCH6 and the de-ubiquitylase USP2, for which no role in sterol metabolism was known, as important regulators of cellular cholesterol metabolism. With IDOL, these genes control key nodes of cholesterol synthesis and uptake and represent previously unrecognized mechanisms to control cholesterol homeostasis. To study the contribution of these genes to cholesterol metabolism, we will use state-of-the-art mutant mouse models, in vitro assays, and a unique collection of dyslipidemic patient material. Our goal is to characterize the contribution of these genes to cholesterol homeostasis and to examine their involvement in the development of dyslipidemia and atherosclerosis.
Investigating these novel regulatory systems will provide important mechanistic insight into the contribution of the UPS to cholesterol metabolism in health and disease. As components of the UPS are amenable to pharmacological manipulation these studies could potentially lead to novel targets for treatment of hypercholesterolemia and coronary artery disease."
Max ERC Funding
1 999 998 €
Duration
Start date: 2014-05-01, End date: 2019-04-30