Project acronym AMORE
Project A distributional MOdel of Reference to Entities
Researcher (PI) Gemma BOLEDA TORRENT
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary "When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Summary
"When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Max ERC Funding
1 499 805 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym BILITERACY
Project Bi-literacy: Learning to read in L1 and in L2
Researcher (PI) Manuel Francisco Carreiras Valiña
Host Institution (HI) BCBL BASQUE CENTER ON COGNITION BRAIN AND LANGUAGE
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary Learning to read is probably one of the most exciting discoveries in our life. Using a longitudinal approach, the research proposed examines how the human brain responds to two major challenges: (a) the instantiation a complex cognitive function for which there is no genetic blueprint (learning to read in a first language, L1), and (b) the accommodation to new statistical regularities when learning to read in a second language (L2). The aim of the present research project is to identify the neural substrates of the reading process and its constituent cognitive components, with specific attention to individual differences and reading disabilities; as well as to investigate the relationship between specific cognitive functions and the changes in neural activity that take place in the course of learning to read in L1 and in L2. The project will employ a longitudinal design. We will recruit children before they learn to read in L1 and in L2 and track reading development with both cognitive and neuroimaging measures over 24 months. The findings from this project will provide a deeper understanding of (a) how general neurocognitive factors and language specific factors underlie individual differences – and reading disabilities– in reading acquisition in L1 and in L2; (b) how the neuro-cognitive circuitry changes and brain mechanisms synchronize while instantiating reading in L1 and in L2; (c) what the limitations and the extent of brain plasticity are in young readers. An interdisciplinary and multi-methodological approach is one of the keys to success of the present project, along with strong theory-driven investigation. By combining both we will generate breakthroughs to advance our understanding of how literacy in L1 and in L2 is acquired and mastered. The research proposed will also lay the foundations for more applied investigations of best practice in teaching reading in first and subsequent languages, and devising intervention methods for reading disabilities.
Summary
Learning to read is probably one of the most exciting discoveries in our life. Using a longitudinal approach, the research proposed examines how the human brain responds to two major challenges: (a) the instantiation a complex cognitive function for which there is no genetic blueprint (learning to read in a first language, L1), and (b) the accommodation to new statistical regularities when learning to read in a second language (L2). The aim of the present research project is to identify the neural substrates of the reading process and its constituent cognitive components, with specific attention to individual differences and reading disabilities; as well as to investigate the relationship between specific cognitive functions and the changes in neural activity that take place in the course of learning to read in L1 and in L2. The project will employ a longitudinal design. We will recruit children before they learn to read in L1 and in L2 and track reading development with both cognitive and neuroimaging measures over 24 months. The findings from this project will provide a deeper understanding of (a) how general neurocognitive factors and language specific factors underlie individual differences – and reading disabilities– in reading acquisition in L1 and in L2; (b) how the neuro-cognitive circuitry changes and brain mechanisms synchronize while instantiating reading in L1 and in L2; (c) what the limitations and the extent of brain plasticity are in young readers. An interdisciplinary and multi-methodological approach is one of the keys to success of the present project, along with strong theory-driven investigation. By combining both we will generate breakthroughs to advance our understanding of how literacy in L1 and in L2 is acquired and mastered. The research proposed will also lay the foundations for more applied investigations of best practice in teaching reading in first and subsequent languages, and devising intervention methods for reading disabilities.
Max ERC Funding
2 487 000 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym BIOCON
Project Biological origins of linguistic constraints
Researcher (PI) Juan Manuel Toro
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Summary
The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Max ERC Funding
1 305 973 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym CACTUS
Project developmental social Cognition and ACTion UnderStanding
Researcher (PI) Kjell Gustaf Gredebäck
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary Humans are social creatures throughout life. This proposal aims to advance our knowledge of the mechanisms that mediate understanding of others’ actions from a developmental perspective. A special emphasis will be devoted to mirror neuron and teleological frameworks. The former framework focuses on reciprocal motor activation during action execution and observation whereas the later framework emphasizes the application of abstract principles to observed events. The mechanisms that guide both processes will be investigated in isolation, but special attention will also be devoted to understanding how these diverse forms of action understanding jointly contribute to action understanding. The project encompasses three essential research objectives, illustrated by three research questions. How do mirror neuron and teleological processes influence action understanding? How does action understanding enable social action evaluation (empathy and pro-social preferences)? How is action understanding expressed during real-life social interactions? These questions will be addressed by presenting infants and toddlers with social events of varying complexity (from simple actions and animated sequences to complex everyday social events), relating empirical findings to predictions derived from the teleological and motor cognitive frameworks. The overarching aim is to provide a computational model of early emerging social cognitive capabilities, with a focus on action understanding and action evaluation, while passively observing others and while partaking in social interactions with others.
Summary
Humans are social creatures throughout life. This proposal aims to advance our knowledge of the mechanisms that mediate understanding of others’ actions from a developmental perspective. A special emphasis will be devoted to mirror neuron and teleological frameworks. The former framework focuses on reciprocal motor activation during action execution and observation whereas the later framework emphasizes the application of abstract principles to observed events. The mechanisms that guide both processes will be investigated in isolation, but special attention will also be devoted to understanding how these diverse forms of action understanding jointly contribute to action understanding. The project encompasses three essential research objectives, illustrated by three research questions. How do mirror neuron and teleological processes influence action understanding? How does action understanding enable social action evaluation (empathy and pro-social preferences)? How is action understanding expressed during real-life social interactions? These questions will be addressed by presenting infants and toddlers with social events of varying complexity (from simple actions and animated sequences to complex everyday social events), relating empirical findings to predictions derived from the teleological and motor cognitive frameworks. The overarching aim is to provide a computational model of early emerging social cognitive capabilities, with a focus on action understanding and action evaluation, while passively observing others and while partaking in social interactions with others.
Max ERC Funding
1 498 920 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym CDAC
Project "The role of consciousness in adaptive behavior: A combined empirical, computational and robot based approach"
Researcher (PI) Paulus Franciscus Maria Joseph Verschure
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Advanced Grant (AdG), SH4, ERC-2013-ADG
Summary "Understanding the nature of consciousness is one of the grand outstanding scientific challenges and two of its features stand out: consciousness is defined as the construction of one coherent scene but this scene is experienced with a delay relative to the action of the agent and not necessarily the cause of actions and thoughts. Did evolution render solutions to the challenge of survival that includes epiphenomenal processes? The Conscious Distributed Adaptive Control (CDAC) project aims at resolving this paradox by using a multi-disciplinary approach to show the functional role of consciousness in adaptive behaviour, to identify its underlying neuronal principles and to construct a neuromorphic robot based real-time conscious architecture. CDAC proposes that the shift from surviving in a physical world to one that is dominated by intentional agents requires radically different control architectures combining parallel and distributed control loops to assure real-time operation together with a second level of control that assures coherence through sequential coherent representation of self and the task domain, i.e. consciousness. This conscious scene is driving dedicated credit assignment and planning beyond the immediately given information. CDAC advances a comprehensive framework progressing beyond the state of the art and will be realized using system level models of a conscious architecture, detailed computational studies of its underlying neuronal substrate focusing, empirical validation with a humanoid robot and stroke patients and the advancement of beyond state of the art tools appropriate to the complexity of its objectives. The CDAC project directly addresses one of the main outstanding questions in science: the function and genesis of consciousness and will advance our understanding of mind and brain, provide radically new neurorehabilitation technologies and contribute to realizing a new generation of robots with advanced social competence."
Summary
"Understanding the nature of consciousness is one of the grand outstanding scientific challenges and two of its features stand out: consciousness is defined as the construction of one coherent scene but this scene is experienced with a delay relative to the action of the agent and not necessarily the cause of actions and thoughts. Did evolution render solutions to the challenge of survival that includes epiphenomenal processes? The Conscious Distributed Adaptive Control (CDAC) project aims at resolving this paradox by using a multi-disciplinary approach to show the functional role of consciousness in adaptive behaviour, to identify its underlying neuronal principles and to construct a neuromorphic robot based real-time conscious architecture. CDAC proposes that the shift from surviving in a physical world to one that is dominated by intentional agents requires radically different control architectures combining parallel and distributed control loops to assure real-time operation together with a second level of control that assures coherence through sequential coherent representation of self and the task domain, i.e. consciousness. This conscious scene is driving dedicated credit assignment and planning beyond the immediately given information. CDAC advances a comprehensive framework progressing beyond the state of the art and will be realized using system level models of a conscious architecture, detailed computational studies of its underlying neuronal substrate focusing, empirical validation with a humanoid robot and stroke patients and the advancement of beyond state of the art tools appropriate to the complexity of its objectives. The CDAC project directly addresses one of the main outstanding questions in science: the function and genesis of consciousness and will advance our understanding of mind and brain, provide radically new neurorehabilitation technologies and contribute to realizing a new generation of robots with advanced social competence."
Max ERC Funding
2 469 268 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym DYSTRUCTURE
Project The Dynamical and Structural Basis of Human Mind Complexity: Segregation and Integration of Information and Processing in the Brain
Researcher (PI) Gustavo Deco
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary "Perceptions, memories, emotions, and everything that makes us human, demand the flexible integration of information represented and computed in a distributed manner. The human brain is structured into a large number of areas in which information and computation are highly segregated. Normal brain functions require the integration of functionally specialized but widely distributed brain areas. Furthermore, human behavior entails a flexible task- dependent interplay between different subsets of these brain areas in order to integrate them according to the corresponding goal-directed requirements. We contend that the functional and encoding roles of diverse neuronal populations across areas are subject to intra- and inter-cortical dynamics. More concretely, we hypothesize that coherent oscillations within frequency-specific large-scale networks and coherent structuring of the underlying fluctuations are crucial mechanisms for the flexible integration of distributed processing and interaction of representations.
The project aims to elucidate precisely the interplay and mutual entrainment between local brain area dynamics and global network dynamics and their breakdown in brain diseases. We wish to better understand how segregated distributed information and processing are integrated in a flexible and context-dependent way as required for goal-directed behavior. It will allow us to comprehend the mechanisms underlying brain functions by complementing structural and activation based analyses with dynamics. We expect to gain a full explanation of the mechanisms that mediate the interactions between global and local spatio-temporal patterns of activity revealed at many levels of observations (fMRI, EEG, MEG) in humans under task and resting conditions, complemented and further constrained by using more detailed characterization of brain dynamics via Local Field Potentials and neuronal recording in animals under task and resting conditions."
Summary
"Perceptions, memories, emotions, and everything that makes us human, demand the flexible integration of information represented and computed in a distributed manner. The human brain is structured into a large number of areas in which information and computation are highly segregated. Normal brain functions require the integration of functionally specialized but widely distributed brain areas. Furthermore, human behavior entails a flexible task- dependent interplay between different subsets of these brain areas in order to integrate them according to the corresponding goal-directed requirements. We contend that the functional and encoding roles of diverse neuronal populations across areas are subject to intra- and inter-cortical dynamics. More concretely, we hypothesize that coherent oscillations within frequency-specific large-scale networks and coherent structuring of the underlying fluctuations are crucial mechanisms for the flexible integration of distributed processing and interaction of representations.
The project aims to elucidate precisely the interplay and mutual entrainment between local brain area dynamics and global network dynamics and their breakdown in brain diseases. We wish to better understand how segregated distributed information and processing are integrated in a flexible and context-dependent way as required for goal-directed behavior. It will allow us to comprehend the mechanisms underlying brain functions by complementing structural and activation based analyses with dynamics. We expect to gain a full explanation of the mechanisms that mediate the interactions between global and local spatio-temporal patterns of activity revealed at many levels of observations (fMRI, EEG, MEG) in humans under task and resting conditions, complemented and further constrained by using more detailed characterization of brain dynamics via Local Field Potentials and neuronal recording in animals under task and resting conditions."
Max ERC Funding
2 467 530 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym ELSI
Project Emotional Learning in Social Interaction
Researcher (PI) Andreas Olsson
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), SH4, ERC-2011-StG_20101124
Summary This project will open up new horizons in the study of emotional learning by describing and modeling its role in social interaction. It brings together a novel set of experimental manipulations with two hitherto unconnected lines of research; biology of aversive learning and social cognition, with the aim to answer four specific objectives, namely to identify the mechanisms of aversive learning (1) about others and its dependence on stimulus bound (e.g. ethnic group belonging) and conceptual (e.g. moral and social status) features; (2) from others through observation, and its dependence on processing of stimulus bound (e.g. emotional expressiveness) and conceptual (e.g. empathy and mental state attributions) features; (3) during interaction and its dependence social characteristics as described in 1 and 2; and (4) build and test a neural model of social-emotional learning. To achieve these objectives, this project proposes a multi-method research program using novel behavioral experimental paradigms and manipulated virtual environments, drawing on cognitive neuroscience, psychophysiology, and behavioral genetics. It is predicted that social emotional learning will be accomplished through the interaction of four, partially overlapping, neural networks coding for affective, associative, social cognitive and instrumental/goal directed aspects, respectively. Whereas it is expected that the two first networks will be common to classical conditioning and social learning, the latter is hypothesized to be distinguished by its reliance on the social-cognitive network. The fourth network is predicted to be integral to the social learning through interactions and the shaping of behavioral norms. The proposed research will enhance our understanding of important social phenomena, such as the emergence and maintanance of group conflicts and norm compliance. It will also shed light on common psychological disorders, such as social anxiety, autism and psychopathy that are characterized by dysfunctions of the social emotional learning system.
Summary
This project will open up new horizons in the study of emotional learning by describing and modeling its role in social interaction. It brings together a novel set of experimental manipulations with two hitherto unconnected lines of research; biology of aversive learning and social cognition, with the aim to answer four specific objectives, namely to identify the mechanisms of aversive learning (1) about others and its dependence on stimulus bound (e.g. ethnic group belonging) and conceptual (e.g. moral and social status) features; (2) from others through observation, and its dependence on processing of stimulus bound (e.g. emotional expressiveness) and conceptual (e.g. empathy and mental state attributions) features; (3) during interaction and its dependence social characteristics as described in 1 and 2; and (4) build and test a neural model of social-emotional learning. To achieve these objectives, this project proposes a multi-method research program using novel behavioral experimental paradigms and manipulated virtual environments, drawing on cognitive neuroscience, psychophysiology, and behavioral genetics. It is predicted that social emotional learning will be accomplished through the interaction of four, partially overlapping, neural networks coding for affective, associative, social cognitive and instrumental/goal directed aspects, respectively. Whereas it is expected that the two first networks will be common to classical conditioning and social learning, the latter is hypothesized to be distinguished by its reliance on the social-cognitive network. The fourth network is predicted to be integral to the social learning through interactions and the shaping of behavioral norms. The proposed research will enhance our understanding of important social phenomena, such as the emergence and maintanance of group conflicts and norm compliance. It will also shed light on common psychological disorders, such as social anxiety, autism and psychopathy that are characterized by dysfunctions of the social emotional learning system.
Max ERC Funding
1 498 244 €
Duration
Start date: 2012-12-01, End date: 2018-11-30
Project acronym FASTPARSE
Project Fast Natural Language Parsing for Large-Scale NLP
Researcher (PI) Carlos GÓMEZ RODRÍGUEZ
Host Institution (HI) UNIVERSIDADE DA CORUNA
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary The popularization of information technology and the Internet has resulted in an unprecedented growth in the scale at which individuals and institutions generate, communicate and access information. In this context, the effective leveraging of the vast amounts of available data to discover and address people's needs is a fundamental problem of modern societies.
Since most of this circulating information is in the form of written or spoken human language, natural language processing (NLP) technologies are a key asset for this crucial goal. NLP can be used to break language barriers (machine translation), find required information (search engines, question answering), monitor public opinion (opinion mining), or digest large amounts of unstructured text into more convenient forms (information extraction, summarization), among other applications.
These and other NLP technologies rely on accurate syntactic parsing to extract or analyze the meaning of sentences. Unfortunately, current state-of-the-art parsing algorithms have high computational costs, processing less than a hundred sentences per second on standard hardware. While this is acceptable for working on small sets of documents, it is clearly prohibitive for large-scale processing, and thus constitutes a major roadblock for the widespread application of NLP.
The goal of this project is to eliminate this bottleneck by developing fast parsers that are suitable for web-scale processing. To do so, FASTPARSE will improve the speed of parsers on several fronts: by avoiding redundant calculations through the reuse of intermediate results from previous sentences; by applying a cognitively-inspired model to compress and recode linguistic information; and by exploiting regularities in human language to find patterns that the parsers can take for granted, avoiding their explicit calculation. The joint application of these techniques will result in much faster parsers that can power all kinds of web-scale NLP applications.
Summary
The popularization of information technology and the Internet has resulted in an unprecedented growth in the scale at which individuals and institutions generate, communicate and access information. In this context, the effective leveraging of the vast amounts of available data to discover and address people's needs is a fundamental problem of modern societies.
Since most of this circulating information is in the form of written or spoken human language, natural language processing (NLP) technologies are a key asset for this crucial goal. NLP can be used to break language barriers (machine translation), find required information (search engines, question answering), monitor public opinion (opinion mining), or digest large amounts of unstructured text into more convenient forms (information extraction, summarization), among other applications.
These and other NLP technologies rely on accurate syntactic parsing to extract or analyze the meaning of sentences. Unfortunately, current state-of-the-art parsing algorithms have high computational costs, processing less than a hundred sentences per second on standard hardware. While this is acceptable for working on small sets of documents, it is clearly prohibitive for large-scale processing, and thus constitutes a major roadblock for the widespread application of NLP.
The goal of this project is to eliminate this bottleneck by developing fast parsers that are suitable for web-scale processing. To do so, FASTPARSE will improve the speed of parsers on several fronts: by avoiding redundant calculations through the reuse of intermediate results from previous sentences; by applying a cognitively-inspired model to compress and recode linguistic information; and by exploiting regularities in human language to find patterns that the parsers can take for granted, avoiding their explicit calculation. The joint application of these techniques will result in much faster parsers that can power all kinds of web-scale NLP applications.
Max ERC Funding
1 481 747 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym INTELEG
Project The Intellectual and Material Legacies of Late Medieval Sephardic Judaism: An Interdisciplinary Approach
Researcher (PI) Esperanza Alfonso
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary From the 13th to the 15th centuries, the Jews of the Iberian Peninsula (Sepharad) lived side by side with Christians and Muslims. Although persistent tensions existed between these three groups, their members also participated in a common artistic, intellectual and scientific endeavour that produced the requisite conditions for the dawn of the European Renaissance. The worldviews of all three communities revolved around their sacred texts—the Hebrew and Christian Bibles and the Qur’an. This project will take as a focal point Judaism and its sacred text, and will explore its role and impact in late medieval society at large. The project will coordinate the research of a group of young scholars doing groundbreaking work in the field, all sharing a cross-cultural and inter-disciplinary perspective. As a group, we will bring under analysis a wide range of concepts—the production of sacred texts as objects, the history of their cataloguing and preservation, the multiple and conflicting interpretations of their contents, their role as social agents that fostered coexistence or created exclusions, their impact in literature and the arts, their relationship with medieval science, and their relationship to Muslim and Christian Scriptures. The project has a special relevance for today’s multicultural and pluralistic Europe, as it can help to minimize fundamentalist readings of the sacred texts, bring about a greater understanding of the historical roots of modern intercultural conflict and, ultimately, contribute to the development of non essentialist theories of race and culture.
Summary
From the 13th to the 15th centuries, the Jews of the Iberian Peninsula (Sepharad) lived side by side with Christians and Muslims. Although persistent tensions existed between these three groups, their members also participated in a common artistic, intellectual and scientific endeavour that produced the requisite conditions for the dawn of the European Renaissance. The worldviews of all three communities revolved around their sacred texts—the Hebrew and Christian Bibles and the Qur’an. This project will take as a focal point Judaism and its sacred text, and will explore its role and impact in late medieval society at large. The project will coordinate the research of a group of young scholars doing groundbreaking work in the field, all sharing a cross-cultural and inter-disciplinary perspective. As a group, we will bring under analysis a wide range of concepts—the production of sacred texts as objects, the history of their cataloguing and preservation, the multiple and conflicting interpretations of their contents, their role as social agents that fostered coexistence or created exclusions, their impact in literature and the arts, their relationship with medieval science, and their relationship to Muslim and Christian Scriptures. The project has a special relevance for today’s multicultural and pluralistic Europe, as it can help to minimize fundamentalist readings of the sacred texts, bring about a greater understanding of the historical roots of modern intercultural conflict and, ultimately, contribute to the development of non essentialist theories of race and culture.
Max ERC Funding
719 336 €
Duration
Start date: 2008-09-01, End date: 2012-08-31
Project acronym LACOLA
Project Language, cognition and landscape: understanding cross-cultural and individual variation in geographical ontology
Researcher (PI) Niclas Burenhult
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), SH4, ERC-2010-StG_20091209
Summary This project will break new ground in the language sciences by pursuing a linguistic inquiry into landscape. From the linguist s point of view, the geophysical environment is virtually unexplored. Yet it has vast potential for influence on the discipline. The project will play a pioneering role in situating landscape within linguistics as a fundamental domain of representational systems, opening up important links to other disciplines concerned with landscape that usually have little to do with language. It will achieve this by (1) exploring landscape categorization in a number of languages, (2) comparing such categorization, (3) developing a model for understanding categorization across languages and speakers, and (4) documenting vanishing landscape systems. The research team will study landscape categorization in six diverse language settings. Each setting is a case study carried out by a team member with expert knowledge and prior field experience of the setting. Each setting offers opportunities of studying closely related languages as well as individuals speaking the same language, making comparison possible not only among maximally diverse languages but also at finer levels of linguistic granularity. An exploratory psycholinguistic subproject will probe the relationship between language and cognition in the landscape domain. The project will blaze a trail in applying GIS to linguistic data, in testing advanced experimental techniques in the field, and in documenting domain-specific data from a global language sample. Cross-cultural variation in landscape ontology is a matter of great practical importance understanding the meaning and reference of landscape terms and place names is crucial to major fields of human cooperation, from navigation to international law.
Summary
This project will break new ground in the language sciences by pursuing a linguistic inquiry into landscape. From the linguist s point of view, the geophysical environment is virtually unexplored. Yet it has vast potential for influence on the discipline. The project will play a pioneering role in situating landscape within linguistics as a fundamental domain of representational systems, opening up important links to other disciplines concerned with landscape that usually have little to do with language. It will achieve this by (1) exploring landscape categorization in a number of languages, (2) comparing such categorization, (3) developing a model for understanding categorization across languages and speakers, and (4) documenting vanishing landscape systems. The research team will study landscape categorization in six diverse language settings. Each setting is a case study carried out by a team member with expert knowledge and prior field experience of the setting. Each setting offers opportunities of studying closely related languages as well as individuals speaking the same language, making comparison possible not only among maximally diverse languages but also at finer levels of linguistic granularity. An exploratory psycholinguistic subproject will probe the relationship between language and cognition in the landscape domain. The project will blaze a trail in applying GIS to linguistic data, in testing advanced experimental techniques in the field, and in documenting domain-specific data from a global language sample. Cross-cultural variation in landscape ontology is a matter of great practical importance understanding the meaning and reference of landscape terms and place names is crucial to major fields of human cooperation, from navigation to international law.
Max ERC Funding
1 499 931 €
Duration
Start date: 2011-03-01, End date: 2016-02-29