Project acronym 3DPROTEINPUZZLES
Project Shape-directed protein assembly design
Researcher (PI) Lars Ingemar ANDRÉ
Host Institution (HI) LUNDS UNIVERSITET
Call Details Consolidator Grant (CoG), LS9, ERC-2017-COG
Summary Large protein complexes carry out some of the most complex functions in biology. Such structures are often assembled spontaneously from individual components through the process of self-assembly. If self-assembled protein complexes could be engineered from first principle it would enable a wide range of applications in biomedicine, nanotechnology and materials science. Recently, approaches to rationally design proteins to self-assembly into predefined structures have emerged. The highlight of this work is the design of protein cages that may be engineered into protein containers. However, current approaches for self-assembly design does not result in the assemblies with the required structural complexity to encode many of the sophisticated functions found in nature. To move forward, we have to learn how to engineer protein subunits with more than one designed interface that can assemble into tightly interacting complexes. In this proposal we propose a new protein design paradigm, shape directed protein design, in order to address shortcomings of the current methodology. The proposed method combines geometric shape matching and computational protein design. Using this approach we will de novo design assemblies with a wide variety of structural states, including protein complexes with cyclic and dihedral symmetry as well as icosahedral protein capsids built from novel protein building blocks. To enable these two design challenges we also develop a high-throughput assay to measure assembly stability in vivo that builds on a three-color fluorescent assay. This method will not only facilitate the screening of orders of magnitude more design constructs, but also enable the application of directed evolution to experimentally improve stable and assembly properties of designed containers as well as other designed assemblies.
Summary
Large protein complexes carry out some of the most complex functions in biology. Such structures are often assembled spontaneously from individual components through the process of self-assembly. If self-assembled protein complexes could be engineered from first principle it would enable a wide range of applications in biomedicine, nanotechnology and materials science. Recently, approaches to rationally design proteins to self-assembly into predefined structures have emerged. The highlight of this work is the design of protein cages that may be engineered into protein containers. However, current approaches for self-assembly design does not result in the assemblies with the required structural complexity to encode many of the sophisticated functions found in nature. To move forward, we have to learn how to engineer protein subunits with more than one designed interface that can assemble into tightly interacting complexes. In this proposal we propose a new protein design paradigm, shape directed protein design, in order to address shortcomings of the current methodology. The proposed method combines geometric shape matching and computational protein design. Using this approach we will de novo design assemblies with a wide variety of structural states, including protein complexes with cyclic and dihedral symmetry as well as icosahedral protein capsids built from novel protein building blocks. To enable these two design challenges we also develop a high-throughput assay to measure assembly stability in vivo that builds on a three-color fluorescent assay. This method will not only facilitate the screening of orders of magnitude more design constructs, but also enable the application of directed evolution to experimentally improve stable and assembly properties of designed containers as well as other designed assemblies.
Max ERC Funding
2 325 292 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym AGRISCENTS
Project Scents and sensibility in agriculture: exploiting specificity in herbivore- and pathogen-induced plant volatiles for real-time crop monitoring
Researcher (PI) Theodoor Turlings
Host Institution (HI) UNIVERSITE DE NEUCHATEL
Call Details Advanced Grant (AdG), LS9, ERC-2017-ADG
Summary Plants typically release large quantities of volatiles in response to attack by herbivores or pathogens. I may claim to have contributed to various breakthroughs in this research field, including the discovery that the volatile blends induced by different attackers are astonishingly specific, resulting in characteristic, readily distinguishable odour blends. Using maize as our model plant, I wish to take several leaps forward in our understanding of this signal specificity and use this knowledge to develop sensors for the real-time detection of crop pests and diseases. For this, three interconnected work-packages will aim to:
• Develop chemical analytical techniques and statistical models to decipher the odorous vocabulary of plants, and to create a complete inventory of “odour-prints” for a wide range of herbivore-plant and pathogen-plant combinations, including simultaneous infestations.
• Develop and optimize nano-mechanical sensors for the detection of specific plant volatile mixtures. For this, we will initially adapt a prototype sensor that has been successfully developed for the detection of cancer-related volatiles in human breath.
• Genetically manipulate maize plants to release a unique blend of root-produced volatiles upon herbivory. For this, we will engineer gene cassettes that combine recently identified P450 (CYP) genes from poplar with inducible, root-specific promoters from maize. This will result in maize plants that, in response to pest attack, release easy-to-detect aldoximes and nitriles from their roots.
In short, by investigating and manipulating the specificity of inducible odour blends we will generate the necessary knowhow to develop a novel odour-detection device. The envisioned sensor technology will permit real-time monitoring of the pests and enable farmers to apply crop protection treatments at the right time and in the right place.
Summary
Plants typically release large quantities of volatiles in response to attack by herbivores or pathogens. I may claim to have contributed to various breakthroughs in this research field, including the discovery that the volatile blends induced by different attackers are astonishingly specific, resulting in characteristic, readily distinguishable odour blends. Using maize as our model plant, I wish to take several leaps forward in our understanding of this signal specificity and use this knowledge to develop sensors for the real-time detection of crop pests and diseases. For this, three interconnected work-packages will aim to:
• Develop chemical analytical techniques and statistical models to decipher the odorous vocabulary of plants, and to create a complete inventory of “odour-prints” for a wide range of herbivore-plant and pathogen-plant combinations, including simultaneous infestations.
• Develop and optimize nano-mechanical sensors for the detection of specific plant volatile mixtures. For this, we will initially adapt a prototype sensor that has been successfully developed for the detection of cancer-related volatiles in human breath.
• Genetically manipulate maize plants to release a unique blend of root-produced volatiles upon herbivory. For this, we will engineer gene cassettes that combine recently identified P450 (CYP) genes from poplar with inducible, root-specific promoters from maize. This will result in maize plants that, in response to pest attack, release easy-to-detect aldoximes and nitriles from their roots.
In short, by investigating and manipulating the specificity of inducible odour blends we will generate the necessary knowhow to develop a novel odour-detection device. The envisioned sensor technology will permit real-time monitoring of the pests and enable farmers to apply crop protection treatments at the right time and in the right place.
Max ERC Funding
2 498 086 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym APHIDHOST
Project Molecular determinants of aphid host range
Researcher (PI) Jorunn Indra Berit Bos
Host Institution (HI) THE JAMES HUTTON INSTITUTE
Call Details Starting Grant (StG), LS9, ERC-2012-StG_20111109
Summary Many aphid species are restricted to one or few host plants, while some aphids, many of which are of agricultural importance, can infest a wide range of plant species. An important observation is that aphids spend a considerable time on nonhost species, where they probe the leaf tissue and secrete saliva, but for unknown reasons are unable to ingest phloem sap. This suggest that aphids, like plant pathogens, interact with nonhost plants at the molecular level, but potentially are not successful in suppressing plant defenses and/or releasing nutrients. To date, however, the plant cellular changes and the involvement of immune response, such as ETI and PTI, in aphid-host and -nonhost interactions remain elusive. The aim of the proposed project is to gain insight into the level of cellular host reprogramming that takes place during aphid-host interactions, the cellular processes involved in aphid nonhost resistance, and the role of aphid effectors in determining host range. We will compare interactions of two economically important aphid species, Myzus persicae (green peach aphid) and Rhopalosiphum padi (bird cherry oat aphid), with host and nonhost plants. We will investigate local changes in plant cellular processes during aphid-host and -nonhost interactions using microscopy and biochemistry approaches. We will apply a comparative transcriptomics approach and functional assays to identify aphid effectors as potential determinants of host range. Herein we will specifically looks for aphids-species specific effectors and those that are expressed in specific host interactions. To gain insight into molecular mechanisms of effector activities we will identify host targets and investigate the contribution of effector-target interactions to host range. The expected outcomes of the project will, in the long term, contribute to the development of novel strategies to control infestations by aphids and potentially other pests and pathogens, thereby improving food security.
Summary
Many aphid species are restricted to one or few host plants, while some aphids, many of which are of agricultural importance, can infest a wide range of plant species. An important observation is that aphids spend a considerable time on nonhost species, where they probe the leaf tissue and secrete saliva, but for unknown reasons are unable to ingest phloem sap. This suggest that aphids, like plant pathogens, interact with nonhost plants at the molecular level, but potentially are not successful in suppressing plant defenses and/or releasing nutrients. To date, however, the plant cellular changes and the involvement of immune response, such as ETI and PTI, in aphid-host and -nonhost interactions remain elusive. The aim of the proposed project is to gain insight into the level of cellular host reprogramming that takes place during aphid-host interactions, the cellular processes involved in aphid nonhost resistance, and the role of aphid effectors in determining host range. We will compare interactions of two economically important aphid species, Myzus persicae (green peach aphid) and Rhopalosiphum padi (bird cherry oat aphid), with host and nonhost plants. We will investigate local changes in plant cellular processes during aphid-host and -nonhost interactions using microscopy and biochemistry approaches. We will apply a comparative transcriptomics approach and functional assays to identify aphid effectors as potential determinants of host range. Herein we will specifically looks for aphids-species specific effectors and those that are expressed in specific host interactions. To gain insight into molecular mechanisms of effector activities we will identify host targets and investigate the contribution of effector-target interactions to host range. The expected outcomes of the project will, in the long term, contribute to the development of novel strategies to control infestations by aphids and potentially other pests and pathogens, thereby improving food security.
Max ERC Funding
1 463 840 €
Duration
Start date: 2013-02-01, End date: 2018-10-31
Project acronym ARCHOFCON
Project The Architecture of Consciousness
Researcher (PI) Timothy John Bayne
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The nature of consciousness is one of the great unsolved mysteries of science. Although the global research effort dedicated to explaining how consciousness arises from neural and cognitive activity is now more than two decades old, as yet there is no widely accepted theory of consciousness. One reason for why no adequate theory of consciousness has yet been found is that there is a lack of clarity about what exactly a theory of consciousness needs to explain. What is needed is thus a model of the general features of consciousness — a model of the ‘architecture’ of consciousness — that will systematize the structural differences between conscious states, processes and creatures on the one hand and unconscious states, processes and creatures on the other. The aim of this project is to remove one of the central impediments to the progress of the science of consciousness by constructing such a model.
A great many of the data required for this task already exist, but these data concern different aspects of consciousness and are distributed across many disciplines. As a result, there have been few attempts to develop a truly comprehensive model of the architecture of consciousness. This project will overcome the limitations of previous work by drawing on research in philosophy, psychology, psychiatry, and cognitive neuroscience to develop a model of the architecture of consciousness that is structured around five of its core features: its subjectivity, its temporality, its unity, its selectivity, and its dimensionality (that is, the relationship between the levels of consciousness and the contents of consciousness). By providing a comprehensive characterization of what a theory of consciousness needs to explain, this project will provide a crucial piece of the puzzle of consciousness, enabling future generations of researchers to bridge the gap between raw data on the one hand and a full-blown theory of consciousness on the other
Summary
The nature of consciousness is one of the great unsolved mysteries of science. Although the global research effort dedicated to explaining how consciousness arises from neural and cognitive activity is now more than two decades old, as yet there is no widely accepted theory of consciousness. One reason for why no adequate theory of consciousness has yet been found is that there is a lack of clarity about what exactly a theory of consciousness needs to explain. What is needed is thus a model of the general features of consciousness — a model of the ‘architecture’ of consciousness — that will systematize the structural differences between conscious states, processes and creatures on the one hand and unconscious states, processes and creatures on the other. The aim of this project is to remove one of the central impediments to the progress of the science of consciousness by constructing such a model.
A great many of the data required for this task already exist, but these data concern different aspects of consciousness and are distributed across many disciplines. As a result, there have been few attempts to develop a truly comprehensive model of the architecture of consciousness. This project will overcome the limitations of previous work by drawing on research in philosophy, psychology, psychiatry, and cognitive neuroscience to develop a model of the architecture of consciousness that is structured around five of its core features: its subjectivity, its temporality, its unity, its selectivity, and its dimensionality (that is, the relationship between the levels of consciousness and the contents of consciousness). By providing a comprehensive characterization of what a theory of consciousness needs to explain, this project will provide a crucial piece of the puzzle of consciousness, enabling future generations of researchers to bridge the gap between raw data on the one hand and a full-blown theory of consciousness on the other
Max ERC Funding
1 477 483 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym ARISYS
Project Engineering an artificial immune system with functional components assembled from prokaryotic parts and modules
Researcher (PI) Víctor De Lorenzo Prieto
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), LS9, ERC-2012-ADG_20120314
Summary The objective of this project is to overcome current limitations for antibody production that are inherent to the extant immune system of vertebrates. This will be done by creating an all-in-one artificial/synthetic counterpart based exclusively on prokaryotic parts, devices and modules. To this end, ARISYS will exploit design concepts, construction hierarchies and standardization notions that stem from contemporary Synthetic Biology for the assembly and validation of (what we believe is) the most complex artificial biological system ventured thus far. This all-bacterial immune-like system will not only simplify and make affordable the manipulations necessary for antibody generation, but will also permit the application of such binders by themselves or displayed on bacterial cells to biotechnological challenges well beyond therapeutic and health-related uses. The work plan involves the assembly and validation of autonomous functional modules for [i] displaying antibody/affibody (AB) scaffolds attached to the surface of bacterial cells, [ii] conditional diversification of target-binding sequences of the ABs, [iii] contact-dependent activation of gene expression, [iv] reversible bi-stable switches, and [v] clonal selection and amplification of improved binders. These modules composed of stand-alone parts and bearing well defined input/output functions, will be assembled in the genomic chassis of streamlined Escherichia coli and Pseudomonas putida strains. The resulting molecular network will make the ABs expressed and displayed on the cell surface to proceed spontaneously (or at the user's decision) through subsequent cycles of affinity and specificity maturation towards antigens or other targets presented to the bacterial population. In this way, a single, easy-to-handle (albeit heavily engineered) strain will govern all operations that are typically scattered in a multitude of separate methods and apparatuses for AB production.
Summary
The objective of this project is to overcome current limitations for antibody production that are inherent to the extant immune system of vertebrates. This will be done by creating an all-in-one artificial/synthetic counterpart based exclusively on prokaryotic parts, devices and modules. To this end, ARISYS will exploit design concepts, construction hierarchies and standardization notions that stem from contemporary Synthetic Biology for the assembly and validation of (what we believe is) the most complex artificial biological system ventured thus far. This all-bacterial immune-like system will not only simplify and make affordable the manipulations necessary for antibody generation, but will also permit the application of such binders by themselves or displayed on bacterial cells to biotechnological challenges well beyond therapeutic and health-related uses. The work plan involves the assembly and validation of autonomous functional modules for [i] displaying antibody/affibody (AB) scaffolds attached to the surface of bacterial cells, [ii] conditional diversification of target-binding sequences of the ABs, [iii] contact-dependent activation of gene expression, [iv] reversible bi-stable switches, and [v] clonal selection and amplification of improved binders. These modules composed of stand-alone parts and bearing well defined input/output functions, will be assembled in the genomic chassis of streamlined Escherichia coli and Pseudomonas putida strains. The resulting molecular network will make the ABs expressed and displayed on the cell surface to proceed spontaneously (or at the user's decision) through subsequent cycles of affinity and specificity maturation towards antigens or other targets presented to the bacterial population. In this way, a single, easy-to-handle (albeit heavily engineered) strain will govern all operations that are typically scattered in a multitude of separate methods and apparatuses for AB production.
Max ERC Funding
2 422 271 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym AUTISMS
Project Decomposing Heterogeneity in Autism Spectrum Disorders
Researcher (PI) Michael LOMBARDO
Host Institution (HI) FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Call Details Starting Grant (StG), SH4, ERC-2017-STG
Summary Autism spectrum disorders (ASD) affect 1-2% of the population and are a major public health issue. Heterogeneity between affected ASD individuals is substantial both at clinical and etiological levels, thus warranting the idea that we should begin characterizing the ASD population as multiple kinds of ‘autisms’. Without an advanced understanding of how heterogeneity manifests in ASD, it is likely that we will not make pronounced progress towards translational research goals that can have real impact on patient’s lives. This research program is focused on decomposing heterogeneity in ASD at multiple levels of analysis. Using multiple ‘big data’ resources that are both ‘broad’ (large sample size) and ‘deep’ (multiple levels of analysis measured within each individual), I will examine how known variables such as sex, early language development, early social preferences, and early intervention treatment response may be important stratification variables that differentiate ASD subgroups at phenotypic, neural systems/circuits, and genomic levels of analysis. In addition to examining known stratification variables, this research program will engage in data-driven discovery via application of advanced unsupervised computational techniques that can highlight novel multivariate distinctions in the data that signal important ASD subgroups. These data-driven approaches may hold promise for discovering novel ASD subgroups at biological and phenotypic levels of analysis that may be valuable for prioritization in future work developing personalized assessment, monitoring, and treatment strategies for subsets of the ASD population. By enhancing the precision of our understanding about multiple subtypes of ASD this work will help accelerate progress towards the ideals of personalized medicine and help to reduce the burden of ASD on individuals, families, and society.
Summary
Autism spectrum disorders (ASD) affect 1-2% of the population and are a major public health issue. Heterogeneity between affected ASD individuals is substantial both at clinical and etiological levels, thus warranting the idea that we should begin characterizing the ASD population as multiple kinds of ‘autisms’. Without an advanced understanding of how heterogeneity manifests in ASD, it is likely that we will not make pronounced progress towards translational research goals that can have real impact on patient’s lives. This research program is focused on decomposing heterogeneity in ASD at multiple levels of analysis. Using multiple ‘big data’ resources that are both ‘broad’ (large sample size) and ‘deep’ (multiple levels of analysis measured within each individual), I will examine how known variables such as sex, early language development, early social preferences, and early intervention treatment response may be important stratification variables that differentiate ASD subgroups at phenotypic, neural systems/circuits, and genomic levels of analysis. In addition to examining known stratification variables, this research program will engage in data-driven discovery via application of advanced unsupervised computational techniques that can highlight novel multivariate distinctions in the data that signal important ASD subgroups. These data-driven approaches may hold promise for discovering novel ASD subgroups at biological and phenotypic levels of analysis that may be valuable for prioritization in future work developing personalized assessment, monitoring, and treatment strategies for subsets of the ASD population. By enhancing the precision of our understanding about multiple subtypes of ASD this work will help accelerate progress towards the ideals of personalized medicine and help to reduce the burden of ASD on individuals, families, and society.
Max ERC Funding
1 499 444 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BabyRhythm
Project Tuned to the Rhythm: How Prenatally and Postnatally Heard Speech Prosody Lays the Foundations for Language Learning
Researcher (PI) Judit Gervain
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), SH4, ERC-2017-COG
Summary The role of experience in language acquisition has been the focus of heated theoretical debates, between proponents of nativist views according to whom experience plays a minimal role and advocates of empiricist positions holding that experience, be it linguistic, social or other, is sufficient to account for language acquisition. Despite more than a half century of dedicated research efforts, the problem is not solved.
The present project brings a novel perspective to this debate, combining hitherto unconnected research in language acquisition with recent advances in the neurophysiology of hearing and speech processing. Specifically, it claims that prenatal experience with speech, which mainly consists of prosody due to the filtering effects of the womb, is what shapes the speech perception system, laying the foundations of subsequent language learning. Prosody is thus the cue that links genetically endowed predispositions present in the initial state with language experience. The proposal links the behavioral and neural levels, arguing that the hierarchy of the neural oscillations corresponds to a unique developmental chronology in human infants’ experience with speech and language.
The project uses state-of-the-art brain imaging techniques, EEG & NIRS, with monolingual full term newborns, as well as full-term bilingual, preterm and deaf newborns to investigate the link between prenatal experience and subsequent language acquisition. It proposes to follow the developmental trajectories of these four populations from birth to 6 and 9 months of age.
Summary
The role of experience in language acquisition has been the focus of heated theoretical debates, between proponents of nativist views according to whom experience plays a minimal role and advocates of empiricist positions holding that experience, be it linguistic, social or other, is sufficient to account for language acquisition. Despite more than a half century of dedicated research efforts, the problem is not solved.
The present project brings a novel perspective to this debate, combining hitherto unconnected research in language acquisition with recent advances in the neurophysiology of hearing and speech processing. Specifically, it claims that prenatal experience with speech, which mainly consists of prosody due to the filtering effects of the womb, is what shapes the speech perception system, laying the foundations of subsequent language learning. Prosody is thus the cue that links genetically endowed predispositions present in the initial state with language experience. The proposal links the behavioral and neural levels, arguing that the hierarchy of the neural oscillations corresponds to a unique developmental chronology in human infants’ experience with speech and language.
The project uses state-of-the-art brain imaging techniques, EEG & NIRS, with monolingual full term newborns, as well as full-term bilingual, preterm and deaf newborns to investigate the link between prenatal experience and subsequent language acquisition. It proposes to follow the developmental trajectories of these four populations from birth to 6 and 9 months of age.
Max ERC Funding
1 621 250 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BIOCON
Project Biological origins of linguistic constraints
Researcher (PI) Juan Manuel Toro
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Summary
The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Max ERC Funding
1 305 973 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym BIOFORCE
Project Simultaneous multi-pathway engineering in crop plants through combinatorial genetic transformation: Creating nutritionally biofortified cereal grains for food security
Researcher (PI) Paul Christou
Host Institution (HI) UNIVERSIDAD DE LLEIDA
Call Details Advanced Grant (AdG), LS9, ERC-2008-AdG
Summary BIOFORCE has a highly ambitious applied objective: to create transgenic cereal plants that will provide a near-complete micronutrient complement (vitamins A, C, E, folate and essential minerals Ca, Fe, Se and Zn) for malnourished people in the developing world, as well as built-in resistance to insects and parasitic weeds. This in itself represents a striking advance over current efforts to address food insecurity using applied biotechnology in the developing world. We will also address fundamental mechanistic aspects of multi-gene/pathway engineering through transcriptome and metabolome profiling. Fundamental science and applied objectives will be achieved through the application of an exciting novel technology (combinatorial genetic transformation) developed and patented by my research group. This allows the simultaneous transfer of an unlimited number of transgenes into plants followed by library-based selection of plants with appropriate genotypes and phenotypes. All transgenes integrate into one locus ensuring expression stability over multiple generations. This proposal represents a new line of research in my laboratory, founded on incremental advances in the elucidation of transgene integration mechanisms in plants over the past two and a half decades. In addition to scientific issues, BIOFORCE address challenges such as intellectual property, regulatory and biosafety issues and crucially how the fruits of our work will be taken up through philanthropic initiatives in the developing world while creating exploitable opportunities elsewhere. BIOFORCE is comprehensive and it provides a complete package that stands to make an unprecedented contribution to food security in the developing world, while at the same time generating new knowledge to streamline and simplify multiplex gene transfer and the simultaneous modification of multiple complex plant metabolic pathways
Summary
BIOFORCE has a highly ambitious applied objective: to create transgenic cereal plants that will provide a near-complete micronutrient complement (vitamins A, C, E, folate and essential minerals Ca, Fe, Se and Zn) for malnourished people in the developing world, as well as built-in resistance to insects and parasitic weeds. This in itself represents a striking advance over current efforts to address food insecurity using applied biotechnology in the developing world. We will also address fundamental mechanistic aspects of multi-gene/pathway engineering through transcriptome and metabolome profiling. Fundamental science and applied objectives will be achieved through the application of an exciting novel technology (combinatorial genetic transformation) developed and patented by my research group. This allows the simultaneous transfer of an unlimited number of transgenes into plants followed by library-based selection of plants with appropriate genotypes and phenotypes. All transgenes integrate into one locus ensuring expression stability over multiple generations. This proposal represents a new line of research in my laboratory, founded on incremental advances in the elucidation of transgene integration mechanisms in plants over the past two and a half decades. In addition to scientific issues, BIOFORCE address challenges such as intellectual property, regulatory and biosafety issues and crucially how the fruits of our work will be taken up through philanthropic initiatives in the developing world while creating exploitable opportunities elsewhere. BIOFORCE is comprehensive and it provides a complete package that stands to make an unprecedented contribution to food security in the developing world, while at the same time generating new knowledge to streamline and simplify multiplex gene transfer and the simultaneous modification of multiple complex plant metabolic pathways
Max ERC Funding
2 290 046 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym BioLEAP
Project Biotechnological optimization of light use efficiency in algae photobioreactors
Researcher (PI) Tomas Morosinotto
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PADOVA
Call Details Starting Grant (StG), LS9, ERC-2012-StG_20111109
Summary New renewable energy source are highly needed to compensate exhausting fossil fuels reserves and reduce greenhouse gases emissions. Some species of algae have an interesting potential as feedstock for the production of biodiesel thanks to their ability to accumulate large amount of lipids. Strong research efforts are however needed to fulfil this potential and address many issues involving optimization of cultivation systems, biomass harvesting and algae genetic improvement. This proposal aims to address one of these issues, the optimization of algae light use efficiency. Light, in fact, provides the energy supporting algae growth and must be exploited with the highest possible efficiency to achieve sufficient productivity.
In a photobioreactor algae are highly concentrated and this cause a inhomogeneous light distribution with a large fraction of the cells exposed to very low light or even in the dark. Algae are also actively mixed and they can abruptly move from dark to full illumination and vice versa. This proposal aims to assess how alternation of dark/light cycles affect algae growth and functionality of photosynthetic apparatus both in batch and continuous cultures. In collaboration with the Chemical Engineering department, experimental data will be exploited to build a model describing the photobioreactor, a fundamental tool to improve its design.
The other main scope of this proposal is the isolation of genetically improved strains more suitable to the artificial environment of a photobioreactor. A first part of the work of setting up protocols for transformation will be followed by a second phase for generation and selection of mutants with altered photosynthetic performances. Transcriptome analyses in different light conditions will also be instrumental to identify genes to be targeted by genetic engineering.
Summary
New renewable energy source are highly needed to compensate exhausting fossil fuels reserves and reduce greenhouse gases emissions. Some species of algae have an interesting potential as feedstock for the production of biodiesel thanks to their ability to accumulate large amount of lipids. Strong research efforts are however needed to fulfil this potential and address many issues involving optimization of cultivation systems, biomass harvesting and algae genetic improvement. This proposal aims to address one of these issues, the optimization of algae light use efficiency. Light, in fact, provides the energy supporting algae growth and must be exploited with the highest possible efficiency to achieve sufficient productivity.
In a photobioreactor algae are highly concentrated and this cause a inhomogeneous light distribution with a large fraction of the cells exposed to very low light or even in the dark. Algae are also actively mixed and they can abruptly move from dark to full illumination and vice versa. This proposal aims to assess how alternation of dark/light cycles affect algae growth and functionality of photosynthetic apparatus both in batch and continuous cultures. In collaboration with the Chemical Engineering department, experimental data will be exploited to build a model describing the photobioreactor, a fundamental tool to improve its design.
The other main scope of this proposal is the isolation of genetically improved strains more suitable to the artificial environment of a photobioreactor. A first part of the work of setting up protocols for transformation will be followed by a second phase for generation and selection of mutants with altered photosynthetic performances. Transcriptome analyses in different light conditions will also be instrumental to identify genes to be targeted by genetic engineering.
Max ERC Funding
1 257 600 €
Duration
Start date: 2012-10-01, End date: 2017-09-30