Project acronym 14Constraint
Project Radiocarbon constraints for models of C cycling in terrestrial ecosystems: from process understanding to global benchmarking
Researcher (PI) Susan Trumbore
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE10, ERC-2015-AdG
Summary The overall goal of 14Constraint is to enhance the availability and use of radiocarbon data as constraints for process-based understanding of the age distribution of carbon in and respired by soils and ecosystems. Carbon enters ecosystems by a single process, photosynthesis. It returns by a range of processes that depend on plant allocation and turnover, the efficiency and rate of litter decomposition and the mechanisms stabilizing C in soils. Thus the age distribution of respired CO2 and the age of C residing in plants, litter and soils are diagnostic properties of ecosystems that provide key constraints for testing carbon cycle models. Radiocarbon, especially the transit of ‘bomb’ 14C created in the 1960s, is a powerful tool for tracing C exchange on decadal to centennial timescales. 14Constraint will assemble a global database of existing radiocarbon data (WP1) and demonstrate how they can constrain and test ecosystem carbon cycle models. WP2 will fill data gaps and add new data from sites in key biomes that have ancillary data sufficient to construct belowground C and 14C budgets. These detailed investigations will focus on the role of time lags caused in necromass and fine roots, as well as the dynamics of deep soil C. Spatial extrapolation beyond the WP2 sites will require sampling along global gradients designed to explore the relative roles of mineralogy, vegetation and climate on the age of C in and respired from soil (WP3). Products of this 14Constraint will include the first publicly available global synthesis of terrestrial 14C data, and will add over 5000 new measurements. This project is urgently needed before atmospheric 14C levels decline to below 1950 levels as expected in the next decade.
Summary
The overall goal of 14Constraint is to enhance the availability and use of radiocarbon data as constraints for process-based understanding of the age distribution of carbon in and respired by soils and ecosystems. Carbon enters ecosystems by a single process, photosynthesis. It returns by a range of processes that depend on plant allocation and turnover, the efficiency and rate of litter decomposition and the mechanisms stabilizing C in soils. Thus the age distribution of respired CO2 and the age of C residing in plants, litter and soils are diagnostic properties of ecosystems that provide key constraints for testing carbon cycle models. Radiocarbon, especially the transit of ‘bomb’ 14C created in the 1960s, is a powerful tool for tracing C exchange on decadal to centennial timescales. 14Constraint will assemble a global database of existing radiocarbon data (WP1) and demonstrate how they can constrain and test ecosystem carbon cycle models. WP2 will fill data gaps and add new data from sites in key biomes that have ancillary data sufficient to construct belowground C and 14C budgets. These detailed investigations will focus on the role of time lags caused in necromass and fine roots, as well as the dynamics of deep soil C. Spatial extrapolation beyond the WP2 sites will require sampling along global gradients designed to explore the relative roles of mineralogy, vegetation and climate on the age of C in and respired from soil (WP3). Products of this 14Constraint will include the first publicly available global synthesis of terrestrial 14C data, and will add over 5000 new measurements. This project is urgently needed before atmospheric 14C levels decline to below 1950 levels as expected in the next decade.
Max ERC Funding
2 283 747 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym 1st-principles-discs
Project A First Principles Approach to Accretion Discs
Researcher (PI) Martin Elias Pessah
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Summary
Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Max ERC Funding
1 793 697 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 2D-TOPSENSE
Project Tunable optoelectronic devices by strain engineering of 2D semiconductors
Researcher (PI) Andres CASTELLANOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Summary
The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Max ERC Funding
1 930 437 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym 321
Project from Cubic To Linear complexity in computational electromagnetics
Researcher (PI) Francesco Paolo ANDRIULLI
Host Institution (HI) POLITECNICO DI TORINO
Call Details Consolidator Grant (CoG), PE7, ERC-2016-COG
Summary Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Summary
Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym 3D-CAP
Project 3D micro-supercapacitors for embedded electronics
Researcher (PI) David Sarinn PECH
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE7, ERC-2017-COG
Summary The realization of high-performance micro-supercapacitors is currently a big challenge but the ineluctable applications requiring such miniaturized energy storage devices are continuously emerging, from wearable electronic gadgets to wireless sensor networks. Although they store less energy than micro-batteries, micro-supercapacitors can be charged and discharged very rapidly and exhibit a quasi-unlimited lifetime. The global scientific research is consequently largely focused on the improvement of their capacitance and energetic performances. However, to date, they are still far from being able to power sensors or electronic components.
Here I propose a 3D paradigm shift of micro-supercapacitor design to ensure increased energy storage capacities. Hydrous ruthenium dioxide (RuO2) is a pseudocapacitive material for supercapacitor electrode well-known for its high capacitance. A thin-film of ruthenium will be deposited by atomic layer deposition (ALD), followed by an electrochemical oxidation process, onto a high-surface-area 3D current collector prepared via an ingenious dynamic template built with hydrogen bubbles. The structural features of these 3D architectures will be controllably tailored by the processing methodologies. These electrodes will be combined with an innovative electrolyte in solid form (a protic ionogel) able to operate over an extended cell voltage. In a parallel investigation, we will develop a fundamental understanding of electrochemical reactions occurring at the nanoscale with a FIB-patterned (Focused Ion Beam) RuO2 nano-supercapacitor. The resulting 3D micro-supercapacitors should display extremely high power, long lifetime and – for the first time – energy densities competing or even exceeding that of micro-batteries. As a key achievement, prototypes will be designed using a new concept based on a self-adaptative micro-supercapacitors matrix, which arranges itself according to the global amount of energy stored.
Summary
The realization of high-performance micro-supercapacitors is currently a big challenge but the ineluctable applications requiring such miniaturized energy storage devices are continuously emerging, from wearable electronic gadgets to wireless sensor networks. Although they store less energy than micro-batteries, micro-supercapacitors can be charged and discharged very rapidly and exhibit a quasi-unlimited lifetime. The global scientific research is consequently largely focused on the improvement of their capacitance and energetic performances. However, to date, they are still far from being able to power sensors or electronic components.
Here I propose a 3D paradigm shift of micro-supercapacitor design to ensure increased energy storage capacities. Hydrous ruthenium dioxide (RuO2) is a pseudocapacitive material for supercapacitor electrode well-known for its high capacitance. A thin-film of ruthenium will be deposited by atomic layer deposition (ALD), followed by an electrochemical oxidation process, onto a high-surface-area 3D current collector prepared via an ingenious dynamic template built with hydrogen bubbles. The structural features of these 3D architectures will be controllably tailored by the processing methodologies. These electrodes will be combined with an innovative electrolyte in solid form (a protic ionogel) able to operate over an extended cell voltage. In a parallel investigation, we will develop a fundamental understanding of electrochemical reactions occurring at the nanoscale with a FIB-patterned (Focused Ion Beam) RuO2 nano-supercapacitor. The resulting 3D micro-supercapacitors should display extremely high power, long lifetime and – for the first time – energy densities competing or even exceeding that of micro-batteries. As a key achievement, prototypes will be designed using a new concept based on a self-adaptative micro-supercapacitors matrix, which arranges itself according to the global amount of energy stored.
Max ERC Funding
1 673 438 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym 3D-nanoMorph
Project Label-free 3D morphological nanoscopy for studying sub-cellular dynamics in live cancer cells with high spatio-temporal resolution
Researcher (PI) Krishna AGARWAL
Host Institution (HI) UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Summary
Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Max ERC Funding
1 499 999 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym 3DICE
Project 3D Interstellar Chemo-physical Evolution
Researcher (PI) Valentine Wakelam
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Summary
At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Max ERC Funding
1 166 231 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym 4D-EEG
Project 4D-EEG: A new tool to investigate the spatial and temporal activity patterns in the brain
Researcher (PI) Franciscus C.T. Van Der Helm
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Advanced Grant (AdG), PE7, ERC-2011-ADG_20110209
Summary Our first goal is to develop a new tool to determine brain activity with a high temporal (< 1 msec) and spatial (about 2 mm) resolution with the focus on motor control. High density EEG (up to 256 electrodes) will be used for EEG source localization. Advanced force-controlled robot manipulators will be used to impose continuous force perturbations to the joints. Advanced closed-loop system identification algorithms will identify the dynamic EEG response of multiple brain areas to the perturbation, leading to a functional interpretation of EEG. The propagation of the signal in time and 3D space through the cortex can be monitored: 4D-EEG. Preliminary experiments with EEG localization have shown that the continuous force perturbations resulted in a better signal-to-noise ratio and coherence than the current method using transient perturbations..
4D-EEG will be a direct measure of the neural activity in the brain with an excellent temporal response and easy to use in combination with motor control tasks. The new 4D-EEG method is expected to provide a breakthrough in comparison to functional MRI (fMRI) when elucidating the meaning of cortical map plasticity in motor learning.
Our second goal is to generate and validate new hypotheses about the longitudinal relationship between motor learning and cortical map plasticity by clinically using 4D-EEG in an intensive, repeated measurement design in patients suffering from a stroke. The application of 4D-EEG combined with haptic robots will allow us to discover how dynamics in cortical map plasticity are related with upper limb recovery after stroke in terms of neural repair and using behavioral compensation strategies while performing a meaningful motor tasks.. The non-invasive 4D-EEG technique combined with haptic robots will open the window about what and how patients (re)learn when showing motor recovery after stroke in order to allow us to develop more effective patient-tailored therapies in neuro-rehabilitation.
Summary
Our first goal is to develop a new tool to determine brain activity with a high temporal (< 1 msec) and spatial (about 2 mm) resolution with the focus on motor control. High density EEG (up to 256 electrodes) will be used for EEG source localization. Advanced force-controlled robot manipulators will be used to impose continuous force perturbations to the joints. Advanced closed-loop system identification algorithms will identify the dynamic EEG response of multiple brain areas to the perturbation, leading to a functional interpretation of EEG. The propagation of the signal in time and 3D space through the cortex can be monitored: 4D-EEG. Preliminary experiments with EEG localization have shown that the continuous force perturbations resulted in a better signal-to-noise ratio and coherence than the current method using transient perturbations..
4D-EEG will be a direct measure of the neural activity in the brain with an excellent temporal response and easy to use in combination with motor control tasks. The new 4D-EEG method is expected to provide a breakthrough in comparison to functional MRI (fMRI) when elucidating the meaning of cortical map plasticity in motor learning.
Our second goal is to generate and validate new hypotheses about the longitudinal relationship between motor learning and cortical map plasticity by clinically using 4D-EEG in an intensive, repeated measurement design in patients suffering from a stroke. The application of 4D-EEG combined with haptic robots will allow us to discover how dynamics in cortical map plasticity are related with upper limb recovery after stroke in terms of neural repair and using behavioral compensation strategies while performing a meaningful motor tasks.. The non-invasive 4D-EEG technique combined with haptic robots will open the window about what and how patients (re)learn when showing motor recovery after stroke in order to allow us to develop more effective patient-tailored therapies in neuro-rehabilitation.
Max ERC Funding
3 477 202 €
Duration
Start date: 2012-06-01, End date: 2017-05-31
Project acronym 4PI-SKY
Project 4 pi sky: Extreme Astrophysics with Revolutionary Radio Telescopes
Researcher (PI) Robert Philip Fender
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE9, ERC-2010-AdG_20100224
Summary Extreme astrophysical events such as relativistic flows, cataclysmic explosions and black hole accretion are one of the key areas for astrophysics in the 21st century. The extremes of physics experienced in these environments are beyond anything achievable in any laboratory on Earth, and provide a unique glimpse at the laws of physics operating in extraordinary regimes. All of these events are associated with transient radio emission, a tracer both of the acceleration of particles to relativistic energies, and coherent emitting regions with huge effective temperatures. By studying radio bursts from these phenomena we can pinpoint the sources of explosive events, understand the budget of kinetic feedback by explosive events in the ambient medium, and probe the physical state of the universe back to the epoch of reionisation, less than a billion years after the big bang. In seeking to push back the frontiers of extreme astrophysics, I will use a trio of revolutionary new radio telescopes, LOFAR, ASKAP and MeerKAT, pathfinders for the Square Kilometre Array, and all facilities in which I have a major role in the search for transients. I will build an infrastructure which transforms their combined operations for the discovery, classification and reporting of transient astrophysical events, over the whole sky, making them much more than the sum of their parts. This will include development of environments for the coordinated handling of extreme astrophysical events, in real time, via automated systems, as well as novel techniques for the detection of these events in a sea of noise. I will furthermore augment this program by buying in as a major partner to a rapid-response robotic optical telescope, and by cementing my relationship with an orbiting X-ray facility. This multiwavelength dimension will secure the astrophysical interpretation of our observational results and help to revolutionise high-energy astrophysics via a strong scientific exploitation program.
Summary
Extreme astrophysical events such as relativistic flows, cataclysmic explosions and black hole accretion are one of the key areas for astrophysics in the 21st century. The extremes of physics experienced in these environments are beyond anything achievable in any laboratory on Earth, and provide a unique glimpse at the laws of physics operating in extraordinary regimes. All of these events are associated with transient radio emission, a tracer both of the acceleration of particles to relativistic energies, and coherent emitting regions with huge effective temperatures. By studying radio bursts from these phenomena we can pinpoint the sources of explosive events, understand the budget of kinetic feedback by explosive events in the ambient medium, and probe the physical state of the universe back to the epoch of reionisation, less than a billion years after the big bang. In seeking to push back the frontiers of extreme astrophysics, I will use a trio of revolutionary new radio telescopes, LOFAR, ASKAP and MeerKAT, pathfinders for the Square Kilometre Array, and all facilities in which I have a major role in the search for transients. I will build an infrastructure which transforms their combined operations for the discovery, classification and reporting of transient astrophysical events, over the whole sky, making them much more than the sum of their parts. This will include development of environments for the coordinated handling of extreme astrophysical events, in real time, via automated systems, as well as novel techniques for the detection of these events in a sea of noise. I will furthermore augment this program by buying in as a major partner to a rapid-response robotic optical telescope, and by cementing my relationship with an orbiting X-ray facility. This multiwavelength dimension will secure the astrophysical interpretation of our observational results and help to revolutionise high-energy astrophysics via a strong scientific exploitation program.
Max ERC Funding
2 999 847 €
Duration
Start date: 2011-07-01, End date: 2017-06-30
Project acronym 4SUNS
Project 4-Colours/2-Junctions of III-V semiconductors on Si to use in electronics devices and solar cells
Researcher (PI) María Nair LOPEZ MARTINEZ
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Summary
It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Max ERC Funding
1 499 719 €
Duration
Start date: 2018-02-01, End date: 2023-01-31