Project acronym ATMOPACS
Project Atmospheric Organic Particulate Matter, Air Quality and Climate Change Studies
Researcher (PI) Spyridon Pandis
Host Institution (HI) FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS
Call Details Advanced Grant (AdG), PE10, ERC-2010-AdG_20100224
Summary Despite its importance for human health and climate change organic aerosol (OA) remains one of the least understood aspects of atmospheric chemistry. We propose to develop an innovative new framework for the description of OA in chemical transport and climate models that will be able to overcome the challenges posed by the chemical complexity of OA while capturing its essential features.
The objectives of ATMOPACS are: (i) The development of a new unified framework for the description of OA based on its two most important parameters: volatility and oxygen content. (ii) The development of measurement techniques for the volatility distribution and oxygen content distribution of OA. This will allow the experimental characterization of OA in this new “coordinate system”. (iii) The study of the major OA processes (partitioning, chemical aging, hygroscopicity, CCN formation, nucleation) in this new framework combining lab and field measurements. (iv) The development and evaluation of the next generation of regional and global CTMs using the above framework. (v) The quantification of the importance of the various sources and formation pathways of OA in Europe and the world, of the sensitivity of OA to emission control strategies, and its role in the direct and indirect effects of aerosols on climate.
The proposed work involves a combination of laboratory measurements, field measurements including novel “atmospheric perturbation experiments”, OA model development, and modelling in urban, regional, and global scales. Therefore, it will span the system scales starting from the nanoscale to the global. The modelling tools that will be developed will be made available to all other research groups.
Summary
Despite its importance for human health and climate change organic aerosol (OA) remains one of the least understood aspects of atmospheric chemistry. We propose to develop an innovative new framework for the description of OA in chemical transport and climate models that will be able to overcome the challenges posed by the chemical complexity of OA while capturing its essential features.
The objectives of ATMOPACS are: (i) The development of a new unified framework for the description of OA based on its two most important parameters: volatility and oxygen content. (ii) The development of measurement techniques for the volatility distribution and oxygen content distribution of OA. This will allow the experimental characterization of OA in this new “coordinate system”. (iii) The study of the major OA processes (partitioning, chemical aging, hygroscopicity, CCN formation, nucleation) in this new framework combining lab and field measurements. (iv) The development and evaluation of the next generation of regional and global CTMs using the above framework. (v) The quantification of the importance of the various sources and formation pathways of OA in Europe and the world, of the sensitivity of OA to emission control strategies, and its role in the direct and indirect effects of aerosols on climate.
The proposed work involves a combination of laboratory measurements, field measurements including novel “atmospheric perturbation experiments”, OA model development, and modelling in urban, regional, and global scales. Therefore, it will span the system scales starting from the nanoscale to the global. The modelling tools that will be developed will be made available to all other research groups.
Max ERC Funding
2 496 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym CAUSALPATH
Project Next Generation Causal Analysis: Inspired by the Induction of Biological Pathways from Cytometry Data
Researcher (PI) Ioannis Tsamardinos
Host Institution (HI) PANEPISTIMIO KRITIS
Call Details Consolidator Grant (CoG), PE6, ERC-2013-CoG
Summary Discovering the causal mechanisms of a complex system of interacting components is necessary in order to control it. Computational Causal Discovery (CD) is a field that offers the potential to discover causal relations under certain conditions from observational data alone or with a limited number of interventions/manipulations.
An important, challenging biological problem that may take decades of experimental work is the induction of biological cellular pathways; pathways are informal causal models indispensable in biological research and drug design. Recent exciting advances in flow/mass cytometry biotechnology allow the generation of large-sample datasets containing measurements on single cells, thus setting the problem of pathway learning suitable for CD methods.
CAUSALPATH builds upon and further advances recent breakthrough developments in CD methods to enable the induction of biological pathways from cytometry and other omics data. As a testbed problem we focus on the differentiation of human T-cells; these are involved in autoimmune and inflammatory diseases, as well as cancer and thus, are targets of new drug development for a range of chronic diseases. The biological problem acts as our campus for general novel formalisms, practical algorithms, and useful tools development, pointing to fundamental CD problems: presence of feedback cycles, presence of latent confounding variables, CD from time-course data, Integrative Causal Analysis (INCA) of heterogeneous datasets and others.
Three features complement CAUSALPATH’s approach: (A) methods development will co-evolve with biological wet-lab experiments periodically testing the algorithmic postulates, (B) Open-source tools will be developed for the non-expert, and (C) Commercial exploitation of the results will be sought out.
CAUSALPATH brings together an interdisciplinary team, committed to this vision. It builds upon the PI’s group recent important results on INCA algorithms.
Summary
Discovering the causal mechanisms of a complex system of interacting components is necessary in order to control it. Computational Causal Discovery (CD) is a field that offers the potential to discover causal relations under certain conditions from observational data alone or with a limited number of interventions/manipulations.
An important, challenging biological problem that may take decades of experimental work is the induction of biological cellular pathways; pathways are informal causal models indispensable in biological research and drug design. Recent exciting advances in flow/mass cytometry biotechnology allow the generation of large-sample datasets containing measurements on single cells, thus setting the problem of pathway learning suitable for CD methods.
CAUSALPATH builds upon and further advances recent breakthrough developments in CD methods to enable the induction of biological pathways from cytometry and other omics data. As a testbed problem we focus on the differentiation of human T-cells; these are involved in autoimmune and inflammatory diseases, as well as cancer and thus, are targets of new drug development for a range of chronic diseases. The biological problem acts as our campus for general novel formalisms, practical algorithms, and useful tools development, pointing to fundamental CD problems: presence of feedback cycles, presence of latent confounding variables, CD from time-course data, Integrative Causal Analysis (INCA) of heterogeneous datasets and others.
Three features complement CAUSALPATH’s approach: (A) methods development will co-evolve with biological wet-lab experiments periodically testing the algorithmic postulates, (B) Open-source tools will be developed for the non-expert, and (C) Commercial exploitation of the results will be sought out.
CAUSALPATH brings together an interdisciplinary team, committed to this vision. It builds upon the PI’s group recent important results on INCA algorithms.
Max ERC Funding
1 724 000 €
Duration
Start date: 2015-01-01, End date: 2019-12-31
Project acronym CODAMODA
Project Controlling Data Movement in the Digital Age
Researcher (PI) Aggelos Kiayias
Host Institution (HI) ETHNIKO KAI KAPODISTRIAKO PANEPISTIMIO ATHINON
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary Nowadays human intellectual product is increasingly produced and disseminated solely in digital form. The capability of digital data for effortless reproduction and transfer has lead to a true revolution that impacts every aspect of human creativity. Nevertheless, as with every technological revolution, this digital media revolution comes with a dark side that, if left unaddressed, it will limit its impact and may counter its potential advantages. In particular, the way we produce and disseminate digital content today does not lend itself to controlling the way data move and change. It turns out that the power of being digital can be a double-edged sword: the ease of production, dissemination and editing also implies the ease of misappropriation, plagiarism and improper modification.
To counter the above problems, the proposed research activity will focus on the development of a new generation of enabling cryptographic technologies that have the power to facilitate the appropriate controls for data movement. Using the techniques developed in this project it will be feasible to build digital content distribution systems where content producers will have the full possible control on the dissemination of their intellectual product, while at the same time the rights of the end-users in terms of privacy and fair use can be preserved. The PI is uniquely qualified to carry out the proposed research activity as he has extensive prior experience in making innovations in the area of digital content distribution as well as in the management of research projects. As part of the project activities, the PI will establish the CODAMODA laboratory in the University of Athens and will seek opportunities for technology transfer and interdisciplinary work with the legal science community.
Summary
Nowadays human intellectual product is increasingly produced and disseminated solely in digital form. The capability of digital data for effortless reproduction and transfer has lead to a true revolution that impacts every aspect of human creativity. Nevertheless, as with every technological revolution, this digital media revolution comes with a dark side that, if left unaddressed, it will limit its impact and may counter its potential advantages. In particular, the way we produce and disseminate digital content today does not lend itself to controlling the way data move and change. It turns out that the power of being digital can be a double-edged sword: the ease of production, dissemination and editing also implies the ease of misappropriation, plagiarism and improper modification.
To counter the above problems, the proposed research activity will focus on the development of a new generation of enabling cryptographic technologies that have the power to facilitate the appropriate controls for data movement. Using the techniques developed in this project it will be feasible to build digital content distribution systems where content producers will have the full possible control on the dissemination of their intellectual product, while at the same time the rights of the end-users in terms of privacy and fair use can be preserved. The PI is uniquely qualified to carry out the proposed research activity as he has extensive prior experience in making innovations in the area of digital content distribution as well as in the management of research projects. As part of the project activities, the PI will establish the CODAMODA laboratory in the University of Athens and will seek opportunities for technology transfer and interdisciplinary work with the legal science community.
Max ERC Funding
1 212 960 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym D-TECT
Project Does dust triboelectrification affect our climate?
Researcher (PI) Vasileios AMOIRIDIS
Host Institution (HI) NATIONAL OBSERVATORY OF ATHENS
Call Details Consolidator Grant (CoG), PE10, ERC-2016-COG
Summary The recent IPCC report identifies mineral dust and the associated uncertainties in climate projections as key topics for future research. Dust size distribution in climate models controls the dust-radiation-cloud interactions and is a major contributor to these uncertainties. Observations show that the coarse mode of dust can be sustained during long-range transport, while current understanding fails in explaining why the lifetime of large airborne dust particles is longer than expected from gravitational settling theories. This discrepancy between observations and theory suggests that other processes counterbalance the effect of gravity along transport. D-TECT envisages filling this knowledge gap by studying the contribution of the triboelectrification (contact electrification) on particle removal processes. Our hypothesis is that triboelectric charging generates adequate electric fields to hold large dust particles up in the atmosphere. D-TECT aims to (i) parameterize the physical mechanisms responsible for dust triboelectrification; (ii) assess the impact of electrification on dust settling; (iii) quantify the climatic impacts of the process, particularly the effect on the dust size evolution during transport, on dry deposition and on CCN/IN reservoirs, and the effect of the electric field on particle orientation and on radiative transfer. The approach involves the development of a novel specialized high-power lidar system to detect and characterize aerosol particle orientation and a large-scale field experiment in the Mediterranean Basin using unprecedented ground-based remote sensing and airborne in-situ observation synergies. Considering aerosol-electricity interactions, the observations will be used to improve theoretical understanding and simulations of dust lifecycle. The project will provide new fundamental understanding, able to open new horizons for weather and climate science, including biogeochemistry, volcanic ash and extraterrestrial dust research.
Summary
The recent IPCC report identifies mineral dust and the associated uncertainties in climate projections as key topics for future research. Dust size distribution in climate models controls the dust-radiation-cloud interactions and is a major contributor to these uncertainties. Observations show that the coarse mode of dust can be sustained during long-range transport, while current understanding fails in explaining why the lifetime of large airborne dust particles is longer than expected from gravitational settling theories. This discrepancy between observations and theory suggests that other processes counterbalance the effect of gravity along transport. D-TECT envisages filling this knowledge gap by studying the contribution of the triboelectrification (contact electrification) on particle removal processes. Our hypothesis is that triboelectric charging generates adequate electric fields to hold large dust particles up in the atmosphere. D-TECT aims to (i) parameterize the physical mechanisms responsible for dust triboelectrification; (ii) assess the impact of electrification on dust settling; (iii) quantify the climatic impacts of the process, particularly the effect on the dust size evolution during transport, on dry deposition and on CCN/IN reservoirs, and the effect of the electric field on particle orientation and on radiative transfer. The approach involves the development of a novel specialized high-power lidar system to detect and characterize aerosol particle orientation and a large-scale field experiment in the Mediterranean Basin using unprecedented ground-based remote sensing and airborne in-situ observation synergies. Considering aerosol-electricity interactions, the observations will be used to improve theoretical understanding and simulations of dust lifecycle. The project will provide new fundamental understanding, able to open new horizons for weather and climate science, including biogeochemistry, volcanic ash and extraterrestrial dust research.
Max ERC Funding
1 968 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym dEMORY
Project Dissecting the Role of Dendrites in Memory
Researcher (PI) Panayiota Poirazi
Host Institution (HI) FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary Understanding the rules and mechanisms underlying memory formation, storage and retrieval is a grand challenge in neuroscience. In light of cumulating evidence regarding non-linear dendritic events (dendritic-spikes, branch strength potentiation, temporal sequence detection etc) together with activity-dependent rewiring of the connection matrix, the classical notion of information storage via Hebbian-like changes in synaptic connections is inadequate. While more recent plasticity theories consider non-linear dendritic properties, a unifying theory of how dendrites are utilized to achieve memory coding, storing and/or retrieval is cruelly missing. Using computational models, we will simulate memory processes in three key brain regions: the hippocampus, the amygdala and the prefrontal cortex. Models will incorporate biologically constrained dendrites and state-of-the-art plasticity rules and will span different levels of abstraction, ranging from detailed biophysical single neurons and circuits to integrate-and-fire networks and abstract theoretical models. Our main goal is to dissect the role of dendrites in information processing and storage across the three different regions by systematically altering their anatomical, biophysical and plasticity properties. Findings will further our understanding of the fundamental computations supported by these structures and how these computations, reinforced by plasticity mechanisms, sub-serve memory formation and associated dysfunctions, thus opening new avenues for hypothesis driven experimentation and development of novel treatments for memory-related diseases. Identification of dendrites as the key processing units across brain regions and complexity levels will lay the foundations for a new era in computational and experimental neuroscience and serve as the basis for groundbreaking advances in the robotics and artificial intelligence fields while also having a large impact on the machine learning community.
Summary
Understanding the rules and mechanisms underlying memory formation, storage and retrieval is a grand challenge in neuroscience. In light of cumulating evidence regarding non-linear dendritic events (dendritic-spikes, branch strength potentiation, temporal sequence detection etc) together with activity-dependent rewiring of the connection matrix, the classical notion of information storage via Hebbian-like changes in synaptic connections is inadequate. While more recent plasticity theories consider non-linear dendritic properties, a unifying theory of how dendrites are utilized to achieve memory coding, storing and/or retrieval is cruelly missing. Using computational models, we will simulate memory processes in three key brain regions: the hippocampus, the amygdala and the prefrontal cortex. Models will incorporate biologically constrained dendrites and state-of-the-art plasticity rules and will span different levels of abstraction, ranging from detailed biophysical single neurons and circuits to integrate-and-fire networks and abstract theoretical models. Our main goal is to dissect the role of dendrites in information processing and storage across the three different regions by systematically altering their anatomical, biophysical and plasticity properties. Findings will further our understanding of the fundamental computations supported by these structures and how these computations, reinforced by plasticity mechanisms, sub-serve memory formation and associated dysfunctions, thus opening new avenues for hypothesis driven experimentation and development of novel treatments for memory-related diseases. Identification of dendrites as the key processing units across brain regions and complexity levels will lay the foundations for a new era in computational and experimental neuroscience and serve as the basis for groundbreaking advances in the robotics and artificial intelligence fields while also having a large impact on the machine learning community.
Max ERC Funding
1 398 000 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym MINATRAN
Project Probing the Micro-Nano Transition: Theoretical and Experimental Foundations, Simulations and Applications
Researcher (PI) Aikaterini Aifanti
Host Institution (HI) ARISTOTELIO PANEPISTIMIO THESSALONIKIS
Call Details Starting Grant (StG), PE6, ERC-2007-StG
Summary The objective is to develop a robust multifunctional framework/probe for capturing the evolution of deformation and failure in a variety of processes at the micro-nano transition regime. An interdisciplinary approach will be pursued based on fundamental theory and experiment, in conjunction with multiscale simulations for micro/nanotechnology applications. The approach is unconventional as it ventures to extend continuum mechanics down to the micro/nano regime and verify this through nanoindentation and atomic force microscopy techniques. It is also unique as the new phenomenology introduced for establishing this extension (higher order gradients accounting for microscopic processes and interfacial energy terms accounting for nanoscopic phenomena) will be substantiated through hybrid (ab initio-atomistic-defect-finite element) simulations. The framework will be employed to consider fracture and size effects in a number of micro-nano scale transition configurations ranging from nanograined aggregates and nanolayered structures to nanotubes and micropillars, and from Li-ion battery electrodes to bioactive interfaces. Other micro/nano objects such as quantum dots, nanowires and NEMS/MEMS devices, as well as biomolecular microcrystalline membranes leading to living cell division will be considered. In a sense this “scale” transition theory is reminiscent in scope to Landau’s “phase” transition theory where a variety of different physical phenomena can be treated within a common framework. This optimism stems from the PI’s previous success with this approach, as well as Smalley’s remark that the “laws of continuum mechanics are amazingly robust for treating even intrinsically discrete objects only a few atoms in diameter”. A good mix of young researchers and mature scholars will be employed, thus connecting people and ideas through joint publications and scholarly activities in a critical area of fundamental and applied research.
Summary
The objective is to develop a robust multifunctional framework/probe for capturing the evolution of deformation and failure in a variety of processes at the micro-nano transition regime. An interdisciplinary approach will be pursued based on fundamental theory and experiment, in conjunction with multiscale simulations for micro/nanotechnology applications. The approach is unconventional as it ventures to extend continuum mechanics down to the micro/nano regime and verify this through nanoindentation and atomic force microscopy techniques. It is also unique as the new phenomenology introduced for establishing this extension (higher order gradients accounting for microscopic processes and interfacial energy terms accounting for nanoscopic phenomena) will be substantiated through hybrid (ab initio-atomistic-defect-finite element) simulations. The framework will be employed to consider fracture and size effects in a number of micro-nano scale transition configurations ranging from nanograined aggregates and nanolayered structures to nanotubes and micropillars, and from Li-ion battery electrodes to bioactive interfaces. Other micro/nano objects such as quantum dots, nanowires and NEMS/MEMS devices, as well as biomolecular microcrystalline membranes leading to living cell division will be considered. In a sense this “scale” transition theory is reminiscent in scope to Landau’s “phase” transition theory where a variety of different physical phenomena can be treated within a common framework. This optimism stems from the PI’s previous success with this approach, as well as Smalley’s remark that the “laws of continuum mechanics are amazingly robust for treating even intrinsically discrete objects only a few atoms in diameter”. A good mix of young researchers and mature scholars will be employed, thus connecting people and ideas through joint publications and scholarly activities in a critical area of fundamental and applied research.
Max ERC Funding
1 128 400 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym NEUROPHAGY
Project The Role of Autophagy in Synaptic Plasticity
Researcher (PI) Vassiliki NIKOLETOPOULOU
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary Neuronal metabolism is emerging as an essential regulator of brain function and its deregulation is a common denominator in neurological disorders entailing intellectual disability and synapse dys-morphogenesis. The autophagy-lysosome system is the major catabolic pathway dedicated to the recycling not only of protein aggregates but also lipids, nucleic acids, polysaccharides and defective or superfluous organelles, among others.
Appreciation of the role of autophagic pathways in the healthy and diseased brain continues to expand, as accumulating evidence indicates that proper regulation of autophagy is indispensable for neuronal integrity. At the cellular level, several lines of evidence implicate autophagy in the regulation of synaptic plasticity. However, the synapse-specific substrates of autophagy remain elusive. Similarly, the synaptic defects arising from autophagy impairment have never been thus far systematically addressed, yet they translate into severe behavioural deficiencies, such as compromised memory and cognition, pertinent to disorders of intellectual disability.
The present proposal aims to determine how autophagy regulates synaptic plasticity and how its deregulation contributes to synaptic defects. In particular, the objectives aim to: 1) Monitor and characterize the presence of the autophagic machinery in pre- and post-synaptic sites. 2) Identify autophagic substrates residing in synapses and whose turnover via autophagy determines synaptic plasticity. 3) Characterize the synaptic defects and ensuing behavioural deficits arising from impaired autophagy in the hippocampus. 4) Use C. elegans as a model system to address the evolutionary conservation of the synaptic role of autophagy and perform forward genetic screens to reveal novel regulators of autophagy in synapses.
Summary
Neuronal metabolism is emerging as an essential regulator of brain function and its deregulation is a common denominator in neurological disorders entailing intellectual disability and synapse dys-morphogenesis. The autophagy-lysosome system is the major catabolic pathway dedicated to the recycling not only of protein aggregates but also lipids, nucleic acids, polysaccharides and defective or superfluous organelles, among others.
Appreciation of the role of autophagic pathways in the healthy and diseased brain continues to expand, as accumulating evidence indicates that proper regulation of autophagy is indispensable for neuronal integrity. At the cellular level, several lines of evidence implicate autophagy in the regulation of synaptic plasticity. However, the synapse-specific substrates of autophagy remain elusive. Similarly, the synaptic defects arising from autophagy impairment have never been thus far systematically addressed, yet they translate into severe behavioural deficiencies, such as compromised memory and cognition, pertinent to disorders of intellectual disability.
The present proposal aims to determine how autophagy regulates synaptic plasticity and how its deregulation contributes to synaptic defects. In particular, the objectives aim to: 1) Monitor and characterize the presence of the autophagic machinery in pre- and post-synaptic sites. 2) Identify autophagic substrates residing in synapses and whose turnover via autophagy determines synaptic plasticity. 3) Characterize the synaptic defects and ensuing behavioural deficits arising from impaired autophagy in the hippocampus. 4) Use C. elegans as a model system to address the evolutionary conservation of the synaptic role of autophagy and perform forward genetic screens to reveal novel regulators of autophagy in synapses.
Max ERC Funding
1 493 750 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym NGHCS
Project NGHCS: Creating the Next-Generation Mobile Human-Centered Systems
Researcher (PI) Vasiliki (Vana) Kalogeraki
Host Institution (HI) ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS - RESEARCH CENTER
Call Details Starting Grant (StG), PE6, ERC-2012-StG_20111012
Summary Advances in sensor networking and the availability of every day, low-cost sensor enabled devices has led to integrating sensors to instrument the physical world in a variety of economically vital sectors of agriculture, transportation, healthcare, critical infrastructures and emergency response. At the same time, social computing is now undergoing a major revolution: social networks, as exemplified by Twitter or Facebook, have significantly changed the way humans interact with one another. We are now entering a new era where people and systems are becoming increasingly integrated and this development is effectively leading us to large-scale mobile human-centered systems. Our goal is to develop a comprehensive framework to simplify the development of mobile human-centered systems, as well as make them predictable and reliable. Our work has the following research thrusts: First, we develop techniques for dealing efficiently with dynamic unpredictable factors that such complex systems face, including dynamic workloads, unpredictable occurrence of events, real-time demands of applications, as well as user changes and urban dynamics. To achieve this, we will investigate the use of mathematical models to control the behavior of the applications in the absence of perfect system models and a priori information on load and human usage patterns. Second, we will develop the foundations needed to meet the end-to-end timeliness and reliability demands for the range of distributed systems that we will consider by developing novel techniques at different layers of the distributed environment and studying the tradeoffs involved. Third, we will develop general techniques to push computation and data storage as much as possible to the mobile devices, and to integrate participatory sensing and crowdsourcing techniques. The outcome of the proposed work is expected to have significant impact on a wide variety of distributed systems application domains.
Summary
Advances in sensor networking and the availability of every day, low-cost sensor enabled devices has led to integrating sensors to instrument the physical world in a variety of economically vital sectors of agriculture, transportation, healthcare, critical infrastructures and emergency response. At the same time, social computing is now undergoing a major revolution: social networks, as exemplified by Twitter or Facebook, have significantly changed the way humans interact with one another. We are now entering a new era where people and systems are becoming increasingly integrated and this development is effectively leading us to large-scale mobile human-centered systems. Our goal is to develop a comprehensive framework to simplify the development of mobile human-centered systems, as well as make them predictable and reliable. Our work has the following research thrusts: First, we develop techniques for dealing efficiently with dynamic unpredictable factors that such complex systems face, including dynamic workloads, unpredictable occurrence of events, real-time demands of applications, as well as user changes and urban dynamics. To achieve this, we will investigate the use of mathematical models to control the behavior of the applications in the absence of perfect system models and a priori information on load and human usage patterns. Second, we will develop the foundations needed to meet the end-to-end timeliness and reliability demands for the range of distributed systems that we will consider by developing novel techniques at different layers of the distributed environment and studying the tradeoffs involved. Third, we will develop general techniques to push computation and data storage as much as possible to the mobile devices, and to integrate participatory sensing and crowdsourcing techniques. The outcome of the proposed work is expected to have significant impact on a wide variety of distributed systems application domains.
Max ERC Funding
960 000 €
Duration
Start date: 2013-03-01, End date: 2019-02-28
Project acronym PPP
Project Protecting and Preserving Human Knowledge for Posterity
Researcher (PI) Dimitra-Isidora Mema Roussopoulou
Host Institution (HI) ETHNIKO KAI KAPODISTRIAKO PANEPISTIMIO ATHINON
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary "The amount and variety of content being published online is growing at an exceptional rate. Online publishing enables content to reach a much larger audience than paper publishing but offers no guarantee of long-term access to the content. This work investigates techniques for building a large, reliable peer-to-peer system for the preservation of online published material. The system consists of a large number of low-cost, persistent web caches (peers) that cooperate to detect and repair damage by voting in ""opinion polls"" on the content of their cached documents. The peers are autonomous and mutually suspicious. Project activities include 1) investigating defenses against adversaries whose goal is to attack the preservation process; 2) performing a foundational study of the interconnections between identity, trust, and reputation models in peer-to-peer systems; 3) investigating the use of estimates of peer diversity to increase the fault and attack tolerance of peer-to-peer systems; and 4) developing, analyzing, implementing, and testing new protocols that address the high frequency of updates of online government documents, the large volumes of scientific data, and the privacy concerns of sensitive medical data.
This work is being evaluated using a real testbed of over 200 libraries around the world with the support of publishers representing over 2000 titles. The broader impact of the work is that all electronic material preserved through the system including academic journals, government documents and web articles, and scientific and medical data will remain accessible to generations of citizens for both research and education purposes."
Summary
"The amount and variety of content being published online is growing at an exceptional rate. Online publishing enables content to reach a much larger audience than paper publishing but offers no guarantee of long-term access to the content. This work investigates techniques for building a large, reliable peer-to-peer system for the preservation of online published material. The system consists of a large number of low-cost, persistent web caches (peers) that cooperate to detect and repair damage by voting in ""opinion polls"" on the content of their cached documents. The peers are autonomous and mutually suspicious. Project activities include 1) investigating defenses against adversaries whose goal is to attack the preservation process; 2) performing a foundational study of the interconnections between identity, trust, and reputation models in peer-to-peer systems; 3) investigating the use of estimates of peer diversity to increase the fault and attack tolerance of peer-to-peer systems; and 4) developing, analyzing, implementing, and testing new protocols that address the high frequency of updates of online government documents, the large volumes of scientific data, and the privacy concerns of sensitive medical data.
This work is being evaluated using a real testbed of over 200 libraries around the world with the support of publishers representing over 2000 titles. The broader impact of the work is that all electronic material preserved through the system including academic journals, government documents and web articles, and scientific and medical data will remain accessible to generations of citizens for both research and education purposes."
Max ERC Funding
1 032 916 €
Duration
Start date: 2011-10-01, End date: 2017-12-31
Project acronym PyroTRACH
Project Pyrogenic TRansformations Affecting Climate and Health
Researcher (PI) Athanasios NENES
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Consolidator Grant (CoG), PE10, ERC-2016-COG
Summary Biomass burning (BB) is a significant contributor to global atmospheric particulate matter, with strong impacts on climate, ecosystems and public health. Yet these impacts are highly uncertain, largely owing to our inability to track BB particulate matter and the evolution of their properties throughout most of its atmospheric lifetime. PyroTRACH will provide the necessary breakthroughs in our understanding of BB particles and their impacts by: i) deriving new markers of biomass burning with an atmospheric lifetime that exceeds the current limitation of about a day, ii) measuring highly uncertain but critically-important climate- and health- relevant properties of aerosols both from wildfire events that occur during summertime and from BB for heating purposes during wintertime in highly populated urban environments, iii) applying this new knowledge to quantify the contribution of biomass burning to aerosol in the Mediterranean region, and quantify its impacts on climate and public health. Novel state-of-the-art instrumentation, portable environmental chambers and well established measurement techniques will be applied in continuous measurements as well as intensive field campaigns to study the properties and evolution of BB particulates as they age in the atmosphere. Discovering new stable chemical markers that allow detection of BBOA many days after emission, while carefully and accurately following the climate and health-related properties of freshly emitted and aged BBOA, allows for an unprecedented understanding of the evolution and impacts of biomass burning aerosol and its impact on the Earth System and public health. Considering the increasing occurrence of wildfires, along with decreased emissions from fossil fuels means that accurately predicting the health and climate effects from biomass burning aerosol is one of the most important aspects of atmospheric aerosol that needs to be studied.
Summary
Biomass burning (BB) is a significant contributor to global atmospheric particulate matter, with strong impacts on climate, ecosystems and public health. Yet these impacts are highly uncertain, largely owing to our inability to track BB particulate matter and the evolution of their properties throughout most of its atmospheric lifetime. PyroTRACH will provide the necessary breakthroughs in our understanding of BB particles and their impacts by: i) deriving new markers of biomass burning with an atmospheric lifetime that exceeds the current limitation of about a day, ii) measuring highly uncertain but critically-important climate- and health- relevant properties of aerosols both from wildfire events that occur during summertime and from BB for heating purposes during wintertime in highly populated urban environments, iii) applying this new knowledge to quantify the contribution of biomass burning to aerosol in the Mediterranean region, and quantify its impacts on climate and public health. Novel state-of-the-art instrumentation, portable environmental chambers and well established measurement techniques will be applied in continuous measurements as well as intensive field campaigns to study the properties and evolution of BB particulates as they age in the atmosphere. Discovering new stable chemical markers that allow detection of BBOA many days after emission, while carefully and accurately following the climate and health-related properties of freshly emitted and aged BBOA, allows for an unprecedented understanding of the evolution and impacts of biomass burning aerosol and its impact on the Earth System and public health. Considering the increasing occurrence of wildfires, along with decreased emissions from fossil fuels means that accurately predicting the health and climate effects from biomass burning aerosol is one of the most important aspects of atmospheric aerosol that needs to be studied.
Max ERC Funding
1 999 832 €
Duration
Start date: 2017-06-01, End date: 2022-05-31