Project acronym A-DIET
Project Metabolomics based biomarkers of dietary intake- new tools for nutrition research
Researcher (PI) Lorraine Brennan
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Country Ireland
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary In todays advanced technological world, we can track the exact movement of individuals, analyse their genetic makeup and predict predisposition to certain diseases. However, we are unable to accurately assess an individual’s dietary intake. This is without a doubt one of the main stumbling blocks in assessing the link between diet and disease/health. The present proposal (A-DIET) will address this issue with the overarching objective to develop novel strategies for assessment of dietary intake.
Using approaches to (1) identify biomarkers of specific foods (2) classify people into dietary patterns (nutritypes) and (3) develop a tool for integration of dietary and biomarker data, A-DIET has the potential to dramatically enhance our ability to accurately assess dietary intake. The ultimate output from A-DIET will be a dietary assessment tool which can be used to obtain an accurate assessment of dietary intake by combining dietary and biomarker data which in turn will allow investigations into relationships between diet, health and disease. New biomarkers of specific foods will be identified and validated using intervention studies and metabolomic analyses. Methods will be developed to classify individuals into dietary patterns based on biomarker/metabolomic profiles thus demonstrating the novel concept of nutritypes. Strategies for integration of dietary and biomarker data will be developed and translated into a tool that will be made available to the wider scientific community.
Advances made in A-DIET will enable nutrition epidemiologist’s to properly examine the relationship between diet and disease and develop clear public health messages with regard to diet and health. Additionally results from A-DIET will allow researchers to accurately assess people’s diet and implement health promotion strategies and enable dieticians in a clinical environment to assess compliance to therapeutic diets such as adherence to a high fibre diet or a gluten free diet.
Summary
In todays advanced technological world, we can track the exact movement of individuals, analyse their genetic makeup and predict predisposition to certain diseases. However, we are unable to accurately assess an individual’s dietary intake. This is without a doubt one of the main stumbling blocks in assessing the link between diet and disease/health. The present proposal (A-DIET) will address this issue with the overarching objective to develop novel strategies for assessment of dietary intake.
Using approaches to (1) identify biomarkers of specific foods (2) classify people into dietary patterns (nutritypes) and (3) develop a tool for integration of dietary and biomarker data, A-DIET has the potential to dramatically enhance our ability to accurately assess dietary intake. The ultimate output from A-DIET will be a dietary assessment tool which can be used to obtain an accurate assessment of dietary intake by combining dietary and biomarker data which in turn will allow investigations into relationships between diet, health and disease. New biomarkers of specific foods will be identified and validated using intervention studies and metabolomic analyses. Methods will be developed to classify individuals into dietary patterns based on biomarker/metabolomic profiles thus demonstrating the novel concept of nutritypes. Strategies for integration of dietary and biomarker data will be developed and translated into a tool that will be made available to the wider scientific community.
Advances made in A-DIET will enable nutrition epidemiologist’s to properly examine the relationship between diet and disease and develop clear public health messages with regard to diet and health. Additionally results from A-DIET will allow researchers to accurately assess people’s diet and implement health promotion strategies and enable dieticians in a clinical environment to assess compliance to therapeutic diets such as adherence to a high fibre diet or a gluten free diet.
Max ERC Funding
1 995 548 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym A-HERO
Project Anthelmintic Research and Optimization
Researcher (PI) Jennifer Irene Keiser
Host Institution (HI) SCHWEIZERISCHES TROPEN- UND PUBLIC HEALTH-INSTITUT
Country Switzerland
Call Details Consolidator Grant (CoG), LS7, ERC-2013-CoG
Summary "I propose an ambitious, yet feasible 5-year research project that will fill an important gap in global health. Specifically, I will develop and validate novel approaches for anthelmintic drug discovery and development. My proposal pursues the following five research questions: (i) Is a chip calorimeter suitable for high-throughput screening in anthelmintic drug discovery? (ii) Is combination chemotherapy safe and more efficacious than monotherapy against strongyloidiasis and trichuriasis? (iii) What are the key pharmacokinetic parameters of praziquantel in preschool-aged children and school-aged children infected with Schistosoma mansoni and S. haematobium using a novel and validated technology based on dried blood spotting? (iv) What are the metabolic consequences and clearance of praziquantel treatment in S. mansoni-infected mice and S. mansoni- and S. haematobium-infected children? (v) Which is the ideal compartment to study pharmacokinetic parameters for intestinal nematode infections and does age, nutrition, co-infection and infection intensity influence the efficacy of anthelmintic drugs?
My proposed research is of considerable public health relevance since it will ultimately result in improved treatments for soil-transmitted helminthiasis and pediatric schistosomiasis. Additionally, at the end of this project, I have generated comprehensive information on drug disposition of anthelmintics. A comprehensive database of metabolite profiles following praziquantel treatment will be available. Finally, the proof-of-concept of chip calorimetry in anthelmintic drug discovery has been established and broadly validated."
Summary
"I propose an ambitious, yet feasible 5-year research project that will fill an important gap in global health. Specifically, I will develop and validate novel approaches for anthelmintic drug discovery and development. My proposal pursues the following five research questions: (i) Is a chip calorimeter suitable for high-throughput screening in anthelmintic drug discovery? (ii) Is combination chemotherapy safe and more efficacious than monotherapy against strongyloidiasis and trichuriasis? (iii) What are the key pharmacokinetic parameters of praziquantel in preschool-aged children and school-aged children infected with Schistosoma mansoni and S. haematobium using a novel and validated technology based on dried blood spotting? (iv) What are the metabolic consequences and clearance of praziquantel treatment in S. mansoni-infected mice and S. mansoni- and S. haematobium-infected children? (v) Which is the ideal compartment to study pharmacokinetic parameters for intestinal nematode infections and does age, nutrition, co-infection and infection intensity influence the efficacy of anthelmintic drugs?
My proposed research is of considerable public health relevance since it will ultimately result in improved treatments for soil-transmitted helminthiasis and pediatric schistosomiasis. Additionally, at the end of this project, I have generated comprehensive information on drug disposition of anthelmintics. A comprehensive database of metabolite profiles following praziquantel treatment will be available. Finally, the proof-of-concept of chip calorimetry in anthelmintic drug discovery has been established and broadly validated."
Max ERC Funding
1 927 350 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym AbioEvo
Project Conditions for the emergence of evolution during abiogenesis
Researcher (PI) Philippe Nghe
Host Institution (HI) ECOLE SUPERIEURE DE PHYSIQUE ET DECHIMIE INDUSTRIELLES DE LA VILLE DEPARIS
Country France
Call Details Consolidator Grant (CoG), LS1, ERC-2020-COG
Summary Abiogenesis, the transition from non-living to living matter, is at the core of the origin of life question. However, the dynamical processes underlying abiogenesis remain unknown.
The AbioEvo project aims to test the hypothesis that RNA-catalysed RNA recombination, if coupled with template-based mechanisms, provides a gradual route for the emergence of evolution by natural selection, starting from collective autocatalysis, toward template-based replication. Indeed, recombination allows both self-reproduction and shuffling of other sequences, thus, once combined with templating, provides the basic ingredients of reproduction, heredity and variation required for Darwinian evolution.
The project decomposes the problem into five steps: (WP1) the study of molecular-level mechanisms to generate and stabilize novel sequences by recombination and templating; (WP2) collective dynamics integrating these mechanisms into the properties of reproduction with heredity, variation, and selection, in order to establish proof-of-concepts of evolutionary modes; (WP3) viability thresholds of recombination-based replicators from increasingly random substrates; (WP4) conditions for open-ended evolution toward template-based replication; (WP5) experimentally informed theoretical estimates of the probability of the proposed evolutionary transitions.
The project would provide first demonstrations of evolution by natural selection in a purely chemical system, gradual and experimentally accessible paths from oligomers to template-based replication, and a method to evaluate prebiotic plausibility from sequence-to-function relationships, kinetics and evolutionary dynamics.
Summary
Abiogenesis, the transition from non-living to living matter, is at the core of the origin of life question. However, the dynamical processes underlying abiogenesis remain unknown.
The AbioEvo project aims to test the hypothesis that RNA-catalysed RNA recombination, if coupled with template-based mechanisms, provides a gradual route for the emergence of evolution by natural selection, starting from collective autocatalysis, toward template-based replication. Indeed, recombination allows both self-reproduction and shuffling of other sequences, thus, once combined with templating, provides the basic ingredients of reproduction, heredity and variation required for Darwinian evolution.
The project decomposes the problem into five steps: (WP1) the study of molecular-level mechanisms to generate and stabilize novel sequences by recombination and templating; (WP2) collective dynamics integrating these mechanisms into the properties of reproduction with heredity, variation, and selection, in order to establish proof-of-concepts of evolutionary modes; (WP3) viability thresholds of recombination-based replicators from increasingly random substrates; (WP4) conditions for open-ended evolution toward template-based replication; (WP5) experimentally informed theoretical estimates of the probability of the proposed evolutionary transitions.
The project would provide first demonstrations of evolution by natural selection in a purely chemical system, gradual and experimentally accessible paths from oligomers to template-based replication, and a method to evaluate prebiotic plausibility from sequence-to-function relationships, kinetics and evolutionary dynamics.
Max ERC Funding
2 000 000 €
Duration
Start date: 2021-06-01, End date: 2026-05-31
Project acronym ADDITIVES
Project Exposure to ‘cocktails’ of food additives and chronic disease risk
Researcher (PI) Mathilde Touvier
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Country France
Call Details Consolidator Grant (CoG), LS7, ERC-2019-COG
Summary Today, our daily diet typically contains dozens of food additives (e.g. colours, emulsifiers, sweeteners: ~350 substances allowed on the EU market). Safety assessment is performed by health agencies to protect consumers against potential adverse effects of each additive, yet such an assessment is only based on current available evidence, i.e., for most additives, only in-vitro/in-vivo toxicological studies and exposure simulations. Meanwhile, the long-term health impact of additives intake and any potential ‘cocktail’ effects remain largely unknown and have become a source of serious concern. Growing evidence link the consumption of ultra-processed foods, containing numerous additives, to adverse health outcomes, in particular our recent results on cancer (Fiolet BMJ 2018). While most additives allowed in the EU are likely to be neutral for health and some may even be beneficial, recent animal and cell-based studies have suggested detrimental effects of several such compounds. In humans, data is lacking. No epidemiological study has ever assessed individual-level exposure to a wide range of food additives and its association with health, hampered by unsuited traditional dietary assessment tools facing the high additive content variability across commercial brands. Hence, a major breakthrough will come from the novel and unique tools I developed with my team, notably within the NutriNet-Santé cohort (n=164,000), collecting precise and repeated data on foods and beverages usually consumed, including names and brands of industrial products. With this unique resource, I propose a project at the forefront of international research to provide answers to a question of major importance for public health. Built as a combination of epidemiological studies and in-vitro/in-vivo experiments, this project will shed light on individual exposure to food additive 'cocktails' in relation to obesity, cancer, cardiovascular diseases and mortality, while depicting underlying mechanisms.
Summary
Today, our daily diet typically contains dozens of food additives (e.g. colours, emulsifiers, sweeteners: ~350 substances allowed on the EU market). Safety assessment is performed by health agencies to protect consumers against potential adverse effects of each additive, yet such an assessment is only based on current available evidence, i.e., for most additives, only in-vitro/in-vivo toxicological studies and exposure simulations. Meanwhile, the long-term health impact of additives intake and any potential ‘cocktail’ effects remain largely unknown and have become a source of serious concern. Growing evidence link the consumption of ultra-processed foods, containing numerous additives, to adverse health outcomes, in particular our recent results on cancer (Fiolet BMJ 2018). While most additives allowed in the EU are likely to be neutral for health and some may even be beneficial, recent animal and cell-based studies have suggested detrimental effects of several such compounds. In humans, data is lacking. No epidemiological study has ever assessed individual-level exposure to a wide range of food additives and its association with health, hampered by unsuited traditional dietary assessment tools facing the high additive content variability across commercial brands. Hence, a major breakthrough will come from the novel and unique tools I developed with my team, notably within the NutriNet-Santé cohort (n=164,000), collecting precise and repeated data on foods and beverages usually consumed, including names and brands of industrial products. With this unique resource, I propose a project at the forefront of international research to provide answers to a question of major importance for public health. Built as a combination of epidemiological studies and in-vitro/in-vivo experiments, this project will shed light on individual exposure to food additive 'cocktails' in relation to obesity, cancer, cardiovascular diseases and mortality, while depicting underlying mechanisms.
Max ERC Funding
2 000 000 €
Duration
Start date: 2020-05-01, End date: 2025-04-30
Project acronym ADIPOR
Project Molecular and structural pharmacology of adiponectin receptor: towards innovative treatments of obesity-related diseases.
Researcher (PI) Sebastien Jean Antoine Granier
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Country France
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary The human kind is witnessing an escalation of obesity-related health problems such as cardiovascular diseases and type 2 diabetes. A recent groundbreaking study revealed adiponectin receptors (ADIPOR) as key targets for treating such obesity-related diseases. Indeed, the modulation of this integral membrane protein by small molecules agonists ameliorates diabetes and prolongs lifespan of genetically obese rodent model. Despite these exciting results and the importance of ADIPOR in human physiology, there is a complete lack of knowledge of ADIPOR mechanisms of action and pharmacology. This is mainly due to the challenges associated with the characterization of membrane protein structure and function. To fill this gap of knowledge and based on my extensive experience in membrane protein biology, I propose here to characterize the the proximal signaling pathways associated with ADIPOR activation as well as the molecular and structural mechanisms of ADIPOR activation. We will develop an innovative integrated strategy combining state-of-the-art molecular and structural pharmacology approaches including 1) molecular analyses of ADIPOR network of interaction using resonance energy transfer measurement in living cells and a proteomic analysis and 2) structural analyses of ADIPOR and signaling complexes using biophysics and X-ray crystallography. Our data will have a major impact on drug discovery for treating obesity-related diseases as it will enable the application of structure-based drug design and in silico screening for the molecular control of ADIPOR activity. The proposed high-risk endeavor of obtaining structural data on these atypical membrane signaling complexes is a new direction both for my career and for the field of adiponectin biology; the exceptionally high gain from these studies fully justifies the risks; the feasibility of this project is supported by my recent success in membrane protein pharmacology, biochemistry, biophysics and crystallography.
Summary
The human kind is witnessing an escalation of obesity-related health problems such as cardiovascular diseases and type 2 diabetes. A recent groundbreaking study revealed adiponectin receptors (ADIPOR) as key targets for treating such obesity-related diseases. Indeed, the modulation of this integral membrane protein by small molecules agonists ameliorates diabetes and prolongs lifespan of genetically obese rodent model. Despite these exciting results and the importance of ADIPOR in human physiology, there is a complete lack of knowledge of ADIPOR mechanisms of action and pharmacology. This is mainly due to the challenges associated with the characterization of membrane protein structure and function. To fill this gap of knowledge and based on my extensive experience in membrane protein biology, I propose here to characterize the the proximal signaling pathways associated with ADIPOR activation as well as the molecular and structural mechanisms of ADIPOR activation. We will develop an innovative integrated strategy combining state-of-the-art molecular and structural pharmacology approaches including 1) molecular analyses of ADIPOR network of interaction using resonance energy transfer measurement in living cells and a proteomic analysis and 2) structural analyses of ADIPOR and signaling complexes using biophysics and X-ray crystallography. Our data will have a major impact on drug discovery for treating obesity-related diseases as it will enable the application of structure-based drug design and in silico screening for the molecular control of ADIPOR activity. The proposed high-risk endeavor of obtaining structural data on these atypical membrane signaling complexes is a new direction both for my career and for the field of adiponectin biology; the exceptionally high gain from these studies fully justifies the risks; the feasibility of this project is supported by my recent success in membrane protein pharmacology, biochemistry, biophysics and crystallography.
Max ERC Funding
1 989 518 €
Duration
Start date: 2015-07-01, End date: 2020-12-31
Project acronym AimingT6SS
Project Mechanisms of dynamic localization of the bacterial Type 6 secretion system assembly
Researcher (PI) Marek BASLER
Host Institution (HI) UNIVERSITAT BASEL
Country Switzerland
Call Details Consolidator Grant (CoG), LS6, ERC-2019-COG
Summary The Type 6 secretion system (T6SS) allows Gram-negative bacteria to deliver toxins into both eukaryotic and bacterial target cells and thus cause disease or kill competitors. T6SS is composed of four main parts: a membrane complex, a baseplate and a long spring-like sheath wrapped around an inner tube. Sheath contraction generates a large amount of energy to push the tube with associated toxins through the baseplate and membrane complex out of the cell. However, the reach of the T6SS tube is limited and thus a direct contact with the target membrane and precise positioning of T6SS assembly is required for protein translocation. In this proposal, we will unravel principles of spatial and temporal coordination of T6SS assembly that we have recently observed in several bacterial species. We will study how cells sense attacks from neighboring bacteria to dynamically localize its T6SS. We will describe how bacteria initiate and position T6SS assembly in response to physical cell-cell interactions. We will identify the principles and the role of T6SS localization in intracellular pathogens. Using genetic and biochemical approaches, we will identify and characterize proteins interacting with the core components of T6SS and test their role in initiation and positioning of T6SS assembly. We will search for peptidoglycan remodeling enzymes required for T6SS assembly. We will use advanced microscopy techniques to describe dynamic localization of proteins upon T6SS activation to establish the order of their assembly. We will quantify how much T6SS aiming increases efficiency of protein delivery and T6SS function during bacterial competition and pathogenesis. Overall, we will unravel novel principles of spatial and temporal control of localization of protein complexes and show how this allows bacteria to quickly respond to external cues and interact with their environment.
Summary
The Type 6 secretion system (T6SS) allows Gram-negative bacteria to deliver toxins into both eukaryotic and bacterial target cells and thus cause disease or kill competitors. T6SS is composed of four main parts: a membrane complex, a baseplate and a long spring-like sheath wrapped around an inner tube. Sheath contraction generates a large amount of energy to push the tube with associated toxins through the baseplate and membrane complex out of the cell. However, the reach of the T6SS tube is limited and thus a direct contact with the target membrane and precise positioning of T6SS assembly is required for protein translocation. In this proposal, we will unravel principles of spatial and temporal coordination of T6SS assembly that we have recently observed in several bacterial species. We will study how cells sense attacks from neighboring bacteria to dynamically localize its T6SS. We will describe how bacteria initiate and position T6SS assembly in response to physical cell-cell interactions. We will identify the principles and the role of T6SS localization in intracellular pathogens. Using genetic and biochemical approaches, we will identify and characterize proteins interacting with the core components of T6SS and test their role in initiation and positioning of T6SS assembly. We will search for peptidoglycan remodeling enzymes required for T6SS assembly. We will use advanced microscopy techniques to describe dynamic localization of proteins upon T6SS activation to establish the order of their assembly. We will quantify how much T6SS aiming increases efficiency of protein delivery and T6SS function during bacterial competition and pathogenesis. Overall, we will unravel novel principles of spatial and temporal control of localization of protein complexes and show how this allows bacteria to quickly respond to external cues and interact with their environment.
Max ERC Funding
2 493 650 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym AMPERE
Project Accounting for Metallicity, Polarization of the Electrolyte, and Redox reactions in computational Electrochemistry
Researcher (PI) Mathieu Eric Salanne
Host Institution (HI) SORBONNE UNIVERSITE
Country France
Call Details Consolidator Grant (CoG), PE4, ERC-2017-COG
Summary Applied electrochemistry plays a key role in many technologies, such as batteries, fuel cells, supercapacitors or solar cells. It is therefore at the core of many research programs all over the world. Yet, fundamental electrochemical investigations remain scarce. In particular, electrochemistry is among the fields for which the gap between theory and experiment is the largest. From the computational point of view, there is no molecular dynamics (MD) software devoted to the simulation of electrochemical systems while other fields such as biochemistry (GROMACS) or material science (LAMMPS) have dedicated tools. This is due to the difficulty of accounting for complex effects arising from (i) the degree of metallicity of the electrode (i.e. from semimetals to perfect conductors), (ii) the mutual polarization occurring at the electrode/electrolyte interface and (iii) the redox reactivity through explicit electron transfers. Current understanding therefore relies on standard theories that derive from an inaccurate molecular-scale picture. My objective is to fill this gap by introducing a whole set of new methods for simulating electrochemical systems. They will be provided to the computational electrochemistry community as a cutting-edge MD software adapted to supercomputers. First applications will aim at the discovery of new electrolytes for energy storage. Here I will focus on (1) ‘‘water-in-salts’’ to understand why these revolutionary liquids enable much higher voltage than conventional solutions (2) redox reactions inside a nanoporous electrode to support the development of future capacitive energy storage devices. These selected applications are timely and rely on collaborations with leading experimental partners. The results are expected to shed an unprecedented light on the importance of polarization effects on the structure and the reactivity of electrode/electrolyte interfaces, establishing MD as a prominent tool for solving complex electrochemistry problems.
Summary
Applied electrochemistry plays a key role in many technologies, such as batteries, fuel cells, supercapacitors or solar cells. It is therefore at the core of many research programs all over the world. Yet, fundamental electrochemical investigations remain scarce. In particular, electrochemistry is among the fields for which the gap between theory and experiment is the largest. From the computational point of view, there is no molecular dynamics (MD) software devoted to the simulation of electrochemical systems while other fields such as biochemistry (GROMACS) or material science (LAMMPS) have dedicated tools. This is due to the difficulty of accounting for complex effects arising from (i) the degree of metallicity of the electrode (i.e. from semimetals to perfect conductors), (ii) the mutual polarization occurring at the electrode/electrolyte interface and (iii) the redox reactivity through explicit electron transfers. Current understanding therefore relies on standard theories that derive from an inaccurate molecular-scale picture. My objective is to fill this gap by introducing a whole set of new methods for simulating electrochemical systems. They will be provided to the computational electrochemistry community as a cutting-edge MD software adapted to supercomputers. First applications will aim at the discovery of new electrolytes for energy storage. Here I will focus on (1) ‘‘water-in-salts’’ to understand why these revolutionary liquids enable much higher voltage than conventional solutions (2) redox reactions inside a nanoporous electrode to support the development of future capacitive energy storage devices. These selected applications are timely and rely on collaborations with leading experimental partners. The results are expected to shed an unprecedented light on the importance of polarization effects on the structure and the reactivity of electrode/electrolyte interfaces, establishing MD as a prominent tool for solving complex electrochemistry problems.
Max ERC Funding
1 588 769 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym AMSEL
Project Atomic Force Microscopy for Molecular Structure Elucidation
Researcher (PI) Leo Gross
Host Institution (HI) IBM RESEARCH GMBH
Country Switzerland
Call Details Consolidator Grant (CoG), PE4, ERC-2015-CoG
Summary Molecular structure elucidation is of great importance in synthetic chemistry, pharmacy, life sciences, energy and environmental sciences, and technology applications. To date structure elucidation by atomic force microscopy (AFM) has been demonstrated for a few, small and mainly planar molecules. In this project high-risk, high-impact scientific questions will be solved using structure elucidation with the AFM employing a novel tool and novel methodologies.
A combined low-temperature scanning tunneling microscope/atomic force microscope (LT-STM/AFM) with high throughput and in situ electrospray deposition method will be developed. Chemical resolution will be achieved by novel measurement techniques, in particular the usage of different and novel tip functionalizations and combination with Kelvin probe force microscopy. Elements will be identified using substructure recognition provided by a database that will be erected and by refined theory and simulations.
The developed tools and techniques will be applied to molecules of increasing fragility, complexity, size, and three-dimensionality. In particular samples that are challenging to characterize with conventional methods will be studied. Complex molecular mixtures will be investigated molecule-by-molecule taking advantage of the single-molecule sensitivity. The absolute stereochemistry of molecules will be determined, resolving molecules with multiple stereocenters. The operation of single molecular machines as nanocars and molecular gears will be investigated. Reactive intermediates generated with atomic manipulation will be characterized and their on-surface reactivity will be studied by AFM.
Summary
Molecular structure elucidation is of great importance in synthetic chemistry, pharmacy, life sciences, energy and environmental sciences, and technology applications. To date structure elucidation by atomic force microscopy (AFM) has been demonstrated for a few, small and mainly planar molecules. In this project high-risk, high-impact scientific questions will be solved using structure elucidation with the AFM employing a novel tool and novel methodologies.
A combined low-temperature scanning tunneling microscope/atomic force microscope (LT-STM/AFM) with high throughput and in situ electrospray deposition method will be developed. Chemical resolution will be achieved by novel measurement techniques, in particular the usage of different and novel tip functionalizations and combination with Kelvin probe force microscopy. Elements will be identified using substructure recognition provided by a database that will be erected and by refined theory and simulations.
The developed tools and techniques will be applied to molecules of increasing fragility, complexity, size, and three-dimensionality. In particular samples that are challenging to characterize with conventional methods will be studied. Complex molecular mixtures will be investigated molecule-by-molecule taking advantage of the single-molecule sensitivity. The absolute stereochemistry of molecules will be determined, resolving molecules with multiple stereocenters. The operation of single molecular machines as nanocars and molecular gears will be investigated. Reactive intermediates generated with atomic manipulation will be characterized and their on-surface reactivity will be studied by AFM.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym ANTIBIOCLICKS
Project BioInspired Clicked Siderophore-Antibiotics
Researcher (PI) Ruben Christiaan Hartkoorn
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Country France
Call Details Consolidator Grant (CoG), LS7, ERC-2019-COG
Summary The frightening increase in antibiotic drug resistance is threatening global healthcare as we know it. To this extent the World Health Organisation that has classes M. tuberculosis and Gram-negative nosocomial infections as the highest priority for novel R&D strategies. A major obstacle to drug discovery programs is to design inhibitors that can efficiently enter into bacteria. One such stealth strategy is exemplified by natural siderophore-antibiotics conjugates (sideromycins) that piggyback the bacterial iron acquisition machinery to enter bacteria. This Trojan-horse strategy has inspired the chemical synthesis of numerous sideromycin conjugates, with cefiderocol a current preclinical candidate. Despite the advances in this field, natural examples of sideromycins are still scarce, and finding new examples may provide further insight into siderophore antibiotic formation and delivery.
ANTIBIOCLICKS will investigate a unique bioinspired conjugation chemistry that has been uncovered from a newly discovered natural sideromycin. This natural “click” chemistry is ideal for the coupling of catecholate containing siderophores (such as those of the WHO prioritised M. tuberculosis, A. baumannii, E. coli, P. aeruginosa and K. pneumonia) to antibiotics or other molecules. This project will aim to define the exact chemical mechanism behind this novel and surprisingly simple conjugation reaction, and use this unique and facile chemistry to generate a combinatorial library of siderophores with antibiotics and fluorophores. These products will subsequently be used to probe the exact mechanism of bacterial sideromycin uptake, potential intracellular decoupling and target engagement. Finally, the antibiotic and diagnostic potential of the generated siderophore conjugates will be evaluated. To this extent, ANTIBIOCLICKS will provide illuminating insight into new bioinspired conjugation chemistry, and evaluate its potential for novel bacterial therapeutics and diagnostics.
Summary
The frightening increase in antibiotic drug resistance is threatening global healthcare as we know it. To this extent the World Health Organisation that has classes M. tuberculosis and Gram-negative nosocomial infections as the highest priority for novel R&D strategies. A major obstacle to drug discovery programs is to design inhibitors that can efficiently enter into bacteria. One such stealth strategy is exemplified by natural siderophore-antibiotics conjugates (sideromycins) that piggyback the bacterial iron acquisition machinery to enter bacteria. This Trojan-horse strategy has inspired the chemical synthesis of numerous sideromycin conjugates, with cefiderocol a current preclinical candidate. Despite the advances in this field, natural examples of sideromycins are still scarce, and finding new examples may provide further insight into siderophore antibiotic formation and delivery.
ANTIBIOCLICKS will investigate a unique bioinspired conjugation chemistry that has been uncovered from a newly discovered natural sideromycin. This natural “click” chemistry is ideal for the coupling of catecholate containing siderophores (such as those of the WHO prioritised M. tuberculosis, A. baumannii, E. coli, P. aeruginosa and K. pneumonia) to antibiotics or other molecules. This project will aim to define the exact chemical mechanism behind this novel and surprisingly simple conjugation reaction, and use this unique and facile chemistry to generate a combinatorial library of siderophores with antibiotics and fluorophores. These products will subsequently be used to probe the exact mechanism of bacterial sideromycin uptake, potential intracellular decoupling and target engagement. Finally, the antibiotic and diagnostic potential of the generated siderophore conjugates will be evaluated. To this extent, ANTIBIOCLICKS will provide illuminating insight into new bioinspired conjugation chemistry, and evaluate its potential for novel bacterial therapeutics and diagnostics.
Max ERC Funding
2 000 000 €
Duration
Start date: 2020-09-01, End date: 2025-08-31
Project acronym ATTOLIQ
Project Attosecond X-ray spectroscopy of liquids
Researcher (PI) Hans Jakob WoeRNER
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Consolidator Grant (CoG), PE4, ERC-2017-COG
Summary Charge and energy transfer are the key steps underlying most chemical reactions and biological transformations. The purely electronic dynamics that control such processes take place on attosecond time scales. A complete understanding of these dynamics on the electronic level therefore calls for new experimental methods with attosecond resolution that are applicable to aqueous environments. We propose to combine the element sensitivity of X-ray spectroscopy with attosecond temporal resolution and ultrathin liquid microjets to study electronic dynamics of relevance to chemical, biological and photovoltaic processes. We will build on our recent achievements in demonstrating femtosecond time-resolved measurements in the water, attosecond pho-toelectron spectroscopy on a liquid microjet and measuring and controlling attosecond charge migration in isolated molecules. We will first concentrate on liquid water to study its electronic dynamics following outer-valence ionization, the formation pathway of the solvated electron and the time scales and intermolecular Coulombic decay following inner-valence or core-level ionization. Second, we will turn to solvated species and measure electronic dynamics and charge migration in solvated molecules, transition-metal complexes and pho-toexcited nanoparticles. These goals will be achieved by developing several innovative experimental tech-niques. We will develop a source of isolated attosecond pulses covering the water window (285-538 eV) and combine it with a flat liquid microjet to realize attosecond transient absorption in liquids. We will complement these measurements with attosecond X-ray emission spectroscopy, Auger spectroscopy and a novel hetero-dyne-detected variant of resonant inelastic Raman scattering, exploiting the large bandwidth that is naturally available from attosecond X-ray sources.
Summary
Charge and energy transfer are the key steps underlying most chemical reactions and biological transformations. The purely electronic dynamics that control such processes take place on attosecond time scales. A complete understanding of these dynamics on the electronic level therefore calls for new experimental methods with attosecond resolution that are applicable to aqueous environments. We propose to combine the element sensitivity of X-ray spectroscopy with attosecond temporal resolution and ultrathin liquid microjets to study electronic dynamics of relevance to chemical, biological and photovoltaic processes. We will build on our recent achievements in demonstrating femtosecond time-resolved measurements in the water, attosecond pho-toelectron spectroscopy on a liquid microjet and measuring and controlling attosecond charge migration in isolated molecules. We will first concentrate on liquid water to study its electronic dynamics following outer-valence ionization, the formation pathway of the solvated electron and the time scales and intermolecular Coulombic decay following inner-valence or core-level ionization. Second, we will turn to solvated species and measure electronic dynamics and charge migration in solvated molecules, transition-metal complexes and pho-toexcited nanoparticles. These goals will be achieved by developing several innovative experimental tech-niques. We will develop a source of isolated attosecond pulses covering the water window (285-538 eV) and combine it with a flat liquid microjet to realize attosecond transient absorption in liquids. We will complement these measurements with attosecond X-ray emission spectroscopy, Auger spectroscopy and a novel hetero-dyne-detected variant of resonant inelastic Raman scattering, exploiting the large bandwidth that is naturally available from attosecond X-ray sources.
Max ERC Funding
2 750 000 €
Duration
Start date: 2018-04-01, End date: 2023-03-31