Project acronym 2DNanoSpec
Project Nanoscale Vibrational Spectroscopy of Sensitive 2D Molecular Materials
Researcher (PI) Renato ZENOBI
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Summary
I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Max ERC Funding
2 311 696 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym 3DEpi
Project Transgenerational epigenetic inheritance of chromatin states : the role of Polycomb and 3D chromosome architecture
Researcher (PI) Giacomo CAVALLI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary Epigenetic inheritance entails transmission of phenotypic traits not encoded in the DNA sequence and, in the most extreme case, Transgenerational Epigenetic Inheritance (TEI) involves transmission of memory through multiple generations. Very little is known on the mechanisms governing TEI and this is the subject of the present proposal. By transiently enhancing long-range chromatin interactions, we recently established isogenic Drosophila epilines that carry stable alternative epialleles, defined by differential levels of the Polycomb-dependent H3K27me3 mark. Furthermore, we extended our paradigm to natural phenotypes. These are ideal systems to study the role of Polycomb group (PcG) proteins and other components in regulating nuclear organization and epigenetic inheritance of chromatin states. The present project conjugates genetics, epigenomics, imaging and molecular biology to reach three critical aims.
Aim 1: Analysis of the molecular mechanisms regulating Polycomb-mediated TEI. We will identify the DNA, protein and RNA components that trigger and maintain transgenerational chromatin inheritance as well as their mechanisms of action.
Aim 2: Role of 3D genome organization in the regulation of TEI. We will analyze the developmental dynamics of TEI-inducing long-range chromatin interactions, identify chromatin components mediating 3D chromatin contacts and characterize their function in the TEI process.
Aim 3: Identification of a broader role of TEI during development. TEI might reflect a normal role of PcG components in the transmission of parental chromatin onto the next embryonic generation. We will explore this possibility by establishing other TEI paradigms and by relating TEI to the normal PcG function in these systems and in normal development.
This research program will unravel the biological significance and the molecular underpinnings of TEI and lead the way towards establishing this area of research into a consolidated scientific discipline.
Summary
Epigenetic inheritance entails transmission of phenotypic traits not encoded in the DNA sequence and, in the most extreme case, Transgenerational Epigenetic Inheritance (TEI) involves transmission of memory through multiple generations. Very little is known on the mechanisms governing TEI and this is the subject of the present proposal. By transiently enhancing long-range chromatin interactions, we recently established isogenic Drosophila epilines that carry stable alternative epialleles, defined by differential levels of the Polycomb-dependent H3K27me3 mark. Furthermore, we extended our paradigm to natural phenotypes. These are ideal systems to study the role of Polycomb group (PcG) proteins and other components in regulating nuclear organization and epigenetic inheritance of chromatin states. The present project conjugates genetics, epigenomics, imaging and molecular biology to reach three critical aims.
Aim 1: Analysis of the molecular mechanisms regulating Polycomb-mediated TEI. We will identify the DNA, protein and RNA components that trigger and maintain transgenerational chromatin inheritance as well as their mechanisms of action.
Aim 2: Role of 3D genome organization in the regulation of TEI. We will analyze the developmental dynamics of TEI-inducing long-range chromatin interactions, identify chromatin components mediating 3D chromatin contacts and characterize their function in the TEI process.
Aim 3: Identification of a broader role of TEI during development. TEI might reflect a normal role of PcG components in the transmission of parental chromatin onto the next embryonic generation. We will explore this possibility by establishing other TEI paradigms and by relating TEI to the normal PcG function in these systems and in normal development.
This research program will unravel the biological significance and the molecular underpinnings of TEI and lead the way towards establishing this area of research into a consolidated scientific discipline.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym A2C2
Project Atmospheric flow Analogues and Climate Change
Researcher (PI) Pascal Yiou
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Country France
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary "The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Summary
"The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Max ERC Funding
1 491 457 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ACCLIMATE
Project Elucidating the Causes and Effects of Atlantic Circulation Changes through Model-Data Integration
Researcher (PI) Claire Waelbroeck
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary Rapid changes in ocean circulation and climate have been observed in marine sediment and ice cores, notably over the last 60 thousand years (ky), highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing.
To date, these rapid changes in climate and ocean circulation are still not fully explained. Two main obstacles prevent going beyond the current state of knowledge:
- Paleoclimatic proxy data are by essence only indirect indicators of the climatic variables, and thus can not be directly compared with model outputs;
- A 4-D (latitude, longitude, water depth, time) reconstruction of Atlantic water masses over the past 40 ky is lacking: previous studies have generated isolated records with disparate timescales which do not allow the causes of circulation changes to be identified.
Overcoming these two major limitations will lead to major breakthroughs in climate research. Concretely, I will create the first database of Atlantic deep-sea records over the last 40 ky, and extract full climatic information from these records through an innovative model-data integration scheme using an isotopic proxy forward modeling approach. The novelty and exceptional potential of this scheme is twofold: (i) it avoids hypotheses on proxy interpretation and hence suppresses or strongly reduces the errors of interpretation of paleoclimatic records; (ii) it produces states of the climate system that best explain the observations over the last 40 ky, while being consistent with the model physics.
Expected results include:
• The elucidation of the mechanisms explaining rapid changes in ocean circulation and climate over the last 40 ky,
• Improved climate model physics and parameterizations,
• The first projections of future climate changes obtained with a model able to reproduce the highly non linear behavior of the climate system observed over the last 40 ky.
Summary
Rapid changes in ocean circulation and climate have been observed in marine sediment and ice cores, notably over the last 60 thousand years (ky), highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing.
To date, these rapid changes in climate and ocean circulation are still not fully explained. Two main obstacles prevent going beyond the current state of knowledge:
- Paleoclimatic proxy data are by essence only indirect indicators of the climatic variables, and thus can not be directly compared with model outputs;
- A 4-D (latitude, longitude, water depth, time) reconstruction of Atlantic water masses over the past 40 ky is lacking: previous studies have generated isolated records with disparate timescales which do not allow the causes of circulation changes to be identified.
Overcoming these two major limitations will lead to major breakthroughs in climate research. Concretely, I will create the first database of Atlantic deep-sea records over the last 40 ky, and extract full climatic information from these records through an innovative model-data integration scheme using an isotopic proxy forward modeling approach. The novelty and exceptional potential of this scheme is twofold: (i) it avoids hypotheses on proxy interpretation and hence suppresses or strongly reduces the errors of interpretation of paleoclimatic records; (ii) it produces states of the climate system that best explain the observations over the last 40 ky, while being consistent with the model physics.
Expected results include:
• The elucidation of the mechanisms explaining rapid changes in ocean circulation and climate over the last 40 ky,
• Improved climate model physics and parameterizations,
• The first projections of future climate changes obtained with a model able to reproduce the highly non linear behavior of the climate system observed over the last 40 ky.
Max ERC Funding
3 000 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AIRSEA
Project Air-Sea Exchanges driven by Light
Researcher (PI) Christian George
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary The scientific motivation of this project is the significant presence of organic compounds at the surface of the ocean. They form the link between ocean biogeochemistry through the physico-chemical processes near the water-air interface with primary and secondary aerosol formation and evolution in the air aloft and finally to the climate impact of marine boundary layer aerosols. However, their photochemistry and photosensitizer properties have only been suggested and discussed but never fully addressed because they were beyond reach. This project suggests going significantly beyond this matter of fact by a combination of innovative tools and the development of new ideas.
This project is therefore devoted to new laboratory investigations of processes occurring at the air sea interface to predict emission, formation and evolution of halogenated radicals and aerosols from this vast interface between oceans and atmosphere. It progresses from fundamental laboratory measurements, marine science, surface chemistry, photochemistry … and is therefore interdisciplinary in nature.
It will lead to the development of innovative techniques for characterising chemical processing at the air sea interface (e.g., a multiphase atmospheric simulation chamber, a time-resolved fluorescence technique for characterising chemical processing at the air-sea interface). It will allow the assessment of new emerging ideas such as a quantitative description of the importance of photosensitized reactions in the visible at the air/sea interface as a major source of halogenated radicals and aerosols in the marine environment.
This new understanding will impact on our ability to describe atmospheric chemistry in the marine environment which has strong impact on the urban air quality of coastal regions (which by the way represent highly populated regions ) but also on climate change by providing new input for global climate models.
Summary
The scientific motivation of this project is the significant presence of organic compounds at the surface of the ocean. They form the link between ocean biogeochemistry through the physico-chemical processes near the water-air interface with primary and secondary aerosol formation and evolution in the air aloft and finally to the climate impact of marine boundary layer aerosols. However, their photochemistry and photosensitizer properties have only been suggested and discussed but never fully addressed because they were beyond reach. This project suggests going significantly beyond this matter of fact by a combination of innovative tools and the development of new ideas.
This project is therefore devoted to new laboratory investigations of processes occurring at the air sea interface to predict emission, formation and evolution of halogenated radicals and aerosols from this vast interface between oceans and atmosphere. It progresses from fundamental laboratory measurements, marine science, surface chemistry, photochemistry … and is therefore interdisciplinary in nature.
It will lead to the development of innovative techniques for characterising chemical processing at the air sea interface (e.g., a multiphase atmospheric simulation chamber, a time-resolved fluorescence technique for characterising chemical processing at the air-sea interface). It will allow the assessment of new emerging ideas such as a quantitative description of the importance of photosensitized reactions in the visible at the air/sea interface as a major source of halogenated radicals and aerosols in the marine environment.
This new understanding will impact on our ability to describe atmospheric chemistry in the marine environment which has strong impact on the urban air quality of coastal regions (which by the way represent highly populated regions ) but also on climate change by providing new input for global climate models.
Max ERC Funding
2 366 276 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym ANOBEST
Project Structure function and pharmacology of calcium-activated chloride channels: Anoctamins and Bestrophins
Researcher (PI) Raimund Dutzler
Host Institution (HI) University of Zurich
Country Switzerland
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary Calcium-activated chloride channels (CaCCs) play key roles in a range of physiological processes such as the control of membrane excitability, photoreception and epithelial secretion. Although the importance of these channels has been recognized for more than 30 years their molecular identity remained obscure. The recent discovery of two protein families encoding for CaCCs, Anoctamins and Bestrophins, was a scientific breakthrough that has provided first insight into two novel ion channel architectures. Within this proposal we aim to determine the first high resolution structures of members of both families and study their functional behavior by an interdisciplinary approach combining biochemistry, X-ray crystallography and electrophysiology. The structural investigation of eukaryotic membrane proteins is extremely challenging and will require us to investigate large numbers of candidates to single out family members with superior biochemical properties. During the last year we have made large progress in this direction. By screening numerous eukaryotic Anoctamins and prokaryotic Bestrophins we have identified well-behaved proteins for both families, which were successfully scaled-up and purified. Additional family members will be identified within the course of the project. For these stable proteins we plan to grow crystals diffracting to high resolution and to proceed with structure determination. With first structural information in hand we will perform detailed functional studies using electrophysiology and complementary biophysical techniques to gain mechanistic insight into ion permeation and gating. As the pharmacology of both families is still in its infancy we will in later stages also engage in the identification and characterization of inhibitors and activators of Anoctamins and Bestrophins to open up a field that may ultimately lead to the discovery of novel therapeutic strategies targeting calcium-activated chloride channels.
Summary
Calcium-activated chloride channels (CaCCs) play key roles in a range of physiological processes such as the control of membrane excitability, photoreception and epithelial secretion. Although the importance of these channels has been recognized for more than 30 years their molecular identity remained obscure. The recent discovery of two protein families encoding for CaCCs, Anoctamins and Bestrophins, was a scientific breakthrough that has provided first insight into two novel ion channel architectures. Within this proposal we aim to determine the first high resolution structures of members of both families and study their functional behavior by an interdisciplinary approach combining biochemistry, X-ray crystallography and electrophysiology. The structural investigation of eukaryotic membrane proteins is extremely challenging and will require us to investigate large numbers of candidates to single out family members with superior biochemical properties. During the last year we have made large progress in this direction. By screening numerous eukaryotic Anoctamins and prokaryotic Bestrophins we have identified well-behaved proteins for both families, which were successfully scaled-up and purified. Additional family members will be identified within the course of the project. For these stable proteins we plan to grow crystals diffracting to high resolution and to proceed with structure determination. With first structural information in hand we will perform detailed functional studies using electrophysiology and complementary biophysical techniques to gain mechanistic insight into ion permeation and gating. As the pharmacology of both families is still in its infancy we will in later stages also engage in the identification and characterization of inhibitors and activators of Anoctamins and Bestrophins to open up a field that may ultimately lead to the discovery of novel therapeutic strategies targeting calcium-activated chloride channels.
Max ERC Funding
2 176 000 €
Duration
Start date: 2014-02-01, End date: 2020-01-31
Project acronym AnoPath
Project Genetics of mosquito resistance to pathogens
Researcher (PI) Kenneth Du Souchet Vernick
Host Institution (HI) INSTITUT PASTEUR
Country France
Call Details Advanced Grant (AdG), LS2, ERC-2012-ADG_20120314
Summary Malaria parasite infection in humans has been called “the strongest known force for evolutionary selection in the recent history of the human genome”, and I hypothesize that a similar statement may apply to the mosquito vector, which is the definitive host of the malaria parasite. We previously discovered efficient malaria-resistance mechanisms in natural populations of the African malaria vector, Anopheles gambiae. Aim 1 of the proposed project will implement a novel genetic mapping design to systematically survey the mosquito population for common and rare genetic variants of strong effect against the human malaria parasite, Plasmodium falciparum. A product of the mapping design will be living mosquito families carrying the resistance loci. Aim 2 will use the segregating families to functionally dissect the underlying molecular mechanisms controlled by the loci, including determination of the pathogen specificity spectra of the host-defense traits. Aim 3 targets arbovirus transmission, where Anopheles mosquitoes transmit human malaria but not arboviruses such as Dengue and Chikungunya, even though the two mosquitoes bite the same people and are exposed to the same pathogens, often in malaria-arbovirus co-infections. We will use deep-sequencing to detect processing of the arbovirus dsRNA intermediates of replication produced by the RNAi pathway of the mosquitoes. The results will reveal important new information about differences in the efficiency and quality of the RNAi response between mosquitoes, which is likely to underlie at least part of the host specificity of arbovirus transmission. The 3 Aims will make significant contributions to understanding malaria and arbovirus transmission, major global public health problems, will aid the development of a next generation of vector surveillance and control tools, and will produce a definitive description of the major genetic factors influencing host-pathogen interactions in mosquito immunity.
Summary
Malaria parasite infection in humans has been called “the strongest known force for evolutionary selection in the recent history of the human genome”, and I hypothesize that a similar statement may apply to the mosquito vector, which is the definitive host of the malaria parasite. We previously discovered efficient malaria-resistance mechanisms in natural populations of the African malaria vector, Anopheles gambiae. Aim 1 of the proposed project will implement a novel genetic mapping design to systematically survey the mosquito population for common and rare genetic variants of strong effect against the human malaria parasite, Plasmodium falciparum. A product of the mapping design will be living mosquito families carrying the resistance loci. Aim 2 will use the segregating families to functionally dissect the underlying molecular mechanisms controlled by the loci, including determination of the pathogen specificity spectra of the host-defense traits. Aim 3 targets arbovirus transmission, where Anopheles mosquitoes transmit human malaria but not arboviruses such as Dengue and Chikungunya, even though the two mosquitoes bite the same people and are exposed to the same pathogens, often in malaria-arbovirus co-infections. We will use deep-sequencing to detect processing of the arbovirus dsRNA intermediates of replication produced by the RNAi pathway of the mosquitoes. The results will reveal important new information about differences in the efficiency and quality of the RNAi response between mosquitoes, which is likely to underlie at least part of the host specificity of arbovirus transmission. The 3 Aims will make significant contributions to understanding malaria and arbovirus transmission, major global public health problems, will aid the development of a next generation of vector surveillance and control tools, and will produce a definitive description of the major genetic factors influencing host-pathogen interactions in mosquito immunity.
Max ERC Funding
2 307 800 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym Antivessel-T-Cells
Project Development of Vascular-Disrupting Lymphocyte Therapy for Tumours
Researcher (PI) Georgios Coukos
Host Institution (HI) CENTRE HOSPITALIER UNIVERSITAIRE VAUDOIS
Country Switzerland
Call Details Advanced Grant (AdG), LS7, ERC-2012-ADG_20120314
Summary T cell engineering with chimeric antigen receptors has opened the door to effective immunotherapy. CARs are fusion genes encoding receptors whose extracellular domain comprises a single chain variable fragment (scFv) antibody that binds to a tumour surface epitope, while the intracellular domain comprises the signalling module of CD3ζ along with powerful costimulatory domains (e.g. CD28 and/or 4-1BB). CARs are a major breakthrough, since they allow bypassing HLA restrictions or loss, and they can incorporate potent costimulatory signals tailored to optimize T cell function. However, solid tumours present challenges, since they are often genetically unstable, and the tumour microenvironment impedes T cell function. The tumour vasculature is a much more stable and accessible target, and its disruption has catastrophic consequences for tumours. Nevertheless, the lack of affinity reagents has impeded progress in this area. The objectives of this proposal are to develop the first potent and safe tumour vascular-disrupting tumour immunotherapy using scFv’s and CARs uniquely available in my laboratory.
I propose to use these innovative CARs to understand for the first time the molecular mechanisms underlying the interactions between anti-vascular CAR-T cells and tumour endothelium, and exploit them to maximize tumour vascular destruction. I also intend to employ innovative engineering approaches to minimize the chance of reactivity against normal vasculature. Lastly, I propose to manipulate the tumour damage mechanisms ensuing anti-vascular therapy, to maximize tumour rejection through immunomodulation. We are poised to elucidate critical interactions between tumour endothelium and anti-vascular T cells, and bring to bear cancer therapy of unparalleled power. The impact of this work could be transforming, given the applicability of tumour-vascular disruption across most common tumour types.
Summary
T cell engineering with chimeric antigen receptors has opened the door to effective immunotherapy. CARs are fusion genes encoding receptors whose extracellular domain comprises a single chain variable fragment (scFv) antibody that binds to a tumour surface epitope, while the intracellular domain comprises the signalling module of CD3ζ along with powerful costimulatory domains (e.g. CD28 and/or 4-1BB). CARs are a major breakthrough, since they allow bypassing HLA restrictions or loss, and they can incorporate potent costimulatory signals tailored to optimize T cell function. However, solid tumours present challenges, since they are often genetically unstable, and the tumour microenvironment impedes T cell function. The tumour vasculature is a much more stable and accessible target, and its disruption has catastrophic consequences for tumours. Nevertheless, the lack of affinity reagents has impeded progress in this area. The objectives of this proposal are to develop the first potent and safe tumour vascular-disrupting tumour immunotherapy using scFv’s and CARs uniquely available in my laboratory.
I propose to use these innovative CARs to understand for the first time the molecular mechanisms underlying the interactions between anti-vascular CAR-T cells and tumour endothelium, and exploit them to maximize tumour vascular destruction. I also intend to employ innovative engineering approaches to minimize the chance of reactivity against normal vasculature. Lastly, I propose to manipulate the tumour damage mechanisms ensuing anti-vascular therapy, to maximize tumour rejection through immunomodulation. We are poised to elucidate critical interactions between tumour endothelium and anti-vascular T cells, and bring to bear cancer therapy of unparalleled power. The impact of this work could be transforming, given the applicability of tumour-vascular disruption across most common tumour types.
Max ERC Funding
2 500 000 €
Duration
Start date: 2013-08-01, End date: 2018-07-31
Project acronym AstroGeo
Project Astronomical Solutions over Geological Time
Researcher (PI) Jacques Laskar
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Advanced Grant (AdG), PE10, ERC-2019-ADG
Summary According to Milankovitch (1941), some of the large climatic changes of the past originate in the variations of the Earth’s orbit and of its spin axis resulting from the gravitational pull of the planets and the Moon. These variations can be traced over several millions of years (Ma) in the geological sedimentary records. Over the last three decades, the Earth’s orbital and spin solutions elaborated by the PI and his group (Laskar et al, 1993, 2004, 2011) have been used to establish a geological timescale based on the astronomical solution (e.g. Lourens et al, 2004; Hilgen et al, 2012). Nevertheless, extending this procedure through the Mesozoic Era (66-252 Ma) and beyond is difficult, as the solar system motion is chaotic (Laskar, 1989, 1990). It will thus not be possible to retrieve the precise orbital motion of the planets beyond 60 Ma from their present state (Laskar et al, 2011).
The PI's astronomical solutions have been used by geologists to establish local or global time scales. AstroGeo is designed to achieve the opposite. We will use the geological record as an input to break the horizon of predictability of 60Ma resulting from the chaotic motion of the planets. This will be done in a quantitative manner, and aims to provide a template orbital solution for the Earth that could be used for paleoclimate studies over any geological time. This project stems from the achievement of Olsen et al (2019) where for the first time, in a study that involves the PI, it was possible to precisely recover the frequencies of the precessing motion of the inner planets. AstroGeo will not provide a single or a few solutions, but a whole database of solutions that would equally fit all available astronomical observations. This will open a new era where the geological records will be used to retrieve the orbital evolution of the solar system. It will thus open a new observational window for retrieving not only the history of the Earth, but of the entire solar system.
Summary
According to Milankovitch (1941), some of the large climatic changes of the past originate in the variations of the Earth’s orbit and of its spin axis resulting from the gravitational pull of the planets and the Moon. These variations can be traced over several millions of years (Ma) in the geological sedimentary records. Over the last three decades, the Earth’s orbital and spin solutions elaborated by the PI and his group (Laskar et al, 1993, 2004, 2011) have been used to establish a geological timescale based on the astronomical solution (e.g. Lourens et al, 2004; Hilgen et al, 2012). Nevertheless, extending this procedure through the Mesozoic Era (66-252 Ma) and beyond is difficult, as the solar system motion is chaotic (Laskar, 1989, 1990). It will thus not be possible to retrieve the precise orbital motion of the planets beyond 60 Ma from their present state (Laskar et al, 2011).
The PI's astronomical solutions have been used by geologists to establish local or global time scales. AstroGeo is designed to achieve the opposite. We will use the geological record as an input to break the horizon of predictability of 60Ma resulting from the chaotic motion of the planets. This will be done in a quantitative manner, and aims to provide a template orbital solution for the Earth that could be used for paleoclimate studies over any geological time. This project stems from the achievement of Olsen et al (2019) where for the first time, in a study that involves the PI, it was possible to precisely recover the frequencies of the precessing motion of the inner planets. AstroGeo will not provide a single or a few solutions, but a whole database of solutions that would equally fit all available astronomical observations. This will open a new era where the geological records will be used to retrieve the orbital evolution of the solar system. It will thus open a new observational window for retrieving not only the history of the Earth, but of the entire solar system.
Max ERC Funding
2 498 956 €
Duration
Start date: 2020-11-01, End date: 2025-10-31
Project acronym BALANCE
Project Mapping Dispersion Spectroscopically in Large Gas-Phase Molecular Ions
Researcher (PI) Peter CHEN
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Advanced Grant (AdG), PE4, ERC-2018-ADG
Summary We use IR spectroscopy of trapped ions in a cryogenic FT-ICR spectrometer to probe non-covalent, “dispersion” interactions in large, gas-phase molecular ions. We will measure conformational equilibria by N-H frequency shifts, and correlate gas-phase IR frequency to the N-H-N bond angle in an ionic H-bond. Substituents on “onium” cations can adopt various conformations, whose energies map interaction potentials. Substituents on their proton-bound dimers interact non-covalently through dispersion forces, whose quantitative evaluation in large molecules has remained difficult despite dispersion becoming increasingly cited as a design principle in the construction of catalysts and materials. The non-covalent interactions bend the N-H-N bond, leading to large shifts in the IR frequency. The proton-bound dimer acts like a molecular balance where the non-covalent interaction, is set against the bending potential in an ionic hydrogen bond. Despite encouragingly accurate calculations for small molecules, experimental benchmarks for large molecules in the gas phase remain scarce, and there is evidence that the good results for small molecules may not extrapolate reliably to large molecules. The present proposal introduces a new experimental probe of non-covalent interactions, providing a sensitive test of the diverging results coming from various computational methods and other experiments. The experiment must be done on isolated molecules in the gas phase, as previous work has shown that solvation substantially cancels out the attractive potential. Accordingly, the proposed experimental design, which involves a custom-built spectrometer, newly available tunable IR sources, chemical synthesis of custom substrates, and quantum calculations up to coupled-cluster levels of theory, showcases how an interdisciplinary approach combining physical and organic chemistry can solve a fundamental problem that impacts how we understand steric effects in organic chemistry.
Summary
We use IR spectroscopy of trapped ions in a cryogenic FT-ICR spectrometer to probe non-covalent, “dispersion” interactions in large, gas-phase molecular ions. We will measure conformational equilibria by N-H frequency shifts, and correlate gas-phase IR frequency to the N-H-N bond angle in an ionic H-bond. Substituents on “onium” cations can adopt various conformations, whose energies map interaction potentials. Substituents on their proton-bound dimers interact non-covalently through dispersion forces, whose quantitative evaluation in large molecules has remained difficult despite dispersion becoming increasingly cited as a design principle in the construction of catalysts and materials. The non-covalent interactions bend the N-H-N bond, leading to large shifts in the IR frequency. The proton-bound dimer acts like a molecular balance where the non-covalent interaction, is set against the bending potential in an ionic hydrogen bond. Despite encouragingly accurate calculations for small molecules, experimental benchmarks for large molecules in the gas phase remain scarce, and there is evidence that the good results for small molecules may not extrapolate reliably to large molecules. The present proposal introduces a new experimental probe of non-covalent interactions, providing a sensitive test of the diverging results coming from various computational methods and other experiments. The experiment must be done on isolated molecules in the gas phase, as previous work has shown that solvation substantially cancels out the attractive potential. Accordingly, the proposed experimental design, which involves a custom-built spectrometer, newly available tunable IR sources, chemical synthesis of custom substrates, and quantum calculations up to coupled-cluster levels of theory, showcases how an interdisciplinary approach combining physical and organic chemistry can solve a fundamental problem that impacts how we understand steric effects in organic chemistry.
Max ERC Funding
2 446 125 €
Duration
Start date: 2019-05-01, End date: 2024-04-30