Project acronym 3DNANOMECH
Project Three-dimensional molecular resolution mapping of soft matter-liquid interfaces
Researcher (PI) Ricardo Garcia
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Summary
Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Max ERC Funding
2 499 928 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym B-INNATE
Project Innate signaling networks in B cell antibody production: new targets for vaccine development
Researcher (PI) Andrea Cerutti
Host Institution (HI) FUNDACIO INSTITUT MAR D INVESTIGACIONS MEDIQUES IMIM
Call Details Advanced Grant (AdG), LS6, ERC-2011-ADG_20110310
Summary The long-term goal of this proposal is to explore a novel immune pathway that involves an unexpected interplay between marginal zone (MZ) B cells and neutrophils. MZ B cells are strategically positioned at the interface between the immune system and the circulation and rapidly produce protective antibodies to blood-borne pathogens through a T cell-independent pathway that remains poorly understood. We recently found that the human spleen contains a novel subset of B cell helper neutrophils (NBH cells) with a phenotype and gene expression profile distinct from those of conventional circulating neutrophils (NC cells). In this proposal, we hypothesize that NC cells undergo splenic reprogramming into NBH cells through an IL-10-dependent pathway involving perifollicular sinusoidal endothelial cells. We contend that these unique endothelial cells release NC cell-attracting chemokines and IL-10 upon sensing blood-borne bacteria through Toll-like receptors. We also argue that IL-10 from sinusoidal endothelial cells stimulates NC cells to differentiate into NBH cells equipped with powerful MZ B cell-stimulating activity. The following three aims will be pursued. Aim 1 is to determine the mechanisms by which splenic sinusoidal endothelial cells induce reprogramming of NC cells into NBH cells upon sensing bacteria through Toll-like receptors. Aim 2 is to elucidate the mechanisms by which NBH cells induce IgM production, IgG and IgA class switching, and plasma cell differentiation in MZ B cells. Aim 3 is to evaluate the mechanisms by which NBH cells induce V(D)J gene somatic hypermutation and high-affinity antibody production in MZ B cells. These studies will uncover previously unknown facets of the immunological function of neutrophils by taking advantage of unique cells and tissues from patients with rare primary immunodeficiencies and by making use of selected mouse models. Results from these studies may also lead to the identification of novel vaccine strategies.
Summary
The long-term goal of this proposal is to explore a novel immune pathway that involves an unexpected interplay between marginal zone (MZ) B cells and neutrophils. MZ B cells are strategically positioned at the interface between the immune system and the circulation and rapidly produce protective antibodies to blood-borne pathogens through a T cell-independent pathway that remains poorly understood. We recently found that the human spleen contains a novel subset of B cell helper neutrophils (NBH cells) with a phenotype and gene expression profile distinct from those of conventional circulating neutrophils (NC cells). In this proposal, we hypothesize that NC cells undergo splenic reprogramming into NBH cells through an IL-10-dependent pathway involving perifollicular sinusoidal endothelial cells. We contend that these unique endothelial cells release NC cell-attracting chemokines and IL-10 upon sensing blood-borne bacteria through Toll-like receptors. We also argue that IL-10 from sinusoidal endothelial cells stimulates NC cells to differentiate into NBH cells equipped with powerful MZ B cell-stimulating activity. The following three aims will be pursued. Aim 1 is to determine the mechanisms by which splenic sinusoidal endothelial cells induce reprogramming of NC cells into NBH cells upon sensing bacteria through Toll-like receptors. Aim 2 is to elucidate the mechanisms by which NBH cells induce IgM production, IgG and IgA class switching, and plasma cell differentiation in MZ B cells. Aim 3 is to evaluate the mechanisms by which NBH cells induce V(D)J gene somatic hypermutation and high-affinity antibody production in MZ B cells. These studies will uncover previously unknown facets of the immunological function of neutrophils by taking advantage of unique cells and tissues from patients with rare primary immunodeficiencies and by making use of selected mouse models. Results from these studies may also lead to the identification of novel vaccine strategies.
Max ERC Funding
2 214 035 €
Duration
Start date: 2012-04-01, End date: 2017-09-30
Project acronym BILITERACY
Project Bi-literacy: Learning to read in L1 and in L2
Researcher (PI) Manuel Francisco Carreiras Valiña
Host Institution (HI) BCBL BASQUE CENTER ON COGNITION BRAIN AND LANGUAGE
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary Learning to read is probably one of the most exciting discoveries in our life. Using a longitudinal approach, the research proposed examines how the human brain responds to two major challenges: (a) the instantiation a complex cognitive function for which there is no genetic blueprint (learning to read in a first language, L1), and (b) the accommodation to new statistical regularities when learning to read in a second language (L2). The aim of the present research project is to identify the neural substrates of the reading process and its constituent cognitive components, with specific attention to individual differences and reading disabilities; as well as to investigate the relationship between specific cognitive functions and the changes in neural activity that take place in the course of learning to read in L1 and in L2. The project will employ a longitudinal design. We will recruit children before they learn to read in L1 and in L2 and track reading development with both cognitive and neuroimaging measures over 24 months. The findings from this project will provide a deeper understanding of (a) how general neurocognitive factors and language specific factors underlie individual differences – and reading disabilities– in reading acquisition in L1 and in L2; (b) how the neuro-cognitive circuitry changes and brain mechanisms synchronize while instantiating reading in L1 and in L2; (c) what the limitations and the extent of brain plasticity are in young readers. An interdisciplinary and multi-methodological approach is one of the keys to success of the present project, along with strong theory-driven investigation. By combining both we will generate breakthroughs to advance our understanding of how literacy in L1 and in L2 is acquired and mastered. The research proposed will also lay the foundations for more applied investigations of best practice in teaching reading in first and subsequent languages, and devising intervention methods for reading disabilities.
Summary
Learning to read is probably one of the most exciting discoveries in our life. Using a longitudinal approach, the research proposed examines how the human brain responds to two major challenges: (a) the instantiation a complex cognitive function for which there is no genetic blueprint (learning to read in a first language, L1), and (b) the accommodation to new statistical regularities when learning to read in a second language (L2). The aim of the present research project is to identify the neural substrates of the reading process and its constituent cognitive components, with specific attention to individual differences and reading disabilities; as well as to investigate the relationship between specific cognitive functions and the changes in neural activity that take place in the course of learning to read in L1 and in L2. The project will employ a longitudinal design. We will recruit children before they learn to read in L1 and in L2 and track reading development with both cognitive and neuroimaging measures over 24 months. The findings from this project will provide a deeper understanding of (a) how general neurocognitive factors and language specific factors underlie individual differences – and reading disabilities– in reading acquisition in L1 and in L2; (b) how the neuro-cognitive circuitry changes and brain mechanisms synchronize while instantiating reading in L1 and in L2; (c) what the limitations and the extent of brain plasticity are in young readers. An interdisciplinary and multi-methodological approach is one of the keys to success of the present project, along with strong theory-driven investigation. By combining both we will generate breakthroughs to advance our understanding of how literacy in L1 and in L2 is acquired and mastered. The research proposed will also lay the foundations for more applied investigations of best practice in teaching reading in first and subsequent languages, and devising intervention methods for reading disabilities.
Max ERC Funding
2 487 000 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym BUBPOL
Project Monetary Policy and Asset Price Bubbles
Researcher (PI) Jordi Galí Garreta
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Call Details Advanced Grant (AdG), SH1, ERC-2013-ADG
Summary "The proposed research project seeks to further our understanding on two important questions for the design of monetary policy:
(a) What are the effects of monetary policy interventions on asset price bubbles?
(b) How should monetary policy be conducted in the presence of asset price bubbles?
The first part of the project will focus on the development of a theoretical framework that can be used to analyze rigorously the implications of alternative monetary policy rules in the presence of asset price bubbles, and to characterize the optimal monetary policy. In particular, I plan to use such a framework to assess the merits of a “leaning against the wind” strategy, which calls for a systematic rise in interest rates in response to the development of a bubble.
The second part of the project will seek to produce evidence, both empirical and experimental, regarding the effects of monetary policy on asset price bubbles. The empirical evidence will seek to identify and estimate the sign and response of asset price bubbles to interest rate changes, exploiting the potential differences in the joint behavior of interest rates and asset prices during “bubbly” episodes, in comparison to “normal” times. In addition, I plan to conduct some lab experiments in order to shed some light on the link between monetary policy and bubbles. Participants will trade two assets, a one-period riskless asset and a long-lived stock, in an environment consistent with the existence of asset price bubbles in equilibrium. Monetary policy interventions will take the form of changes in the short-term interest rate, engineered by the experimenter. The experiments will allow us to evaluate some of the predictions of the theoretical models regarding the impact of monetary policy on the dynamics of bubbles, as well as the effectiveness of “leaning against the wind” policies."
Summary
"The proposed research project seeks to further our understanding on two important questions for the design of monetary policy:
(a) What are the effects of monetary policy interventions on asset price bubbles?
(b) How should monetary policy be conducted in the presence of asset price bubbles?
The first part of the project will focus on the development of a theoretical framework that can be used to analyze rigorously the implications of alternative monetary policy rules in the presence of asset price bubbles, and to characterize the optimal monetary policy. In particular, I plan to use such a framework to assess the merits of a “leaning against the wind” strategy, which calls for a systematic rise in interest rates in response to the development of a bubble.
The second part of the project will seek to produce evidence, both empirical and experimental, regarding the effects of monetary policy on asset price bubbles. The empirical evidence will seek to identify and estimate the sign and response of asset price bubbles to interest rate changes, exploiting the potential differences in the joint behavior of interest rates and asset prices during “bubbly” episodes, in comparison to “normal” times. In addition, I plan to conduct some lab experiments in order to shed some light on the link between monetary policy and bubbles. Participants will trade two assets, a one-period riskless asset and a long-lived stock, in an environment consistent with the existence of asset price bubbles in equilibrium. Monetary policy interventions will take the form of changes in the short-term interest rate, engineered by the experimenter. The experiments will allow us to evaluate some of the predictions of the theoretical models regarding the impact of monetary policy on the dynamics of bubbles, as well as the effectiveness of “leaning against the wind” policies."
Max ERC Funding
799 200 €
Duration
Start date: 2014-01-01, End date: 2017-12-31
Project acronym CDAC
Project "The role of consciousness in adaptive behavior: A combined empirical, computational and robot based approach"
Researcher (PI) Paulus Franciscus Maria Joseph Verschure
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Advanced Grant (AdG), SH4, ERC-2013-ADG
Summary "Understanding the nature of consciousness is one of the grand outstanding scientific challenges and two of its features stand out: consciousness is defined as the construction of one coherent scene but this scene is experienced with a delay relative to the action of the agent and not necessarily the cause of actions and thoughts. Did evolution render solutions to the challenge of survival that includes epiphenomenal processes? The Conscious Distributed Adaptive Control (CDAC) project aims at resolving this paradox by using a multi-disciplinary approach to show the functional role of consciousness in adaptive behaviour, to identify its underlying neuronal principles and to construct a neuromorphic robot based real-time conscious architecture. CDAC proposes that the shift from surviving in a physical world to one that is dominated by intentional agents requires radically different control architectures combining parallel and distributed control loops to assure real-time operation together with a second level of control that assures coherence through sequential coherent representation of self and the task domain, i.e. consciousness. This conscious scene is driving dedicated credit assignment and planning beyond the immediately given information. CDAC advances a comprehensive framework progressing beyond the state of the art and will be realized using system level models of a conscious architecture, detailed computational studies of its underlying neuronal substrate focusing, empirical validation with a humanoid robot and stroke patients and the advancement of beyond state of the art tools appropriate to the complexity of its objectives. The CDAC project directly addresses one of the main outstanding questions in science: the function and genesis of consciousness and will advance our understanding of mind and brain, provide radically new neurorehabilitation technologies and contribute to realizing a new generation of robots with advanced social competence."
Summary
"Understanding the nature of consciousness is one of the grand outstanding scientific challenges and two of its features stand out: consciousness is defined as the construction of one coherent scene but this scene is experienced with a delay relative to the action of the agent and not necessarily the cause of actions and thoughts. Did evolution render solutions to the challenge of survival that includes epiphenomenal processes? The Conscious Distributed Adaptive Control (CDAC) project aims at resolving this paradox by using a multi-disciplinary approach to show the functional role of consciousness in adaptive behaviour, to identify its underlying neuronal principles and to construct a neuromorphic robot based real-time conscious architecture. CDAC proposes that the shift from surviving in a physical world to one that is dominated by intentional agents requires radically different control architectures combining parallel and distributed control loops to assure real-time operation together with a second level of control that assures coherence through sequential coherent representation of self and the task domain, i.e. consciousness. This conscious scene is driving dedicated credit assignment and planning beyond the immediately given information. CDAC advances a comprehensive framework progressing beyond the state of the art and will be realized using system level models of a conscious architecture, detailed computational studies of its underlying neuronal substrate focusing, empirical validation with a humanoid robot and stroke patients and the advancement of beyond state of the art tools appropriate to the complexity of its objectives. The CDAC project directly addresses one of the main outstanding questions in science: the function and genesis of consciousness and will advance our understanding of mind and brain, provide radically new neurorehabilitation technologies and contribute to realizing a new generation of robots with advanced social competence."
Max ERC Funding
2 469 268 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym DYSTRUCTURE
Project The Dynamical and Structural Basis of Human Mind Complexity: Segregation and Integration of Information and Processing in the Brain
Researcher (PI) Gustavo Deco
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary "Perceptions, memories, emotions, and everything that makes us human, demand the flexible integration of information represented and computed in a distributed manner. The human brain is structured into a large number of areas in which information and computation are highly segregated. Normal brain functions require the integration of functionally specialized but widely distributed brain areas. Furthermore, human behavior entails a flexible task- dependent interplay between different subsets of these brain areas in order to integrate them according to the corresponding goal-directed requirements. We contend that the functional and encoding roles of diverse neuronal populations across areas are subject to intra- and inter-cortical dynamics. More concretely, we hypothesize that coherent oscillations within frequency-specific large-scale networks and coherent structuring of the underlying fluctuations are crucial mechanisms for the flexible integration of distributed processing and interaction of representations.
The project aims to elucidate precisely the interplay and mutual entrainment between local brain area dynamics and global network dynamics and their breakdown in brain diseases. We wish to better understand how segregated distributed information and processing are integrated in a flexible and context-dependent way as required for goal-directed behavior. It will allow us to comprehend the mechanisms underlying brain functions by complementing structural and activation based analyses with dynamics. We expect to gain a full explanation of the mechanisms that mediate the interactions between global and local spatio-temporal patterns of activity revealed at many levels of observations (fMRI, EEG, MEG) in humans under task and resting conditions, complemented and further constrained by using more detailed characterization of brain dynamics via Local Field Potentials and neuronal recording in animals under task and resting conditions."
Summary
"Perceptions, memories, emotions, and everything that makes us human, demand the flexible integration of information represented and computed in a distributed manner. The human brain is structured into a large number of areas in which information and computation are highly segregated. Normal brain functions require the integration of functionally specialized but widely distributed brain areas. Furthermore, human behavior entails a flexible task- dependent interplay between different subsets of these brain areas in order to integrate them according to the corresponding goal-directed requirements. We contend that the functional and encoding roles of diverse neuronal populations across areas are subject to intra- and inter-cortical dynamics. More concretely, we hypothesize that coherent oscillations within frequency-specific large-scale networks and coherent structuring of the underlying fluctuations are crucial mechanisms for the flexible integration of distributed processing and interaction of representations.
The project aims to elucidate precisely the interplay and mutual entrainment between local brain area dynamics and global network dynamics and their breakdown in brain diseases. We wish to better understand how segregated distributed information and processing are integrated in a flexible and context-dependent way as required for goal-directed behavior. It will allow us to comprehend the mechanisms underlying brain functions by complementing structural and activation based analyses with dynamics. We expect to gain a full explanation of the mechanisms that mediate the interactions between global and local spatio-temporal patterns of activity revealed at many levels of observations (fMRI, EEG, MEG) in humans under task and resting conditions, complemented and further constrained by using more detailed characterization of brain dynamics via Local Field Potentials and neuronal recording in animals under task and resting conditions."
Max ERC Funding
2 467 530 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym editCRC
Project A genome editing-based approach to study the stem cell hierarchy of human colorectal cancers
Researcher (PI) Eduardo Batlle Gómez
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Call Details Advanced Grant (AdG), LS4, ERC-2013-ADG
Summary A hallmark of cancer is tumor cell heterogeneity, which results from combinations of multiple genetic and epigenetic alterations within an individual tumor. In contrast, we have recently discovered that most human colorectal cancers (CRCs) are composed of mixtures of phenotypically distinct tumor cells organized into a stem cell hierarchy that displays a striking resemblance to the healthy colonic epithelium. We showed that long-term regeneration potential of tumor cells is largely influenced by the position that they occupy within the tumor's hierarchy. To analyze the organization of CRCs without the constraints imposed by tumor cell transplantation experiments, we have developed a method that allows for the first time tracking and manipulating the fate of specific cell populations in whole human tumors. This technology is based on editing the genomes of primary human CRCs cultured in the form of tumor organoids using Zinc-Finger Nucleases to knock-in either lineage tracing or cell ablation alleles in genes that define colorectal cancer stem cells (CRC-SCs) or differentiated-like tumor cells. Edited tumor organoids generate CRCs in mice that reproduce the tumor of origin while carrying the desired genetic modifications. This technological advance opens the gate to perform classical genetic and developmental analysis in human tumors. We will exploit this advantage to address fundamental questions about the cell heterogeneity and organization of human CRCs that cannot be tackled through currently existing experimental approaches such as: Are CRC-SCs the only tumor cell population with long term regenerating potential? Can we cure CRC with anti-CRC-SC specific therapies? Will tumor cell plasticity contribute to the regeneration of the CRC-SC pool after therapy? Do quiescent-SCs regenerate CRC tumors after standard chemotherapy? Can we identify these cells? How do common genetic alterations in CRC influence the CRC hierarchy? Do they affect the stem cell phenotype?
Summary
A hallmark of cancer is tumor cell heterogeneity, which results from combinations of multiple genetic and epigenetic alterations within an individual tumor. In contrast, we have recently discovered that most human colorectal cancers (CRCs) are composed of mixtures of phenotypically distinct tumor cells organized into a stem cell hierarchy that displays a striking resemblance to the healthy colonic epithelium. We showed that long-term regeneration potential of tumor cells is largely influenced by the position that they occupy within the tumor's hierarchy. To analyze the organization of CRCs without the constraints imposed by tumor cell transplantation experiments, we have developed a method that allows for the first time tracking and manipulating the fate of specific cell populations in whole human tumors. This technology is based on editing the genomes of primary human CRCs cultured in the form of tumor organoids using Zinc-Finger Nucleases to knock-in either lineage tracing or cell ablation alleles in genes that define colorectal cancer stem cells (CRC-SCs) or differentiated-like tumor cells. Edited tumor organoids generate CRCs in mice that reproduce the tumor of origin while carrying the desired genetic modifications. This technological advance opens the gate to perform classical genetic and developmental analysis in human tumors. We will exploit this advantage to address fundamental questions about the cell heterogeneity and organization of human CRCs that cannot be tackled through currently existing experimental approaches such as: Are CRC-SCs the only tumor cell population with long term regenerating potential? Can we cure CRC with anti-CRC-SC specific therapies? Will tumor cell plasticity contribute to the regeneration of the CRC-SC pool after therapy? Do quiescent-SCs regenerate CRC tumors after standard chemotherapy? Can we identify these cells? How do common genetic alterations in CRC influence the CRC hierarchy? Do they affect the stem cell phenotype?
Max ERC Funding
2 499 405 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym EPNET
Project Production and distribution of food during the Roman Empire: Economics and political dynamics
Researcher (PI) José Remesal Rodríguez
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Advanced Grant (AdG), SH6, ERC-2013-ADG
Summary The project aims at detecting and defining the political and economic dynamics of the Roman Empire trade system by designing and implementing an experimental laboratory to explore different historical hypoteses through computer simulations. Empirical data will be used to correct and validate the results of the simulations and define rigourous and falsifiable models of ancient trade sytems.
The Roman Empire trade system is generally considered to be the first complex European trade network. Many theories and hypotheses about its organization have been proposed but no formal model has been put forward so far. We propose to study this system using complex network analysis, formal modelling and computer simulation. The different existing research hypotheses will be modelled in a formal framework that will be used for running computer simulations and create possible scenarios of the development of the trade network. The archaeological and historical datasets will offer the means for validation processes in order to verify the explanatory power of the different models and to choose the best-fitting representation of the investigated phenomena.
The project counts with one of the richest database for amphorae and epigraphy, one of the most precise archaeological and historical semantic markers available for the Roman Empire market. They provide information on geographical origin, the products transported and traded, economic transactions, as well as the social position and relationships between the traders.
The project will provide the research community with a powerful tool for the study and interpretation of past political and economic systems, which will benefit our understanding of long-term social trajectories. This will be achieved through an innovative methodology based on transdisciplinarity and therefore will constitute a groundbreaking in the field of historical studies.
Summary
The project aims at detecting and defining the political and economic dynamics of the Roman Empire trade system by designing and implementing an experimental laboratory to explore different historical hypoteses through computer simulations. Empirical data will be used to correct and validate the results of the simulations and define rigourous and falsifiable models of ancient trade sytems.
The Roman Empire trade system is generally considered to be the first complex European trade network. Many theories and hypotheses about its organization have been proposed but no formal model has been put forward so far. We propose to study this system using complex network analysis, formal modelling and computer simulation. The different existing research hypotheses will be modelled in a formal framework that will be used for running computer simulations and create possible scenarios of the development of the trade network. The archaeological and historical datasets will offer the means for validation processes in order to verify the explanatory power of the different models and to choose the best-fitting representation of the investigated phenomena.
The project counts with one of the richest database for amphorae and epigraphy, one of the most precise archaeological and historical semantic markers available for the Roman Empire market. They provide information on geographical origin, the products transported and traded, economic transactions, as well as the social position and relationships between the traders.
The project will provide the research community with a powerful tool for the study and interpretation of past political and economic systems, which will benefit our understanding of long-term social trajectories. This will be achieved through an innovative methodology based on transdisciplinarity and therefore will constitute a groundbreaking in the field of historical studies.
Max ERC Funding
2 432 056 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym FliesCan
Project Modelling Cancer Traits in Drosophila
Researcher (PI) Cayetano Gonzalez Hernandez
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Call Details Advanced Grant (AdG), LS3, ERC-2011-ADG_20110310
Summary Despite significant advance, cancer treatment remains suboptimal. Anatomical and physiological differences between humans and simple model organisms like Drosophila are many and major, and preclude the modelling of key aspects of the disease as it proceeds in vertebrates. However, malignant tumors in vertebrates and flies are made of cells that have derailed from their normal course of development, grow out of control, become immortal, invasive, and kill the host. Moreover, like most solid human tumors, Drosophila malignant tumors display chromosomal instability and copy number variation. In addition, some of them are characterized by the upregulation of germline genes, a distinct feature of certain human cancers. Drosophila tumor models offer an unprecedented opportunity to study these basic malignant traits, which characterize human tumors, in a genetically tractable organism, applying sophisticated genome-wide and comprehensive functional assays at a rate and with a level of detail that are not possible in vertebrates. The goal of this project is twofold: (1) to identify new paths of intervention to inhibit tumor growth, and (2) to determine the origin and function of aneuploidy and changes in gene copy number in malignant growth. We are expectant that the results obtained during the course of this project might eventually have a real impact in human health.
Summary
Despite significant advance, cancer treatment remains suboptimal. Anatomical and physiological differences between humans and simple model organisms like Drosophila are many and major, and preclude the modelling of key aspects of the disease as it proceeds in vertebrates. However, malignant tumors in vertebrates and flies are made of cells that have derailed from their normal course of development, grow out of control, become immortal, invasive, and kill the host. Moreover, like most solid human tumors, Drosophila malignant tumors display chromosomal instability and copy number variation. In addition, some of them are characterized by the upregulation of germline genes, a distinct feature of certain human cancers. Drosophila tumor models offer an unprecedented opportunity to study these basic malignant traits, which characterize human tumors, in a genetically tractable organism, applying sophisticated genome-wide and comprehensive functional assays at a rate and with a level of detail that are not possible in vertebrates. The goal of this project is twofold: (1) to identify new paths of intervention to inhibit tumor growth, and (2) to determine the origin and function of aneuploidy and changes in gene copy number in malignant growth. We are expectant that the results obtained during the course of this project might eventually have a real impact in human health.
Max ERC Funding
2 406 000 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym GENTRIS
Project Mechanisms of MTOC guidance and Genetic Transfer at the Immune Synapse: novel modes of Immuno-modulation
Researcher (PI) Francisco Sánchez Madrid
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.)
Call Details Advanced Grant (AdG), LS6, ERC-2011-ADG_20110310
Summary "Cell-cell synapses are an exquisitely evolved means of communication between cells. During the formation of the immune synapse (IS), diverse transmembrane and membrane associated molecules are reorganized into a highly segregated structure at the T cell–Antigen-Presenting Cell (APC) contact site. As part of this process, the tubulin cytoskeleton is vectorially directed toward the center of the IS, where the microtubule-organizing center (MTOC) localizes. MTOC translocation is an early event in IS formation that brings the secretory apparatus into close apposition with the APC, thus providing the basis for polarized secretion.
The proposal aims to define how the MTOC controls cytoskeletal rearrangement and communication at the IS, as a mechanism for macromolecule transport and nucleation of signalling molecules during synaptic contact. We will study the mechanisms of MTOC-mediated polarization of multivesicular bodies (MVB) and exosome delivery during IS formation, and will assess the role in these processes of MTOC translocation regulators (HDAC6) and microtubule (MT) polymerization promoters (Plk1 and EB1). MTOC-dependent mitochondrial polarization to the IS will be assessed as a bioenergetic source for cytoskeletal rearrangements, IS maturation and polarized exosomal delivery. In particular, our proposed study of the possible horizontal transfer of miRNAs during cognate interactions between immune cells has the potential to reveal how miRNAs can control the early initiation of immunity. We will investigate the mechanism of directional transfer of RNA-harbouring exosomes at the IS from T cell to APC, and will examine the functional consequences of this transfer on APC biology and on the immune response. These studies will open avenues for the treatment of immune-related diseases."
Summary
"Cell-cell synapses are an exquisitely evolved means of communication between cells. During the formation of the immune synapse (IS), diverse transmembrane and membrane associated molecules are reorganized into a highly segregated structure at the T cell–Antigen-Presenting Cell (APC) contact site. As part of this process, the tubulin cytoskeleton is vectorially directed toward the center of the IS, where the microtubule-organizing center (MTOC) localizes. MTOC translocation is an early event in IS formation that brings the secretory apparatus into close apposition with the APC, thus providing the basis for polarized secretion.
The proposal aims to define how the MTOC controls cytoskeletal rearrangement and communication at the IS, as a mechanism for macromolecule transport and nucleation of signalling molecules during synaptic contact. We will study the mechanisms of MTOC-mediated polarization of multivesicular bodies (MVB) and exosome delivery during IS formation, and will assess the role in these processes of MTOC translocation regulators (HDAC6) and microtubule (MT) polymerization promoters (Plk1 and EB1). MTOC-dependent mitochondrial polarization to the IS will be assessed as a bioenergetic source for cytoskeletal rearrangements, IS maturation and polarized exosomal delivery. In particular, our proposed study of the possible horizontal transfer of miRNAs during cognate interactions between immune cells has the potential to reveal how miRNAs can control the early initiation of immunity. We will investigate the mechanism of directional transfer of RNA-harbouring exosomes at the IS from T cell to APC, and will examine the functional consequences of this transfer on APC biology and on the immune response. These studies will open avenues for the treatment of immune-related diseases."
Max ERC Funding
2 011 200 €
Duration
Start date: 2012-02-01, End date: 2017-01-31