Project acronym 5D Heart Patch
Project A Functional, Mature In vivo Human Ventricular Muscle Patch for Cardiomyopathy
Researcher (PI) Kenneth Randall Chien
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary Developing new therapeutic strategies for heart regeneration is a major goal for cardiac biology and medicine. While cardiomyocytes can be generated from human pluripotent stem (hPSC) cells in vitro, it has proven difficult to use these cells to generate a large scale, mature human heart ventricular muscle graft on the injured heart in vivo. The central objective of this proposal is to optimize the generation of a large-scale pure, fully functional human ventricular muscle patch in vivo through the self-assembly of purified human ventricular progenitors and the localized expression of defined paracrine factors that drive their expansion, differentiation, vascularization, matrix formation, and maturation. Recently, we have found that purified hPSC-derived ventricular progenitors (HVPs) can self-assemble in vivo on the epicardial surface into a 3D vascularized, and functional ventricular patch with its own extracellular matrix via a cell autonomous pathway. A two-step protocol and FACS purification of HVP receptors can generate billions of pure HVPs- The current proposal will lead to the identification of defined paracrine pathways to enhance the survival, grafting/implantation, expansion, differentiation, matrix formation, vascularization and maturation of the graft in vivo. We will captalize on our unique HVP system and our novel modRNA technology to deliver therapeutic strategies by using the in vivo human ventricular muscle to model in vivo arrhythmogenic cardiomyopathy, and optimize the ability of the graft to compensate for the massive loss of functional muscle during ischemic cardiomyopathy and post-myocardial infarction. The studies will lead to new in vivo chimeric models of human cardiac disease and an experimental paradigm to optimize organ-on-organ cardiac tissue engineers of an in vivo, functional mature ventricular patch for cardiomyopathy
Summary
Developing new therapeutic strategies for heart regeneration is a major goal for cardiac biology and medicine. While cardiomyocytes can be generated from human pluripotent stem (hPSC) cells in vitro, it has proven difficult to use these cells to generate a large scale, mature human heart ventricular muscle graft on the injured heart in vivo. The central objective of this proposal is to optimize the generation of a large-scale pure, fully functional human ventricular muscle patch in vivo through the self-assembly of purified human ventricular progenitors and the localized expression of defined paracrine factors that drive their expansion, differentiation, vascularization, matrix formation, and maturation. Recently, we have found that purified hPSC-derived ventricular progenitors (HVPs) can self-assemble in vivo on the epicardial surface into a 3D vascularized, and functional ventricular patch with its own extracellular matrix via a cell autonomous pathway. A two-step protocol and FACS purification of HVP receptors can generate billions of pure HVPs- The current proposal will lead to the identification of defined paracrine pathways to enhance the survival, grafting/implantation, expansion, differentiation, matrix formation, vascularization and maturation of the graft in vivo. We will captalize on our unique HVP system and our novel modRNA technology to deliver therapeutic strategies by using the in vivo human ventricular muscle to model in vivo arrhythmogenic cardiomyopathy, and optimize the ability of the graft to compensate for the massive loss of functional muscle during ischemic cardiomyopathy and post-myocardial infarction. The studies will lead to new in vivo chimeric models of human cardiac disease and an experimental paradigm to optimize organ-on-organ cardiac tissue engineers of an in vivo, functional mature ventricular patch for cardiomyopathy
Max ERC Funding
2 149 228 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym EcoImmuneCosts
Project Immunity in Ecology and Evolution: 'Hidden' costs of disease, immune function and their consequences for Darwinian fitness
Researcher (PI) Dennis Lennart HASSELQUIST
Host Institution (HI) LUNDS UNIVERSITET
Call Details Advanced Grant (AdG), LS8, ERC-2016-ADG
Summary Eco-immunology targets one of the great challenges in biology and medicine - how the immune system has evolved to optimize protection and minimize immunopathology (incl. autoimmune) costs. A primary target of my proposal is to study low-virulent pathogens causing mild infections, which for long have been considered harmless. Recent research suggests that this notion is false and that seemingly harmless pathogens entail delayed (‘hidden’) fitness costs. However, the mechanisms mediating these costs are still unknown. I will experimentally test if accelerated telomere degradation is a causative mechanism through which small immune costs can accumulate and be translated into senescence and reduced Darwinian fitness. Another key target is immune costs, which may be ‘hidden’ because of sexually antagonistic effects, and I will study how this may affect immune gene variation, immune costs and Darwinian fitness. These aspects are central for advancing our understanding of the evolution of disease resistance and immune function, incl. immune over-reactions (autoimmunity).
My project exploits a comprehensive 32-year study of great reed warblers to analyze selection patterns in the wild (Fig. 1a), and uses established captive songbird set-ups to conduct carefully designed experiments. The exceptional quality of the long-term data set, together with cutting-edge techniques to measure and manipulate parasite infection, telomere length, oxidative stress and immune gene diversity, provides exciting opportunities to conduct research that previously was unfeasible, pushing the rapidly growing field of eco-immunology (Fig. 1b) to new frontiers. The work integrates theory and methods of evolutionary ecology, immunology and molecular biology, and has broad significance including for e.g. epidemiology and ageing research. I envision my research to change how we look upon causes, consequences (and precautions) of mild infectious, autoimmune and degenerative diseases.
Summary
Eco-immunology targets one of the great challenges in biology and medicine - how the immune system has evolved to optimize protection and minimize immunopathology (incl. autoimmune) costs. A primary target of my proposal is to study low-virulent pathogens causing mild infections, which for long have been considered harmless. Recent research suggests that this notion is false and that seemingly harmless pathogens entail delayed (‘hidden’) fitness costs. However, the mechanisms mediating these costs are still unknown. I will experimentally test if accelerated telomere degradation is a causative mechanism through which small immune costs can accumulate and be translated into senescence and reduced Darwinian fitness. Another key target is immune costs, which may be ‘hidden’ because of sexually antagonistic effects, and I will study how this may affect immune gene variation, immune costs and Darwinian fitness. These aspects are central for advancing our understanding of the evolution of disease resistance and immune function, incl. immune over-reactions (autoimmunity).
My project exploits a comprehensive 32-year study of great reed warblers to analyze selection patterns in the wild (Fig. 1a), and uses established captive songbird set-ups to conduct carefully designed experiments. The exceptional quality of the long-term data set, together with cutting-edge techniques to measure and manipulate parasite infection, telomere length, oxidative stress and immune gene diversity, provides exciting opportunities to conduct research that previously was unfeasible, pushing the rapidly growing field of eco-immunology (Fig. 1b) to new frontiers. The work integrates theory and methods of evolutionary ecology, immunology and molecular biology, and has broad significance including for e.g. epidemiology and ageing research. I envision my research to change how we look upon causes, consequences (and precautions) of mild infectious, autoimmune and degenerative diseases.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-08-01, End date: 2022-07-31
Project acronym GENEWELL
Project Genetics and epigenetics of animal welfare
Researcher (PI) Per Ole Stokmann Jensen
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Advanced Grant (AdG), LS9, ERC-2012-ADG_20120314
Summary Animal welfare is a topic of highest societal and scientific priority. Here, I propose to use genomic and epigenetic tools to provide a new perspective on the biology of animal welfare. This will reveal mechanisms involved in modulating stress responses. Groundbreaking aspects include new insights into how environmental conditions shape the orchestration of the genome by means of epigenetic mechanisms, and how this in turn modulates coping patterns of animals. The flexible epigenome comprises the interface between the environment and the genome. It is involved in both short- and long-term, including transgenerational, adaptations of animals. Hence, populations may adapt to environmental conditions over generations, using epigenetic mechanisms. The project will primarily be based on chickens, but will also be extended to a novel species, the dog. We will generate congenic chicken strains, where interesting alleles and epialleles will be fixed against a common background of either RJF or domestic genotypes. In these, we will apply a broad phenotyping strategy, to characterize the effects on different welfare relevant behaviors. Furthermore, we will characterize how environmental stress affects the epigenome of birds, and tissue samples from more than 500 birds from an intercross between RJF and White Leghorn layers will be used to perform an extensive meth-QTL-analysis. This will reveal environmental and genetic mechanisms affecting gene-specific methylation. The dog is another highly interesting species in the context of behavior genetics, because of its high inter-breed variation in behavior, and its compact and sequenced genome. We will set up a large-scale F2-intercross experiment and phenotype about 400 dogs in standardized behavioral tests. All individuals will be genotyped on about 1000 genetic markers, and this will be used for performing an extensive QTL-analysis in order to find new loci and alleles associated with personalities and coping patterns.
Summary
Animal welfare is a topic of highest societal and scientific priority. Here, I propose to use genomic and epigenetic tools to provide a new perspective on the biology of animal welfare. This will reveal mechanisms involved in modulating stress responses. Groundbreaking aspects include new insights into how environmental conditions shape the orchestration of the genome by means of epigenetic mechanisms, and how this in turn modulates coping patterns of animals. The flexible epigenome comprises the interface between the environment and the genome. It is involved in both short- and long-term, including transgenerational, adaptations of animals. Hence, populations may adapt to environmental conditions over generations, using epigenetic mechanisms. The project will primarily be based on chickens, but will also be extended to a novel species, the dog. We will generate congenic chicken strains, where interesting alleles and epialleles will be fixed against a common background of either RJF or domestic genotypes. In these, we will apply a broad phenotyping strategy, to characterize the effects on different welfare relevant behaviors. Furthermore, we will characterize how environmental stress affects the epigenome of birds, and tissue samples from more than 500 birds from an intercross between RJF and White Leghorn layers will be used to perform an extensive meth-QTL-analysis. This will reveal environmental and genetic mechanisms affecting gene-specific methylation. The dog is another highly interesting species in the context of behavior genetics, because of its high inter-breed variation in behavior, and its compact and sequenced genome. We will set up a large-scale F2-intercross experiment and phenotype about 400 dogs in standardized behavioral tests. All individuals will be genotyped on about 1000 genetic markers, and this will be used for performing an extensive QTL-analysis in order to find new loci and alleles associated with personalities and coping patterns.
Max ERC Funding
2 499 828 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym HEPASPHER
Project Mimicking liver disease and regeneration in vitro for drug development and liver transplantation
Researcher (PI) Magnus INGELMAN-SUNDBERG
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary The liver is a vital organ for synthesis and detoxification. The most significant liver diseases are hepatitis, non alcoholic fatty liver disease (NAFLD), non-alcoholic fatty liver steatohepatitis (NASH), carcinoma and cirrhosis. An additional and important cause of liver injury is adverse drug reactions (ADRs). In particular NAFLD is the most common liver disease affecting between 20% and 44% of European adults and 43-70% of patients with type 2 diabetes, and is one prime cause for chronic and end-stage liver disease, such as cirrhosis and primary hepatocellular carcinoma.
This proposal is based on recent findings in the laboratory: The development of novel 3D spheroid system with chemically defined media allowing studies of chronic drug toxicity, relevant liver disease and liver function for 5 weeks in vitro, the finding of the role of miRNA in hepatocyte dedifferentiation and that hepatocytes during spheroid formation first de-differentiate but later in spheroids re-differentiate to an in vivo relevant phenotype. This forms the basis for the main objectives: i) to study diseased liver in vitro with identification of mechanisms, biomarkers and novel drug candidates for treatment of NAFLD and fibrosis, ii) evaluate drug toxicity sensitivity and mechanisms in diseased liver systems and iii) further develop methods for hepatocyte proliferation and regeneration in vitro for transplantation purposes, including genetic editing in cases of hepatocytes obtained from patients with genetically inherited liver diseases.
This work is carried out in close contact with the Hepatology unit at the Karolinska Hospital partly using resources at the Science for Life Laboratory at Karolinska. It is anticipated that the project can provide with novel mechanisms, biomarkers and new targets for treatment of liver disease as well as novel methods for clinically applicable liver regeneration without the use of stem cells or transformed cells.
Summary
The liver is a vital organ for synthesis and detoxification. The most significant liver diseases are hepatitis, non alcoholic fatty liver disease (NAFLD), non-alcoholic fatty liver steatohepatitis (NASH), carcinoma and cirrhosis. An additional and important cause of liver injury is adverse drug reactions (ADRs). In particular NAFLD is the most common liver disease affecting between 20% and 44% of European adults and 43-70% of patients with type 2 diabetes, and is one prime cause for chronic and end-stage liver disease, such as cirrhosis and primary hepatocellular carcinoma.
This proposal is based on recent findings in the laboratory: The development of novel 3D spheroid system with chemically defined media allowing studies of chronic drug toxicity, relevant liver disease and liver function for 5 weeks in vitro, the finding of the role of miRNA in hepatocyte dedifferentiation and that hepatocytes during spheroid formation first de-differentiate but later in spheroids re-differentiate to an in vivo relevant phenotype. This forms the basis for the main objectives: i) to study diseased liver in vitro with identification of mechanisms, biomarkers and novel drug candidates for treatment of NAFLD and fibrosis, ii) evaluate drug toxicity sensitivity and mechanisms in diseased liver systems and iii) further develop methods for hepatocyte proliferation and regeneration in vitro for transplantation purposes, including genetic editing in cases of hepatocytes obtained from patients with genetically inherited liver diseases.
This work is carried out in close contact with the Hepatology unit at the Karolinska Hospital partly using resources at the Science for Life Laboratory at Karolinska. It is anticipated that the project can provide with novel mechanisms, biomarkers and new targets for treatment of liver disease as well as novel methods for clinically applicable liver regeneration without the use of stem cells or transformed cells.
Max ERC Funding
2 413 449 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym MagneticMoth
Project Hunting for the elusive “sixth” sense: navigation and magnetic sensation in a nocturnal migratory moth
Researcher (PI) Eric James WARRANT
Host Institution (HI) LUNDS UNIVERSITET
Call Details Advanced Grant (AdG), LS8, ERC-2016-ADG
Summary Many animals – including birds, sea turtles and insects – perform spectacular long-distance migrations across the surface of the Earth. Remarkably some, like birds, can accurately migrate between highly specific locations thousands of kilometres apart, a navigational feat that requires an external compass cue and a robust sensory system to detect it. The Earth’s magnetic field is one such compass cue. But exactly how the magnetic field is sensed, and which receptor cells are involved, remains a mystery and its discovery is one of the greatest “holy grails” in modern sensory physiology, and also the main aim of this proposal. Fortuitously, I have made a pioneering discovery that a migratory insect – the Australian Bogong moth – relies on the Earth’s magnetic field to navigate at night. Due to its tractable nervous system, this insect may thus hold the key to uncovering the identity of the enigmatic magnetosensor. By tethering flying migrating moths in a flight simulator, I will dissect for the first time how insects use magnetic cues to navigate, isolating which of the two current (contentious) hypotheses for magnetic sensation apply. The most likely of these involves the action of photoreceptor-based cryptochrome (Cry) molecules in the eyes. Having cloned genes for 4 visual opsins and 2 Cry in Bogong moths, I will use in situ hybridisation to localise putative magnetoreceptors in the eyes, targeting them with intracellular electrophysiology and magnetic stimulation in an attempt to describe the physiology of these elusive sensors for the first time. The project is ground breaking since it will elucidate how a migratory insect, despite its small eyes and brain, detects and uses the Earth’s magnetic field for navigation. The discovery of the enigmatic magnetoreceptor would be a sensation, opening the floodgates for international research on this little understood sense.
Summary
Many animals – including birds, sea turtles and insects – perform spectacular long-distance migrations across the surface of the Earth. Remarkably some, like birds, can accurately migrate between highly specific locations thousands of kilometres apart, a navigational feat that requires an external compass cue and a robust sensory system to detect it. The Earth’s magnetic field is one such compass cue. But exactly how the magnetic field is sensed, and which receptor cells are involved, remains a mystery and its discovery is one of the greatest “holy grails” in modern sensory physiology, and also the main aim of this proposal. Fortuitously, I have made a pioneering discovery that a migratory insect – the Australian Bogong moth – relies on the Earth’s magnetic field to navigate at night. Due to its tractable nervous system, this insect may thus hold the key to uncovering the identity of the enigmatic magnetosensor. By tethering flying migrating moths in a flight simulator, I will dissect for the first time how insects use magnetic cues to navigate, isolating which of the two current (contentious) hypotheses for magnetic sensation apply. The most likely of these involves the action of photoreceptor-based cryptochrome (Cry) molecules in the eyes. Having cloned genes for 4 visual opsins and 2 Cry in Bogong moths, I will use in situ hybridisation to localise putative magnetoreceptors in the eyes, targeting them with intracellular electrophysiology and magnetic stimulation in an attempt to describe the physiology of these elusive sensors for the first time. The project is ground breaking since it will elucidate how a migratory insect, despite its small eyes and brain, detects and uses the Earth’s magnetic field for navigation. The discovery of the enigmatic magnetoreceptor would be a sensation, opening the floodgates for international research on this little understood sense.
Max ERC Funding
2 498 625 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym MEMORYSTICK
Project Plasticity and formation of lasting memories in health and disease. Genetic modeling of key regulators in adult and aging mammals and in neurodegenerative disease
Researcher (PI) Lars Olson
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS5, ERC-2012-ADG_20120314
Summary When an adult mammal acquires new skills and new knowledge, the degree to which transition will occur from temporary to permanent memories of such events is governed by factors such as emotional weight and importance of the experiences for survival. To execute the necessary structural synaptic reorganisations needed to permanently embed novel memories in the brain, a complex and precisely orchestrated molecular machinery is activated. We have found that rapid down-regulation of Nogo receptor 1 (NgR1) is one key element needed to allow permanent memories to form. Thus, our MemoFlex mice, with inducible overexpression of NgR1 in forebrain neurons, are severely impaired with respect to the ability to form lasting memories. When transgenic NgR1 is turned off in these mice, the ability to form lasting memories is restored. Several other genes are also involved in the process of consolidation of memories, including prompt activity-driven upregulation of BDNF. Very recently, we have discovered that Lotus, a newly identified negative regulator of NgR1, is also upregulated by activity, thus providing additional efficacy to the process of causing nerve endings to become temporarily insensitive to Nogo when plasticity is needed. Based on our experience with neurotrophic factors and the Nogo signaling system, and using additional transgenic mouse models, including the mtDNA Mutator mouse with premature, yet typical aging, NgR1 KO mice and mice modeling neurodegenerative diseases (such as APPSwePSEN mice and our MitoPark mice to model aspects of Alzheimer’s and Parkinson’s disease, respectively) we will examine the formation of lasting normal and pathological (addiction, posttraumatic stress disorder) memories in adult and aging individuals with and without additional neurodegenerative genotypes known to include cognitive impariment. This research will further the understanding of mechanisms behind memory dysfunction and help the design of memory-improving stratetegies.
Summary
When an adult mammal acquires new skills and new knowledge, the degree to which transition will occur from temporary to permanent memories of such events is governed by factors such as emotional weight and importance of the experiences for survival. To execute the necessary structural synaptic reorganisations needed to permanently embed novel memories in the brain, a complex and precisely orchestrated molecular machinery is activated. We have found that rapid down-regulation of Nogo receptor 1 (NgR1) is one key element needed to allow permanent memories to form. Thus, our MemoFlex mice, with inducible overexpression of NgR1 in forebrain neurons, are severely impaired with respect to the ability to form lasting memories. When transgenic NgR1 is turned off in these mice, the ability to form lasting memories is restored. Several other genes are also involved in the process of consolidation of memories, including prompt activity-driven upregulation of BDNF. Very recently, we have discovered that Lotus, a newly identified negative regulator of NgR1, is also upregulated by activity, thus providing additional efficacy to the process of causing nerve endings to become temporarily insensitive to Nogo when plasticity is needed. Based on our experience with neurotrophic factors and the Nogo signaling system, and using additional transgenic mouse models, including the mtDNA Mutator mouse with premature, yet typical aging, NgR1 KO mice and mice modeling neurodegenerative diseases (such as APPSwePSEN mice and our MitoPark mice to model aspects of Alzheimer’s and Parkinson’s disease, respectively) we will examine the formation of lasting normal and pathological (addiction, posttraumatic stress disorder) memories in adult and aging individuals with and without additional neurodegenerative genotypes known to include cognitive impariment. This research will further the understanding of mechanisms behind memory dysfunction and help the design of memory-improving stratetegies.
Max ERC Funding
2 330 974 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym mtDNA-CURE
Project Treating mitochondrial disease caused by pathogenic mtDNA mutations
Researcher (PI) Nils-Göran LARSSON
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS4, ERC-2016-ADG
Summary This proposal describes a series of powerful experimental strategies to develop a completely novel treatment for mtDNA mutation disease based on identifying unknown mechanisms controlling mtDNA replication. Several hundred different mtDNA mutations affect tRNA genes and impair mitochondrial translation leading to human disease. There is typically heteroplasmy with a mixture of wild-type and mutated mtDNA, and the mutations are acting in a “recessive” (loss of function) way. Very high levels of mutated mtDNA are needed to cause disease in affected patients whereas maternal relatives with high, but sub-threshold levels of mutated mtDNA are completely healthy. The corollary of these observations is that even a small increase of wild-type mtDNA may efficiently counteract disease in affected patients. This hypothesis will be validated by a series of genetic experiments with mice harbouring single pathogenic mtDNA mutations. Furthermore, novel factors controlling mtDNA replication will be identified. In particular, we will elucidate the formation and function of the mammalian displacement (D) loop, which provides a switch between abortive and genome length mtDNA replication. This very fundamental problem in mammalian mitochondrial biology has remained unsolved for decades, but I feel that the innovative experimental strategies I present in this proposal are very powerful and should have a fair chance of being successful. In any circumstance, the project will provide important molecular insights into novel mechanisms relevant for mammalian mtDNA replication. Over the years I have been strongly convinced that congruent results from in vivo and in vitro studies are needed to obtain reliable mechanistic insights and this project is therefore based on the close integration of biochemistry, advanced proteomics and state-of-the-art mouse and fly genetics. Finally, I describe a powerful large-scale screening approach to develop small molecular stimulators of mtDNA replication.
Summary
This proposal describes a series of powerful experimental strategies to develop a completely novel treatment for mtDNA mutation disease based on identifying unknown mechanisms controlling mtDNA replication. Several hundred different mtDNA mutations affect tRNA genes and impair mitochondrial translation leading to human disease. There is typically heteroplasmy with a mixture of wild-type and mutated mtDNA, and the mutations are acting in a “recessive” (loss of function) way. Very high levels of mutated mtDNA are needed to cause disease in affected patients whereas maternal relatives with high, but sub-threshold levels of mutated mtDNA are completely healthy. The corollary of these observations is that even a small increase of wild-type mtDNA may efficiently counteract disease in affected patients. This hypothesis will be validated by a series of genetic experiments with mice harbouring single pathogenic mtDNA mutations. Furthermore, novel factors controlling mtDNA replication will be identified. In particular, we will elucidate the formation and function of the mammalian displacement (D) loop, which provides a switch between abortive and genome length mtDNA replication. This very fundamental problem in mammalian mitochondrial biology has remained unsolved for decades, but I feel that the innovative experimental strategies I present in this proposal are very powerful and should have a fair chance of being successful. In any circumstance, the project will provide important molecular insights into novel mechanisms relevant for mammalian mtDNA replication. Over the years I have been strongly convinced that congruent results from in vivo and in vitro studies are needed to obtain reliable mechanistic insights and this project is therefore based on the close integration of biochemistry, advanced proteomics and state-of-the-art mouse and fly genetics. Finally, I describe a powerful large-scale screening approach to develop small molecular stimulators of mtDNA replication.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym PainCells
Project Decomposition of pain into celltypes
Researcher (PI) Johan Patrik Ernfors
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS5, ERC-2016-ADG
Summary Almost 20% of the population has an ongoing pain problem. Pain is caused by a complex recruitment of different types of sensory neurons with different response-profiles and hence, the integrated response of an assembly of different neuronal types results in pain. Due to technical limitations, a system-wide approach to resolve the complexity of cell types and their involvement in the development of pain has yet not been tried.
PainCells will first identify and classify sensory neuron types by single-cell RNA seq in rodent and non-human primate. Based on the new classification we will determine the cellular basis for transduction of somatic sensation by developing enabling technologies allowing an activity-based Cre-dependent permanent labeling and identification by RNA-seq the exact cell types and hence, also neuronal assemblies active during particular types of pain. These assemblies will thereafter be silenced, ablated or artificially activated to functionally determine the role of these circuits in pain disorders. This work will for the first time reveal the full complexity of different cell types engaged in particular types of pain and unravel by activity-based mouse genetics the role of that these play in pain disorders. Thus, PainCells will reveal system-wide principles of coding pain in the nervous system.
PainCells will also address the role of terminal glial cells in the skin. This ignored cell type has in preliminary results been shown to respond to and transmit painful stimuli to primary sensory neurons. We will ascertain the role of terminal glial cells in the skin as pain initiating cells and in pain disorders. The discovery that glial cells in addition to sensory neurons represent pain receptive cells should fundamentally change the pain field.
Overall, this proposal takes a new system-wide strategy in that will affect development of new pain managing drugs, a field that has made little clinical advance the past century.
Summary
Almost 20% of the population has an ongoing pain problem. Pain is caused by a complex recruitment of different types of sensory neurons with different response-profiles and hence, the integrated response of an assembly of different neuronal types results in pain. Due to technical limitations, a system-wide approach to resolve the complexity of cell types and their involvement in the development of pain has yet not been tried.
PainCells will first identify and classify sensory neuron types by single-cell RNA seq in rodent and non-human primate. Based on the new classification we will determine the cellular basis for transduction of somatic sensation by developing enabling technologies allowing an activity-based Cre-dependent permanent labeling and identification by RNA-seq the exact cell types and hence, also neuronal assemblies active during particular types of pain. These assemblies will thereafter be silenced, ablated or artificially activated to functionally determine the role of these circuits in pain disorders. This work will for the first time reveal the full complexity of different cell types engaged in particular types of pain and unravel by activity-based mouse genetics the role of that these play in pain disorders. Thus, PainCells will reveal system-wide principles of coding pain in the nervous system.
PainCells will also address the role of terminal glial cells in the skin. This ignored cell type has in preliminary results been shown to respond to and transmit painful stimuli to primary sensory neurons. We will ascertain the role of terminal glial cells in the skin as pain initiating cells and in pain disorders. The discovery that glial cells in addition to sensory neurons represent pain receptive cells should fundamentally change the pain field.
Overall, this proposal takes a new system-wide strategy in that will affect development of new pain managing drugs, a field that has made little clinical advance the past century.
Max ERC Funding
2 443 953 €
Duration
Start date: 2017-08-01, End date: 2022-07-31
Project acronym WoodNanoTech
Project Wood Nanotechnology for Multifunctional Structures
Researcher (PI) Lars BERGLUND
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Advanced Grant (AdG), PE8, ERC-2016-ADG
Summary "Materials tend to be either structural or functional. Here focus is on biobased composites combining both aspects, using nanostructured wood templates. Wood is the most widely used biobased material for load-bearing structures, but the range of achievable properties and functions can still be increased. The objective is to develop scalable nanotechnology for wood structures, utilizing its nanocellulosic skeleton. Processing and materials design concepts are developed in the form of a wood nanotechnology toolbox. Focus is on transparent wood for engineering applications, a concept pioneered in my laboratory. Transparent wood can combine load-bearing properties with photonics functions and light weight.
The cellulose nanofibril skeleton in wood is a sophisticated reinforcement structure. For transparent wood, processing to nanoporous but mechanically robust templates without chromophores, is needed. Templates are then further functionalized using in-situ polymerization and/or inorganic nanoparticle precipitation. Molecular dynamics simulations are used to design polymers and methods for cellulose surface modification. Optical property research on material effects on scattering, polarization properties will then generate new ideas in ""wood photonics"". Device functions can be integrated in large structures, using anisotropy and the hierarchical structure in wood. Optically functional additives can be used to generate unique effects for applications such as lighting systems, LED panels, wood lasers, electrochromic windows or load-bearing and transparent panels with tailored combinations of transmittance and haze. Optical and mechanical properties are studied using experiments and modeling. The project team combines polymeric biocomposites competence with photonics expertise in a multidisciplinary effort.
"
Summary
"Materials tend to be either structural or functional. Here focus is on biobased composites combining both aspects, using nanostructured wood templates. Wood is the most widely used biobased material for load-bearing structures, but the range of achievable properties and functions can still be increased. The objective is to develop scalable nanotechnology for wood structures, utilizing its nanocellulosic skeleton. Processing and materials design concepts are developed in the form of a wood nanotechnology toolbox. Focus is on transparent wood for engineering applications, a concept pioneered in my laboratory. Transparent wood can combine load-bearing properties with photonics functions and light weight.
The cellulose nanofibril skeleton in wood is a sophisticated reinforcement structure. For transparent wood, processing to nanoporous but mechanically robust templates without chromophores, is needed. Templates are then further functionalized using in-situ polymerization and/or inorganic nanoparticle precipitation. Molecular dynamics simulations are used to design polymers and methods for cellulose surface modification. Optical property research on material effects on scattering, polarization properties will then generate new ideas in ""wood photonics"". Device functions can be integrated in large structures, using anisotropy and the hierarchical structure in wood. Optically functional additives can be used to generate unique effects for applications such as lighting systems, LED panels, wood lasers, electrochromic windows or load-bearing and transparent panels with tailored combinations of transmittance and haze. Optical and mechanical properties are studied using experiments and modeling. The project team combines polymeric biocomposites competence with photonics expertise in a multidisciplinary effort.
"
Max ERC Funding
2 461 947 €
Duration
Start date: 2017-09-01, End date: 2022-08-31