Project acronym 2DNanoSpec
Project Nanoscale Vibrational Spectroscopy of Sensitive 2D Molecular Materials
Researcher (PI) Renato ZENOBI
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Summary
I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Max ERC Funding
2 311 696 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym 4DVIDEO
Project 4DVideo: 4D spatio-temporal modeling of real-world events from video streams
Researcher (PI) Marc Pollefeys
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE5, ERC-2007-StG
Summary The focus of this project is the development of algorithms that allow one to capture and analyse dynamic events taking place in the real world. For this, we intend to develop smart camera networks that can perform a multitude of observation tasks, ranging from surveillance and tracking to high-fidelity, immersive reconstructions of important dynamic events (i.e. 4D videos). There are many fundamental questions in computer vision associated with these problems. Can the geometric, topologic and photometric properties of the camera network be obtained from live images? What is changing about the environment in which the network is embedded? How much information can be obtained from dynamic events that are observed by the network? What if the camera network consists of a random collection of sensors that happened to observe a particular event (think hand-held cell phone cameras)? Do we need synchronization? Those questions become even more challenging if one considers active camera networks that can adapt to the vision task at hand. How should resources be prioritized for different tasks? Can we derive optimal strategies to control camera parameters such as pan, tilt and zoom, trade-off resolution, frame-rate and bandwidth? More fundamentally, seeing cameras as points that sample incoming light rays and camera networks as a distributed sensor, how does one decide which rays should be sampled? Many of those issues are particularly interesting when we consider time-varying events. Both spatial and temporal resolution are important and heterogeneous frame-rates and resolution can offer advantages. Prior knowledge or information obtained from earlier samples can be used to restrict the possible range of solutions (e.g. smoothness assumption and motion prediction). My goal is to obtain fundamental answers to many of those question based on thorough theoretical analysis combined with practical algorithms that are proven on real applications.
Summary
The focus of this project is the development of algorithms that allow one to capture and analyse dynamic events taking place in the real world. For this, we intend to develop smart camera networks that can perform a multitude of observation tasks, ranging from surveillance and tracking to high-fidelity, immersive reconstructions of important dynamic events (i.e. 4D videos). There are many fundamental questions in computer vision associated with these problems. Can the geometric, topologic and photometric properties of the camera network be obtained from live images? What is changing about the environment in which the network is embedded? How much information can be obtained from dynamic events that are observed by the network? What if the camera network consists of a random collection of sensors that happened to observe a particular event (think hand-held cell phone cameras)? Do we need synchronization? Those questions become even more challenging if one considers active camera networks that can adapt to the vision task at hand. How should resources be prioritized for different tasks? Can we derive optimal strategies to control camera parameters such as pan, tilt and zoom, trade-off resolution, frame-rate and bandwidth? More fundamentally, seeing cameras as points that sample incoming light rays and camera networks as a distributed sensor, how does one decide which rays should be sampled? Many of those issues are particularly interesting when we consider time-varying events. Both spatial and temporal resolution are important and heterogeneous frame-rates and resolution can offer advantages. Prior knowledge or information obtained from earlier samples can be used to restrict the possible range of solutions (e.g. smoothness assumption and motion prediction). My goal is to obtain fundamental answers to many of those question based on thorough theoretical analysis combined with practical algorithms that are proven on real applications.
Max ERC Funding
1 757 422 €
Duration
Start date: 2008-08-01, End date: 2013-11-30
Project acronym AGNES
Project ACTIVE AGEING – RESILIENCE AND EXTERNAL SUPPORT AS MODIFIERS OF THE DISABLEMENT OUTCOME
Researcher (PI) Taina Tuulikki RANTANEN
Host Institution (HI) JYVASKYLAN YLIOPISTO
Call Details Advanced Grant (AdG), SH3, ERC-2015-AdG
Summary The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Summary
The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Max ERC Funding
2 044 364 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym AMSEL
Project Atomic Force Microscopy for Molecular Structure Elucidation
Researcher (PI) Leo Gross
Host Institution (HI) IBM RESEARCH GMBH
Call Details Consolidator Grant (CoG), PE4, ERC-2015-CoG
Summary Molecular structure elucidation is of great importance in synthetic chemistry, pharmacy, life sciences, energy and environmental sciences, and technology applications. To date structure elucidation by atomic force microscopy (AFM) has been demonstrated for a few, small and mainly planar molecules. In this project high-risk, high-impact scientific questions will be solved using structure elucidation with the AFM employing a novel tool and novel methodologies.
A combined low-temperature scanning tunneling microscope/atomic force microscope (LT-STM/AFM) with high throughput and in situ electrospray deposition method will be developed. Chemical resolution will be achieved by novel measurement techniques, in particular the usage of different and novel tip functionalizations and combination with Kelvin probe force microscopy. Elements will be identified using substructure recognition provided by a database that will be erected and by refined theory and simulations.
The developed tools and techniques will be applied to molecules of increasing fragility, complexity, size, and three-dimensionality. In particular samples that are challenging to characterize with conventional methods will be studied. Complex molecular mixtures will be investigated molecule-by-molecule taking advantage of the single-molecule sensitivity. The absolute stereochemistry of molecules will be determined, resolving molecules with multiple stereocenters. The operation of single molecular machines as nanocars and molecular gears will be investigated. Reactive intermediates generated with atomic manipulation will be characterized and their on-surface reactivity will be studied by AFM.
Summary
Molecular structure elucidation is of great importance in synthetic chemistry, pharmacy, life sciences, energy and environmental sciences, and technology applications. To date structure elucidation by atomic force microscopy (AFM) has been demonstrated for a few, small and mainly planar molecules. In this project high-risk, high-impact scientific questions will be solved using structure elucidation with the AFM employing a novel tool and novel methodologies.
A combined low-temperature scanning tunneling microscope/atomic force microscope (LT-STM/AFM) with high throughput and in situ electrospray deposition method will be developed. Chemical resolution will be achieved by novel measurement techniques, in particular the usage of different and novel tip functionalizations and combination with Kelvin probe force microscopy. Elements will be identified using substructure recognition provided by a database that will be erected and by refined theory and simulations.
The developed tools and techniques will be applied to molecules of increasing fragility, complexity, size, and three-dimensionality. In particular samples that are challenging to characterize with conventional methods will be studied. Complex molecular mixtures will be investigated molecule-by-molecule taking advantage of the single-molecule sensitivity. The absolute stereochemistry of molecules will be determined, resolving molecules with multiple stereocenters. The operation of single molecular machines as nanocars and molecular gears will be investigated. Reactive intermediates generated with atomic manipulation will be characterized and their on-surface reactivity will be studied by AFM.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym aQUARiUM
Project QUAntum nanophotonics in Rolled-Up Metamaterials
Researcher (PI) Humeyra CAGLAYAN
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Summary
Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Max ERC Funding
1 499 431 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ARTIVISM
Project Art and Activism : Creativity and Performance as Subversive Forms of Political Expression in Super-Diverse Cities
Researcher (PI) Monika Salzbrunn
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Consolidator Grant (CoG), SH5, ERC-2015-CoG
Summary ARTIVISM aims at exploring new artistic forms of political expression under difficult, precarious and/or oppressive conditions. It asks how social actors create belonging and multiple forms of resistance when they use art in activism or activism in art. What kind of alliances do these two forms of social practices generate in super-diverse places, in times of crisis and in precarious situations? Thus, ARTIVISM seeks to understand how social actors engage artistically in order to bring about social, economic and political change. Going beyond former research in urban and migration studies, and beyond the anthropology of art, ARTIVISM focuses on a broad range of artistic tools, styles and means of expression, namely festive events and parades, cartoons and comics and street art. By articulating performance studies, street anthropology and the sociology of celebration with migration and diversity studies, the project challenges former concepts, which took stable social groups for granted and reified them with ethnic lenses. The applied methodology considerably renews the field by bringing together event-, actor- and condition-centred approaches and a multi-sensory framework. Besides its multidisciplinary design, the ground-breaking nature of ARTIVISM lies in the application of the core concepts of performativity and liminality, as well as in an examination of the way to advance and refine these concepts and to create new analytical tools to respond to recent social phenomena. We have developed and tested innovative methods that respond to a postmodern type of fluid and temporary social action: audio-visual ethnography, urban event ethnography, street ethnography, field-crossing, and sensory ethnography (apprenticeship). Therefore, ARTIVISM develops new methods and theories in order to introduce a multi-faceted trans-disciplinary approach to the study of an emerging field of social transformations that is of challenging significance to the social sciences.
Summary
ARTIVISM aims at exploring new artistic forms of political expression under difficult, precarious and/or oppressive conditions. It asks how social actors create belonging and multiple forms of resistance when they use art in activism or activism in art. What kind of alliances do these two forms of social practices generate in super-diverse places, in times of crisis and in precarious situations? Thus, ARTIVISM seeks to understand how social actors engage artistically in order to bring about social, economic and political change. Going beyond former research in urban and migration studies, and beyond the anthropology of art, ARTIVISM focuses on a broad range of artistic tools, styles and means of expression, namely festive events and parades, cartoons and comics and street art. By articulating performance studies, street anthropology and the sociology of celebration with migration and diversity studies, the project challenges former concepts, which took stable social groups for granted and reified them with ethnic lenses. The applied methodology considerably renews the field by bringing together event-, actor- and condition-centred approaches and a multi-sensory framework. Besides its multidisciplinary design, the ground-breaking nature of ARTIVISM lies in the application of the core concepts of performativity and liminality, as well as in an examination of the way to advance and refine these concepts and to create new analytical tools to respond to recent social phenomena. We have developed and tested innovative methods that respond to a postmodern type of fluid and temporary social action: audio-visual ethnography, urban event ethnography, street ethnography, field-crossing, and sensory ethnography (apprenticeship). Therefore, ARTIVISM develops new methods and theories in order to introduce a multi-faceted trans-disciplinary approach to the study of an emerging field of social transformations that is of challenging significance to the social sciences.
Max ERC Funding
1 999 287 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ATTOLIQ
Project Attosecond X-ray spectroscopy of liquids
Researcher (PI) Hans Jakob WÖRNER
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Consolidator Grant (CoG), PE4, ERC-2017-COG
Summary Charge and energy transfer are the key steps underlying most chemical reactions and biological transformations. The purely electronic dynamics that control such processes take place on attosecond time scales. A complete understanding of these dynamics on the electronic level therefore calls for new experimental methods with attosecond resolution that are applicable to aqueous environments. We propose to combine the element sensitivity of X-ray spectroscopy with attosecond temporal resolution and ultrathin liquid microjets to study electronic dynamics of relevance to chemical, biological and photovoltaic processes. We will build on our recent achievements in demonstrating femtosecond time-resolved measurements in the water, attosecond pho-toelectron spectroscopy on a liquid microjet and measuring and controlling attosecond charge migration in isolated molecules. We will first concentrate on liquid water to study its electronic dynamics following outer-valence ionization, the formation pathway of the solvated electron and the time scales and intermolecular Coulombic decay following inner-valence or core-level ionization. Second, we will turn to solvated species and measure electronic dynamics and charge migration in solvated molecules, transition-metal complexes and pho-toexcited nanoparticles. These goals will be achieved by developing several innovative experimental tech-niques. We will develop a source of isolated attosecond pulses covering the water window (285-538 eV) and combine it with a flat liquid microjet to realize attosecond transient absorption in liquids. We will complement these measurements with attosecond X-ray emission spectroscopy, Auger spectroscopy and a novel hetero-dyne-detected variant of resonant inelastic Raman scattering, exploiting the large bandwidth that is naturally available from attosecond X-ray sources.
Summary
Charge and energy transfer are the key steps underlying most chemical reactions and biological transformations. The purely electronic dynamics that control such processes take place on attosecond time scales. A complete understanding of these dynamics on the electronic level therefore calls for new experimental methods with attosecond resolution that are applicable to aqueous environments. We propose to combine the element sensitivity of X-ray spectroscopy with attosecond temporal resolution and ultrathin liquid microjets to study electronic dynamics of relevance to chemical, biological and photovoltaic processes. We will build on our recent achievements in demonstrating femtosecond time-resolved measurements in the water, attosecond pho-toelectron spectroscopy on a liquid microjet and measuring and controlling attosecond charge migration in isolated molecules. We will first concentrate on liquid water to study its electronic dynamics following outer-valence ionization, the formation pathway of the solvated electron and the time scales and intermolecular Coulombic decay following inner-valence or core-level ionization. Second, we will turn to solvated species and measure electronic dynamics and charge migration in solvated molecules, transition-metal complexes and pho-toexcited nanoparticles. These goals will be achieved by developing several innovative experimental tech-niques. We will develop a source of isolated attosecond pulses covering the water window (285-538 eV) and combine it with a flat liquid microjet to realize attosecond transient absorption in liquids. We will complement these measurements with attosecond X-ray emission spectroscopy, Auger spectroscopy and a novel hetero-dyne-detected variant of resonant inelastic Raman scattering, exploiting the large bandwidth that is naturally available from attosecond X-ray sources.
Max ERC Funding
2 750 000 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym ATTOSCOPE
Project Measuring attosecond electron dynamics in molecules
Researcher (PI) Hans Jakob Wörner
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary "The goal of the present proposal is to realize measurements of electronic dynamics in polyatomic
molecules with attosecond temporal resolution (1 as = 10^-18s). We propose to study electronic
rearrangements following photoexcitation, charge migration in a molecular chain induced by
ionization and non-adiabatic multi-electron dynamics in an intense laser field. The grand question
addressed by this research is the characterization of electron correlations which control the shape, properties and function of molecules. In all three proposed projects, a time-domain approach appears to be the most suitable since it reduces complex molecular dynamics to the purely electronic dynamics by exploiting the hierarchy of motional time scales. Experimentally, we propose to realize an innovative experimental setup. A few-cycle infrared (IR) pulse will be used to generate attosecond pulses in the extreme-ultraviolet (XUV) by high-harmonic generation. The IR pulse will be separated from the XUV by means of an innovative interferometer. Additionally, it will permit the introduction of a controlled attosecond delay between the two pulses. We propose to use the attosecond pulses as a tool to look inside individual IR- or UV-field cycles to better understand light-matter interactions. Time-resolved pump-probe experiments will be carried out on polyatomic molecules by detecting the energy and angular distribution of photoelectrons in a velocity-map imaging spectrometer. These experiments are expected to provide new insights
into the dynamics of multi-electron systems along with new results for the validation and
improvement of theoretical models. Multi-electron dynamics is indeed a very complex subject
on its own and even more so in the presence of strong laser fields. The proposed experiments
directly address theses challenges and are expected to provide new insights that will be beneficial to a wide range of scientific research areas."
Summary
"The goal of the present proposal is to realize measurements of electronic dynamics in polyatomic
molecules with attosecond temporal resolution (1 as = 10^-18s). We propose to study electronic
rearrangements following photoexcitation, charge migration in a molecular chain induced by
ionization and non-adiabatic multi-electron dynamics in an intense laser field. The grand question
addressed by this research is the characterization of electron correlations which control the shape, properties and function of molecules. In all three proposed projects, a time-domain approach appears to be the most suitable since it reduces complex molecular dynamics to the purely electronic dynamics by exploiting the hierarchy of motional time scales. Experimentally, we propose to realize an innovative experimental setup. A few-cycle infrared (IR) pulse will be used to generate attosecond pulses in the extreme-ultraviolet (XUV) by high-harmonic generation. The IR pulse will be separated from the XUV by means of an innovative interferometer. Additionally, it will permit the introduction of a controlled attosecond delay between the two pulses. We propose to use the attosecond pulses as a tool to look inside individual IR- or UV-field cycles to better understand light-matter interactions. Time-resolved pump-probe experiments will be carried out on polyatomic molecules by detecting the energy and angular distribution of photoelectrons in a velocity-map imaging spectrometer. These experiments are expected to provide new insights
into the dynamics of multi-electron systems along with new results for the validation and
improvement of theoretical models. Multi-electron dynamics is indeed a very complex subject
on its own and even more so in the presence of strong laser fields. The proposed experiments
directly address theses challenges and are expected to provide new insights that will be beneficial to a wide range of scientific research areas."
Max ERC Funding
1 999 992 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym AUTOMATION
Project AUTOMATION AND INCOME DISTRIBUTION: A QUANTITATIVE ASSESSMENT
Researcher (PI) David Hémous
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Summary
Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Max ERC Funding
1 295 890 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BALANCE
Project Mapping Dispersion Spectroscopically in Large Gas-Phase Molecular Ions
Researcher (PI) Peter CHEN
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE4, ERC-2018-ADG
Summary We use IR spectroscopy of trapped ions in a cryogenic FT-ICR spectrometer to probe non-covalent, “dispersion” interactions in large, gas-phase molecular ions. We will measure conformational equilibria by N-H frequency shifts, and correlate gas-phase IR frequency to the N-H-N bond angle in an ionic H-bond. Substituents on “onium” cations can adopt various conformations, whose energies map interaction potentials. Substituents on their proton-bound dimers interact non-covalently through dispersion forces, whose quantitative evaluation in large molecules has remained difficult despite dispersion becoming increasingly cited as a design principle in the construction of catalysts and materials. The non-covalent interactions bend the N-H-N bond, leading to large shifts in the IR frequency. The proton-bound dimer acts like a molecular balance where the non-covalent interaction, is set against the bending potential in an ionic hydrogen bond. Despite encouragingly accurate calculations for small molecules, experimental benchmarks for large molecules in the gas phase remain scarce, and there is evidence that the good results for small molecules may not extrapolate reliably to large molecules. The present proposal introduces a new experimental probe of non-covalent interactions, providing a sensitive test of the diverging results coming from various computational methods and other experiments. The experiment must be done on isolated molecules in the gas phase, as previous work has shown that solvation substantially cancels out the attractive potential. Accordingly, the proposed experimental design, which involves a custom-built spectrometer, newly available tunable IR sources, chemical synthesis of custom substrates, and quantum calculations up to coupled-cluster levels of theory, showcases how an interdisciplinary approach combining physical and organic chemistry can solve a fundamental problem that impacts how we understand steric effects in organic chemistry.
Summary
We use IR spectroscopy of trapped ions in a cryogenic FT-ICR spectrometer to probe non-covalent, “dispersion” interactions in large, gas-phase molecular ions. We will measure conformational equilibria by N-H frequency shifts, and correlate gas-phase IR frequency to the N-H-N bond angle in an ionic H-bond. Substituents on “onium” cations can adopt various conformations, whose energies map interaction potentials. Substituents on their proton-bound dimers interact non-covalently through dispersion forces, whose quantitative evaluation in large molecules has remained difficult despite dispersion becoming increasingly cited as a design principle in the construction of catalysts and materials. The non-covalent interactions bend the N-H-N bond, leading to large shifts in the IR frequency. The proton-bound dimer acts like a molecular balance where the non-covalent interaction, is set against the bending potential in an ionic hydrogen bond. Despite encouragingly accurate calculations for small molecules, experimental benchmarks for large molecules in the gas phase remain scarce, and there is evidence that the good results for small molecules may not extrapolate reliably to large molecules. The present proposal introduces a new experimental probe of non-covalent interactions, providing a sensitive test of the diverging results coming from various computational methods and other experiments. The experiment must be done on isolated molecules in the gas phase, as previous work has shown that solvation substantially cancels out the attractive potential. Accordingly, the proposed experimental design, which involves a custom-built spectrometer, newly available tunable IR sources, chemical synthesis of custom substrates, and quantum calculations up to coupled-cluster levels of theory, showcases how an interdisciplinary approach combining physical and organic chemistry can solve a fundamental problem that impacts how we understand steric effects in organic chemistry.
Max ERC Funding
2 446 125 €
Duration
Start date: 2019-05-01, End date: 2024-04-30