Project acronym 3DNANOMECH
Project Three-dimensional molecular resolution mapping of soft matter-liquid interfaces
Researcher (PI) Ricardo Garcia
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Summary
Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Max ERC Funding
2 499 928 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym 4D-PET
Project Innovative PET scanner for dynamic imaging
Researcher (PI) José María BENLLOCH BAVIERA
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary The main objective of 4D-PET is to develop an innovative whole-body PET scanner based in a new detector concept that stores 3D position and time of every single gamma interaction with unprecedented resolution. The combination of scanner geometrical design and high timing resolution will enable developing a full sequence of all gamma-ray interactions inside the scanner, including Compton interactions, like in a 3D movie. 4D-PET fully exploits Time Of Flight (TOF) information to obtain a better image quality and to increase scanner sensitivity, through the inclusion in the image formation of all Compton events occurring inside the detector, which are always rejected in state-of-the-art PET scanners. The new PET design will radically improve state-of-the-art PET performance features, overcoming limitations of current PET technology and opening up new diagnostic venues and very valuable physiological information
Summary
The main objective of 4D-PET is to develop an innovative whole-body PET scanner based in a new detector concept that stores 3D position and time of every single gamma interaction with unprecedented resolution. The combination of scanner geometrical design and high timing resolution will enable developing a full sequence of all gamma-ray interactions inside the scanner, including Compton interactions, like in a 3D movie. 4D-PET fully exploits Time Of Flight (TOF) information to obtain a better image quality and to increase scanner sensitivity, through the inclusion in the image formation of all Compton events occurring inside the detector, which are always rejected in state-of-the-art PET scanners. The new PET design will radically improve state-of-the-art PET performance features, overcoming limitations of current PET technology and opening up new diagnostic venues and very valuable physiological information
Max ERC Funding
2 048 386 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym AIR-NB
Project Pre-natal exposure to urban AIR pollution and pre- and post-Natal Brain development
Researcher (PI) Jordi Sunyer
Host Institution (HI) FUNDACION PRIVADA INSTITUTO DE SALUD GLOBAL BARCELONA
Call Details Advanced Grant (AdG), LS7, ERC-2017-ADG
Summary Air pollution is the main urban-related environmental hazard. It appears to affect brain development, although current evidence is inadequate given the lack of studies during the most vulnerable stages of brain development and the lack of brain anatomical structure and regional connectivity data underlying these effects. Of particular interest is the prenatal period, when brain structures are forming and growing, and when the effect of in utero exposure to environmental factors may cause permanent brain injury. I and others have conducted studies focused on effects during school age which could be less profound. I postulate that: pre-natal exposure to urban air pollution during pregnancy impairs foetal and postnatal brain development, mainly by affecting myelination; these effects are at least partially mediated by translocation of airborne particulate matter to the placenta and by placental dysfunction; and prenatal exposure to air pollution impairs post-natal brain development independently of urban context and post-natal exposure to air pollution. I aim to evaluate the effect of pre-natal exposure to urban air pollution on pre- and post-natal brain structure and function by following 900 pregnant women and their neonates with contrasting levels of pre-natal exposure to air pollutants by: i) establishing a new pregnancy cohort and evaluating brain imaging (pre-natal and neo-natal brain structure, connectivity and function), and post-natal motor and cognitive development; ii) measuring total personal exposure and inhaled dose of air pollutants during specific time-windows of gestation, noise, paternal stress and other stressors, using personal samplers and sensors; iii) detecting nanoparticles in placenta and its vascular function; iv) modelling mathematical causality and mediation, including a replication study in an external cohort. The expected results will create an impulse to implement policy interventions that genuinely protect the health of urban citizens.
Summary
Air pollution is the main urban-related environmental hazard. It appears to affect brain development, although current evidence is inadequate given the lack of studies during the most vulnerable stages of brain development and the lack of brain anatomical structure and regional connectivity data underlying these effects. Of particular interest is the prenatal period, when brain structures are forming and growing, and when the effect of in utero exposure to environmental factors may cause permanent brain injury. I and others have conducted studies focused on effects during school age which could be less profound. I postulate that: pre-natal exposure to urban air pollution during pregnancy impairs foetal and postnatal brain development, mainly by affecting myelination; these effects are at least partially mediated by translocation of airborne particulate matter to the placenta and by placental dysfunction; and prenatal exposure to air pollution impairs post-natal brain development independently of urban context and post-natal exposure to air pollution. I aim to evaluate the effect of pre-natal exposure to urban air pollution on pre- and post-natal brain structure and function by following 900 pregnant women and their neonates with contrasting levels of pre-natal exposure to air pollutants by: i) establishing a new pregnancy cohort and evaluating brain imaging (pre-natal and neo-natal brain structure, connectivity and function), and post-natal motor and cognitive development; ii) measuring total personal exposure and inhaled dose of air pollutants during specific time-windows of gestation, noise, paternal stress and other stressors, using personal samplers and sensors; iii) detecting nanoparticles in placenta and its vascular function; iv) modelling mathematical causality and mediation, including a replication study in an external cohort. The expected results will create an impulse to implement policy interventions that genuinely protect the health of urban citizens.
Max ERC Funding
2 499 992 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym AVATAR
Project Integrating Genomics and Avatar Mouse Models to Personalize Pancreatic Cancer Treatment
Researcher (PI) Manuel HIDALGO MEDINA
Host Institution (HI) HOSPITAL UNIVERSITARIO DE FUENLABRADA
Call Details Advanced Grant (AdG), LS7, ERC-2014-ADG
Summary The prognosis of patients with metastatic pancreatic cancer (PDAC) is very poor. Recent studies have started to elucidate the genetic landscape of this disease to show that PDAC is a genetically complex, unstable, and heterogeneous cancer. However, in-depth analysis of individual patient genomes couple with personalize Avatar mouse models is providing highly effective therapeutic opportunities for the individual patient. Thus, metastatic PDAC appears a candidate disease to implement a genomics-base, personalized treatment approach. In this project, we will conduct an open label, multicenter, randomized phase III study in patients with standard of care resistant metastatic pancreatic cancer aiming to test the hypothesis that an integrated personalized treatment approach improves survival compare to a conventional treatment. Patients randomized to the personalize treatment arm will undergo a biopsy of a metastatic lesion to perform a targeted genome analysis using next generation sequencing. In addition, we will generate a personalize Avatar mouse model from the same patient. We will employ sophisticated bioinformatic analysis as well as mining of drug response-genetic databases to select, for each individual patient, candidate therapeutic targets that will be experimentally tested in the patient´s Avatar model to select the most effective regimen that will ultimately applied to the patient. In addition, based on the genomic data, we will design an individualized monitoring plan for each patient using BEAMing technology to monitor circulating levels of mutated genes. Furthermore, with a discovery goal, we will perform in depth genomic analysis of metastatic PDAC lesions in this cohort of clinically well-annotated patients with Avatar mouse models for therapeutic validation. Overall we expect this work will contribute to our understanding of PDAC and will favourably impact the treatment of this dismal cancer.
Summary
The prognosis of patients with metastatic pancreatic cancer (PDAC) is very poor. Recent studies have started to elucidate the genetic landscape of this disease to show that PDAC is a genetically complex, unstable, and heterogeneous cancer. However, in-depth analysis of individual patient genomes couple with personalize Avatar mouse models is providing highly effective therapeutic opportunities for the individual patient. Thus, metastatic PDAC appears a candidate disease to implement a genomics-base, personalized treatment approach. In this project, we will conduct an open label, multicenter, randomized phase III study in patients with standard of care resistant metastatic pancreatic cancer aiming to test the hypothesis that an integrated personalized treatment approach improves survival compare to a conventional treatment. Patients randomized to the personalize treatment arm will undergo a biopsy of a metastatic lesion to perform a targeted genome analysis using next generation sequencing. In addition, we will generate a personalize Avatar mouse model from the same patient. We will employ sophisticated bioinformatic analysis as well as mining of drug response-genetic databases to select, for each individual patient, candidate therapeutic targets that will be experimentally tested in the patient´s Avatar model to select the most effective regimen that will ultimately applied to the patient. In addition, based on the genomic data, we will design an individualized monitoring plan for each patient using BEAMing technology to monitor circulating levels of mutated genes. Furthermore, with a discovery goal, we will perform in depth genomic analysis of metastatic PDAC lesions in this cohort of clinically well-annotated patients with Avatar mouse models for therapeutic validation. Overall we expect this work will contribute to our understanding of PDAC and will favourably impact the treatment of this dismal cancer.
Max ERC Funding
2 498 688 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym BREATHE
Project BRain dEvelopment and Air polluTion ultrafine particles in scHool childrEn
Researcher (PI) Jordi Sunyer Deu
Host Institution (HI) FUNDACION PRIVADA INSTITUTO DE SALUD GLOBAL BARCELONA
Call Details Advanced Grant (AdG), LS7, ERC-2010-AdG_20100317
Summary Traffic-related air pollution is an important environmental problem that may affect neurodevelopment. Ultrafine particles (UFP) translocate to the brains of experimental animals resulting in local proinflammatory overexpression. As the basic elements for thinking are acquired by developing brains during infancy and childhood, susceptibility may be elevated in early life.
We postulate that traffic-related air pollution (particularly UFPs and metals/hydrocarbons content) impairs neurodevelopment in part via effects on frontal lobe maturation, likely increasing attention-deficit/hyperactivity disorder (ADHD). BREATHE objectives are to develop valid methods to measure children's personal UFP exposure and to develop valid neuroimaging methods to assess correlations between neurobehavior, neurostructural alterations and particle deposition in order to reveal how traffic pollution affects children¿s exposure to key contaminants and brain development, and identify susceptible subgroups.
We have conducted general population birth cohort studies providing preliminary evidence of residential air pollution effects on prenatal growth and mental development.
We aim to demonstrate short and long-term effects on neurodevelopment using innovative epidemiological methods interfaced with environmental chemistry and neuroimaging following 4000 children from 40 schools with contrasting high/low traffic exposure in six linked components involving: repeated psychometric tests, UFP exposure assessment using personal, school and home measurements, gene-environment interactions on inflammation, detoxification pathways and ADHD genome-wide-associated genes, neuroimaging (magnetic resonance imaging/spectroscopy) in ADHD/non-ADHD children, integrative causal modeling using mathematics, and replication in 2900 children with neurodevelopment followed from pregnancy.
We believe the expected results will have worldwide global planning and policy implications.
Summary
Traffic-related air pollution is an important environmental problem that may affect neurodevelopment. Ultrafine particles (UFP) translocate to the brains of experimental animals resulting in local proinflammatory overexpression. As the basic elements for thinking are acquired by developing brains during infancy and childhood, susceptibility may be elevated in early life.
We postulate that traffic-related air pollution (particularly UFPs and metals/hydrocarbons content) impairs neurodevelopment in part via effects on frontal lobe maturation, likely increasing attention-deficit/hyperactivity disorder (ADHD). BREATHE objectives are to develop valid methods to measure children's personal UFP exposure and to develop valid neuroimaging methods to assess correlations between neurobehavior, neurostructural alterations and particle deposition in order to reveal how traffic pollution affects children¿s exposure to key contaminants and brain development, and identify susceptible subgroups.
We have conducted general population birth cohort studies providing preliminary evidence of residential air pollution effects on prenatal growth and mental development.
We aim to demonstrate short and long-term effects on neurodevelopment using innovative epidemiological methods interfaced with environmental chemistry and neuroimaging following 4000 children from 40 schools with contrasting high/low traffic exposure in six linked components involving: repeated psychometric tests, UFP exposure assessment using personal, school and home measurements, gene-environment interactions on inflammation, detoxification pathways and ADHD genome-wide-associated genes, neuroimaging (magnetic resonance imaging/spectroscopy) in ADHD/non-ADHD children, integrative causal modeling using mathematics, and replication in 2900 children with neurodevelopment followed from pregnancy.
We believe the expected results will have worldwide global planning and policy implications.
Max ERC Funding
2 499 230 €
Duration
Start date: 2011-08-01, End date: 2016-07-31
Project acronym CHEMAGEB
Project CHEMometric and High-throughput Omics Analytical Methods for Assessment of Global Change Effects on Environmental and Biological Systems
Researcher (PI) Roman Tauler Ferrer
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), PE4, ERC-2012-ADG_20120216
Summary We propose to develop new chemometric and high-throughput analytical methods to assess the effects of environmental and climate changes on target biological systems which are representative of ecosystems. This project will combine powerful chemometric and analytical high-throughput methodologies with toxicological tests to examine the effects of environmental stressors (like chemical pollution) and of climate change (like temperature, water scarcity or food shortage), on genomic and metabonomic profiles of target biological systems. The complex nature of experimental data produced by high-throughput analytical techniques, such as DNA microarrays, hyphenated chromatography-mass spectrometry or multi-dimensional nuclear magnetic resonance spectroscopy, requires powerful data analysis tools to extract, summarize and interpret the large amount of information that such megavariate data sets may contain. There is a need to improve and automate every step in the analysis of the data generated from genomic and metabonomic studies using new chemometric and multi- and megavariate tools. The main purpose of this project is to develop such tools. As a result of the whole study, a detailed report on the effects of global change and chemical pollution on the genomic and metabonomic profiles of a selected set of representative target biological systems will be delivered and used for global risk assessment. The information acquired, data sets and computer software will be stored in public data bases using modern data compression and data management technologies. And all the methodologies developed in the project will be published.
Summary
We propose to develop new chemometric and high-throughput analytical methods to assess the effects of environmental and climate changes on target biological systems which are representative of ecosystems. This project will combine powerful chemometric and analytical high-throughput methodologies with toxicological tests to examine the effects of environmental stressors (like chemical pollution) and of climate change (like temperature, water scarcity or food shortage), on genomic and metabonomic profiles of target biological systems. The complex nature of experimental data produced by high-throughput analytical techniques, such as DNA microarrays, hyphenated chromatography-mass spectrometry or multi-dimensional nuclear magnetic resonance spectroscopy, requires powerful data analysis tools to extract, summarize and interpret the large amount of information that such megavariate data sets may contain. There is a need to improve and automate every step in the analysis of the data generated from genomic and metabonomic studies using new chemometric and multi- and megavariate tools. The main purpose of this project is to develop such tools. As a result of the whole study, a detailed report on the effects of global change and chemical pollution on the genomic and metabonomic profiles of a selected set of representative target biological systems will be delivered and used for global risk assessment. The information acquired, data sets and computer software will be stored in public data bases using modern data compression and data management technologies. And all the methodologies developed in the project will be published.
Max ERC Funding
2 454 280 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym COLLMOT
Project Complex structure and dynamics of collective motion
Researcher (PI) Tamás Vicsek
Host Institution (HI) EOTVOS LORAND TUDOMANYEGYETEM
Call Details Advanced Grant (AdG), PE3, ERC-2008-AdG
Summary Collective behaviour is a widespread phenomenon in nature and technology making it a very important subject to study in various contexts. The main goal we intend to achieve in our multidisciplinary research is the identification and documentation of new unifying principles describing the essential aspects of collective motion, being one of the most relevant and spectacular manifestations of collective behaviour. We shall carry out novel type of experiments, design models that are both simple and realistic enough to reproduce the observations and develop concepts for a better interpretation of the complexity of systems consisting of many organisms and such non-living objects as interacting robots. We plan to study systems ranging from cultures of migrating tissue cells through flocks of birds to collectively moving devices. The interrelation of these systems will be considered in order to deepen the understanding of the main patterns of group motion in both living and non-living systems by learning about the similar phenomena in the two domains of nature. Thus, we plan to understand the essential ingredients of flocking of birds by building collectively moving unmanned aerial vehicles while, in turn, high resolution spatiotemporal GPS data of pigeon flocks will be used to make helpful conclusions for the best designs for swarms of robots. In particular, we shall construct and build a set of vehicles that will be capable, for the first time, to exhibit flocking behaviour in the three-dimensional space. The methods we shall adopt will range from approaches used in statistical physics and network theory to various new techniques in cell biology and collective robotics. All this will be based on numerous prior results (both ours and others) published in leading interdisciplinary journals. The planned research will have the potential of leading to ground breaking results with significant implications in various fields of science and technology.
Summary
Collective behaviour is a widespread phenomenon in nature and technology making it a very important subject to study in various contexts. The main goal we intend to achieve in our multidisciplinary research is the identification and documentation of new unifying principles describing the essential aspects of collective motion, being one of the most relevant and spectacular manifestations of collective behaviour. We shall carry out novel type of experiments, design models that are both simple and realistic enough to reproduce the observations and develop concepts for a better interpretation of the complexity of systems consisting of many organisms and such non-living objects as interacting robots. We plan to study systems ranging from cultures of migrating tissue cells through flocks of birds to collectively moving devices. The interrelation of these systems will be considered in order to deepen the understanding of the main patterns of group motion in both living and non-living systems by learning about the similar phenomena in the two domains of nature. Thus, we plan to understand the essential ingredients of flocking of birds by building collectively moving unmanned aerial vehicles while, in turn, high resolution spatiotemporal GPS data of pigeon flocks will be used to make helpful conclusions for the best designs for swarms of robots. In particular, we shall construct and build a set of vehicles that will be capable, for the first time, to exhibit flocking behaviour in the three-dimensional space. The methods we shall adopt will range from approaches used in statistical physics and network theory to various new techniques in cell biology and collective robotics. All this will be based on numerous prior results (both ours and others) published in leading interdisciplinary journals. The planned research will have the potential of leading to ground breaking results with significant implications in various fields of science and technology.
Max ERC Funding
1 248 000 €
Duration
Start date: 2009-03-01, End date: 2015-02-28
Project acronym DYNAMO
Project Dynamical processes in open quantum systems: pushing the frontiers of theoretical spectroscopy
Researcher (PI) Angel Secades Rubio
Host Institution (HI) UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
Call Details Advanced Grant (AdG), PE4, ERC-2010-AdG_20100224
Summary "Scope ""Energy Materials. In this project we develop new concepts for building a novel theoretical framework (the ab-initio non-equilibrium dynamical modelling tool”) for understanding, identifying, and quantifying the different contributions to energy harvesting and storage as well as describing transport mechanisms in natural light harvesting complexes, photovoltaic materials, fluorescent proteins and artificial (nanostructured) devices by means of theories of open quantum systems, non-equilibrium processes and electronic structure. We address cutting-edge applications along three major scientific challenges: i) characterize matter out of equilibrium, ii) control material processes at the electronic level and tailor material properties, iii) master energy and information on the nanoscale. The long-term goal is developing a set of theoretical tools for the quantitative prediction of energy transfer phenomena in real systems.
We will provide answers to the following questions: What are the design principles from the environment-assisted quantum transport in photosynthetic organisms that can be transferred to nanostructured materials such as organic photovoltaic materials and biomimetic materials? What are the fundamental limits of excitonic transport properties such as exciton diffusion lengths and recombination rates? What is the role of quantum coherence in the energy transport in photosynthetic complexes and photovoltaic materials? What is the role of spatial confinement in water and proton transfer through porous membranes (nano-capillarity)?
The ground-breaking nature of the project lies in being the first systematic development and application of the theories of open quantum systems and quantum optimal control within an ab-initio framework (time-dependent-density functional theory). The project will open new methodological, applicative and theoretical horizons of research."
Summary
"Scope ""Energy Materials. In this project we develop new concepts for building a novel theoretical framework (the ab-initio non-equilibrium dynamical modelling tool”) for understanding, identifying, and quantifying the different contributions to energy harvesting and storage as well as describing transport mechanisms in natural light harvesting complexes, photovoltaic materials, fluorescent proteins and artificial (nanostructured) devices by means of theories of open quantum systems, non-equilibrium processes and electronic structure. We address cutting-edge applications along three major scientific challenges: i) characterize matter out of equilibrium, ii) control material processes at the electronic level and tailor material properties, iii) master energy and information on the nanoscale. The long-term goal is developing a set of theoretical tools for the quantitative prediction of energy transfer phenomena in real systems.
We will provide answers to the following questions: What are the design principles from the environment-assisted quantum transport in photosynthetic organisms that can be transferred to nanostructured materials such as organic photovoltaic materials and biomimetic materials? What are the fundamental limits of excitonic transport properties such as exciton diffusion lengths and recombination rates? What is the role of quantum coherence in the energy transport in photosynthetic complexes and photovoltaic materials? What is the role of spatial confinement in water and proton transfer through porous membranes (nano-capillarity)?
The ground-breaking nature of the project lies in being the first systematic development and application of the theories of open quantum systems and quantum optimal control within an ab-initio framework (time-dependent-density functional theory). The project will open new methodological, applicative and theoretical horizons of research."
Max ERC Funding
1 877 497 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym eNANO
Project FREE ELECTRONS AS ULTRAFAST NANOSCALE PROBES
Researcher (PI) Javier Garcia de Abajo
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Call Details Advanced Grant (AdG), PE3, ERC-2017-ADG
Summary With eNANO I will introduce a disruptive approach toward controlling and understanding the dynamical response of material nanostructures, expanding nanoscience and nanotechnology in unprecedented directions. Specifically, I intend to inaugurate the field of free-electron nanoelectronics, whereby electrons evolving in the vacuum regions defined by nanostructures will be generated, guided, and sampled at the nanoscale, thus acting as probes to excite, detect, image, and spectrally resolve polaritonic modes (e.g., plasmons, optical phonons, and excitons) with atomic precision over sub-femtosecond timescales. I will exploit the wave nature of electrons, extending the principles of nanophotonics from photons to electrons, therefore gaining in spatial resolution (by relying on the large reduction in wavelength) and strength of interaction (mediated by Coulomb fields, which in contrast to photons render nonlinear interactions ubiquitous when using free electrons). I will develop the theoretical and computational tools required to investigate this unexplored scenario, covering a wide range of free-electron energies, their elastic interactions with the material atomic structures, and their inelastic coupling to nanoscale dynamical excitations. Equipped with these techniques, I will further address four challenges of major scientific interest: (i) the fundamental limits to the space, time, and energy resolutions achievable with free electrons; (ii) the foundations and feasibility of pump-probe spectral microscopy at the single-electron level; (iii) the exploration of quantum-optics phenomena by means of free electrons; and (iv) the unique perspectives and potential offered by vertically confined free-electrons in 2D crystals. I will face these research frontiers by combining knowledge from different areas through a multidisciplinary theory group, in close collaboration with leading experimentalists, pursuing a radically new approach to study and control the nanoworld.
Summary
With eNANO I will introduce a disruptive approach toward controlling and understanding the dynamical response of material nanostructures, expanding nanoscience and nanotechnology in unprecedented directions. Specifically, I intend to inaugurate the field of free-electron nanoelectronics, whereby electrons evolving in the vacuum regions defined by nanostructures will be generated, guided, and sampled at the nanoscale, thus acting as probes to excite, detect, image, and spectrally resolve polaritonic modes (e.g., plasmons, optical phonons, and excitons) with atomic precision over sub-femtosecond timescales. I will exploit the wave nature of electrons, extending the principles of nanophotonics from photons to electrons, therefore gaining in spatial resolution (by relying on the large reduction in wavelength) and strength of interaction (mediated by Coulomb fields, which in contrast to photons render nonlinear interactions ubiquitous when using free electrons). I will develop the theoretical and computational tools required to investigate this unexplored scenario, covering a wide range of free-electron energies, their elastic interactions with the material atomic structures, and their inelastic coupling to nanoscale dynamical excitations. Equipped with these techniques, I will further address four challenges of major scientific interest: (i) the fundamental limits to the space, time, and energy resolutions achievable with free electrons; (ii) the foundations and feasibility of pump-probe spectral microscopy at the single-electron level; (iii) the exploration of quantum-optics phenomena by means of free electrons; and (iv) the unique perspectives and potential offered by vertically confined free-electrons in 2D crystals. I will face these research frontiers by combining knowledge from different areas through a multidisciplinary theory group, in close collaboration with leading experimentalists, pursuing a radically new approach to study and control the nanoworld.
Max ERC Funding
1 899 788 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym LightNet
Project LightNet - Tracking the Coherent Light Path in Photosynthetic Networks
Researcher (PI) Niek van Hulst
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Call Details Advanced Grant (AdG), PE3, ERC-2014-ADG
Summary ature has developed photosynthesis to power life. Networks of light harvesting antennas capture the sunlight to funnel the photonic energy towards reaction centres. Surprisingly, quantum coherences are observed in the energy transfer of photosynthetic complexes, even at room temperature.
Does nature exploit quantum concepts? Does the coherence help to find an optimal path for robust or efficient transfer? How are the coherences sustained? What is their spatial extent in a real light-harvesting network? So far only solutions of complexes were studied, far from the natural network operation, putting on hold conclusions as to a biological role of the coherences.
My group recently succeeded in the first detection of coherent oscillations of a single photo-synthetic complex at physiological conditions, and non-classical photon emission of individual complexes. These pioneering results, together with our expertise in nanophotonics, pave the way to address photosynthetic networks in real nano-space and on femtosecond timescale. Specific objectives are:
--Ultrafast single protein detection: tracing the fs coherent energy transfer path of an individual complex; addressing the very nature of the persistent coherences.
-Beyond fluorescence: light harvesting complex are designed for light transport, not emission. I will explore innovative alternatives: optical antennas to enhance quantum efficiency; detection of stimulated emission; and electrical read-out on graphene.
-Nanoscale light transport: using local excitation and detection by nanoholes, nanoslits and scanning antenna probes I will spatially map the extent of the inter-complex transfer.
-The network: combining both coherent fs excitation and localized nanoscale excitation/detection I will track the extent of coherences throughout the network.
The impact of this first exploration of light transport in a nanoscale bionetwork ranges to solar energy management, molecular biology, polymer chemistry and material science.
Summary
ature has developed photosynthesis to power life. Networks of light harvesting antennas capture the sunlight to funnel the photonic energy towards reaction centres. Surprisingly, quantum coherences are observed in the energy transfer of photosynthetic complexes, even at room temperature.
Does nature exploit quantum concepts? Does the coherence help to find an optimal path for robust or efficient transfer? How are the coherences sustained? What is their spatial extent in a real light-harvesting network? So far only solutions of complexes were studied, far from the natural network operation, putting on hold conclusions as to a biological role of the coherences.
My group recently succeeded in the first detection of coherent oscillations of a single photo-synthetic complex at physiological conditions, and non-classical photon emission of individual complexes. These pioneering results, together with our expertise in nanophotonics, pave the way to address photosynthetic networks in real nano-space and on femtosecond timescale. Specific objectives are:
--Ultrafast single protein detection: tracing the fs coherent energy transfer path of an individual complex; addressing the very nature of the persistent coherences.
-Beyond fluorescence: light harvesting complex are designed for light transport, not emission. I will explore innovative alternatives: optical antennas to enhance quantum efficiency; detection of stimulated emission; and electrical read-out on graphene.
-Nanoscale light transport: using local excitation and detection by nanoholes, nanoslits and scanning antenna probes I will spatially map the extent of the inter-complex transfer.
-The network: combining both coherent fs excitation and localized nanoscale excitation/detection I will track the extent of coherences throughout the network.
The impact of this first exploration of light transport in a nanoscale bionetwork ranges to solar energy management, molecular biology, polymer chemistry and material science.
Max ERC Funding
2 856 250 €
Duration
Start date: 2016-01-01, End date: 2020-12-31