Project acronym COGTOM
Project Cognitive tomography of mental representations
Researcher (PI) Máté Miklós LENGYEL
Host Institution (HI) KOZEP-EUROPAI EGYETEM
Call Details Consolidator Grant (CoG), SH4, ERC-2016-COG
Summary Internal models are fundamental to our understanding of how the mind constructs percepts, makes decisions, controls movements, and interacts with others. Yet, we lack principled quantitative methods to systematically estimate internal models from observable behaviour, and current approaches for discovering their mental representations remain heuristic and piecemeal. I propose to develop a set of novel 'doubly Bayesian' data analytical methods, using state-of-the-art Bayesian statistical and machine learning techniques to infer humans' internal models formalised as prior distributions in Bayesian models of cognition. This approach, cognitive tomography, takes a series of behavioural observations, each of which in itself may have very limited information content, and accumulates a detailed reconstruction of the internal model based on these observations. I also propose a set of stringent, quantifiable criteria which will be systematically applied at each step of the proposed work to rigorously assess the success of our approach. These methodological advances will allow us to track how the structured, task-general internal models that are so fundamental to humans' superior cognitive abilities, change over time as a result of decay, interference, and learning. We will apply cognitive tomography to a variety of experimental data sets, collected by our collaborators, in paradigms ranging from perceptual learning, through visual and motor structure learning, to social and concept learning. These analyses will allow us to conclusively and quantitatively test our central hypothesis that, rather than simply changing along a single 'memory strength' dimension, internal models typically change via complex and consistent patterns of transformations along multiple dimensions simultaneously. To facilitate the widespread use of our methods, we will release and support off-the-shelf usable implementations of our algorithms together with synthetic and real test data sets.
Summary
Internal models are fundamental to our understanding of how the mind constructs percepts, makes decisions, controls movements, and interacts with others. Yet, we lack principled quantitative methods to systematically estimate internal models from observable behaviour, and current approaches for discovering their mental representations remain heuristic and piecemeal. I propose to develop a set of novel 'doubly Bayesian' data analytical methods, using state-of-the-art Bayesian statistical and machine learning techniques to infer humans' internal models formalised as prior distributions in Bayesian models of cognition. This approach, cognitive tomography, takes a series of behavioural observations, each of which in itself may have very limited information content, and accumulates a detailed reconstruction of the internal model based on these observations. I also propose a set of stringent, quantifiable criteria which will be systematically applied at each step of the proposed work to rigorously assess the success of our approach. These methodological advances will allow us to track how the structured, task-general internal models that are so fundamental to humans' superior cognitive abilities, change over time as a result of decay, interference, and learning. We will apply cognitive tomography to a variety of experimental data sets, collected by our collaborators, in paradigms ranging from perceptual learning, through visual and motor structure learning, to social and concept learning. These analyses will allow us to conclusively and quantitatively test our central hypothesis that, rather than simply changing along a single 'memory strength' dimension, internal models typically change via complex and consistent patterns of transformations along multiple dimensions simultaneously. To facilitate the widespread use of our methods, we will release and support off-the-shelf usable implementations of our algorithms together with synthetic and real test data sets.
Max ERC Funding
1 179 462 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym COLLMOT
Project Complex structure and dynamics of collective motion
Researcher (PI) Tamás Vicsek
Host Institution (HI) EOTVOS LORAND TUDOMANYEGYETEM
Call Details Advanced Grant (AdG), PE3, ERC-2008-AdG
Summary Collective behaviour is a widespread phenomenon in nature and technology making it a very important subject to study in various contexts. The main goal we intend to achieve in our multidisciplinary research is the identification and documentation of new unifying principles describing the essential aspects of collective motion, being one of the most relevant and spectacular manifestations of collective behaviour. We shall carry out novel type of experiments, design models that are both simple and realistic enough to reproduce the observations and develop concepts for a better interpretation of the complexity of systems consisting of many organisms and such non-living objects as interacting robots. We plan to study systems ranging from cultures of migrating tissue cells through flocks of birds to collectively moving devices. The interrelation of these systems will be considered in order to deepen the understanding of the main patterns of group motion in both living and non-living systems by learning about the similar phenomena in the two domains of nature. Thus, we plan to understand the essential ingredients of flocking of birds by building collectively moving unmanned aerial vehicles while, in turn, high resolution spatiotemporal GPS data of pigeon flocks will be used to make helpful conclusions for the best designs for swarms of robots. In particular, we shall construct and build a set of vehicles that will be capable, for the first time, to exhibit flocking behaviour in the three-dimensional space. The methods we shall adopt will range from approaches used in statistical physics and network theory to various new techniques in cell biology and collective robotics. All this will be based on numerous prior results (both ours and others) published in leading interdisciplinary journals. The planned research will have the potential of leading to ground breaking results with significant implications in various fields of science and technology.
Summary
Collective behaviour is a widespread phenomenon in nature and technology making it a very important subject to study in various contexts. The main goal we intend to achieve in our multidisciplinary research is the identification and documentation of new unifying principles describing the essential aspects of collective motion, being one of the most relevant and spectacular manifestations of collective behaviour. We shall carry out novel type of experiments, design models that are both simple and realistic enough to reproduce the observations and develop concepts for a better interpretation of the complexity of systems consisting of many organisms and such non-living objects as interacting robots. We plan to study systems ranging from cultures of migrating tissue cells through flocks of birds to collectively moving devices. The interrelation of these systems will be considered in order to deepen the understanding of the main patterns of group motion in both living and non-living systems by learning about the similar phenomena in the two domains of nature. Thus, we plan to understand the essential ingredients of flocking of birds by building collectively moving unmanned aerial vehicles while, in turn, high resolution spatiotemporal GPS data of pigeon flocks will be used to make helpful conclusions for the best designs for swarms of robots. In particular, we shall construct and build a set of vehicles that will be capable, for the first time, to exhibit flocking behaviour in the three-dimensional space. The methods we shall adopt will range from approaches used in statistical physics and network theory to various new techniques in cell biology and collective robotics. All this will be based on numerous prior results (both ours and others) published in leading interdisciplinary journals. The planned research will have the potential of leading to ground breaking results with significant implications in various fields of science and technology.
Max ERC Funding
1 248 000 €
Duration
Start date: 2009-03-01, End date: 2015-02-28
Project acronym COOPAIRENT
Project Cooper pairs as a source of entanglement
Researcher (PI) Szabolcs Csonka
Host Institution (HI) BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary Entanglement and non-locality are spectacular fundamentals of quantum mechanics and basic resources of future quantum computation algorithms. Electronic entanglement has attracted increasing attention during the last years. The electron spin as a purely quantum mechanical two level system has been put forward as a promising candidate for storing quantum information in solid state. Recently, great progress has been achieved in manipulation and read-out of quantum dot based spin Qubits. However, electron spin is also suitable to transfer quantum information, since mobile electrons can be coherently transmitted in a solid state device preserving the spin information. Thus, electron spin could provide a general platform for on-chip quantum computation and information processing.
Although several theoretical concepts have been worked out to address spin entangled mobile electrons, the absence of an entangler device has not allowed their realization so far. The aim of the present proposal is to overcome this experimental challenge and explore the entanglement of spatially separated electron pairs. Superconductors provide a natural source of entanglement, because their ground-state is composed of Cooper pairs in a spin-singlet state. However, the splitting of the Cooper pairs into separate electrons has to be enforced, which has been very recently realized by the applicant in two quantum dot Y-junction. This Y-junction will be used as a central building block to split Cooper pairs in a controlled fashion and the non-local nature of spin and charge correlations will be addressed in various device configurations.
Our research project will lead to a fundamental understanding of the production, manipulation and detection of spin entangled mobile electron pairs, thus it will significantly extend the frontiers of quantum coherence and opens a new horizon in the field of on-chip quantum information technologies.
Summary
Entanglement and non-locality are spectacular fundamentals of quantum mechanics and basic resources of future quantum computation algorithms. Electronic entanglement has attracted increasing attention during the last years. The electron spin as a purely quantum mechanical two level system has been put forward as a promising candidate for storing quantum information in solid state. Recently, great progress has been achieved in manipulation and read-out of quantum dot based spin Qubits. However, electron spin is also suitable to transfer quantum information, since mobile electrons can be coherently transmitted in a solid state device preserving the spin information. Thus, electron spin could provide a general platform for on-chip quantum computation and information processing.
Although several theoretical concepts have been worked out to address spin entangled mobile electrons, the absence of an entangler device has not allowed their realization so far. The aim of the present proposal is to overcome this experimental challenge and explore the entanglement of spatially separated electron pairs. Superconductors provide a natural source of entanglement, because their ground-state is composed of Cooper pairs in a spin-singlet state. However, the splitting of the Cooper pairs into separate electrons has to be enforced, which has been very recently realized by the applicant in two quantum dot Y-junction. This Y-junction will be used as a central building block to split Cooper pairs in a controlled fashion and the non-local nature of spin and charge correlations will be addressed in various device configurations.
Our research project will lead to a fundamental understanding of the production, manipulation and detection of spin entangled mobile electron pairs, thus it will significantly extend the frontiers of quantum coherence and opens a new horizon in the field of on-chip quantum information technologies.
Max ERC Funding
1 496 112 €
Duration
Start date: 2011-02-01, End date: 2016-10-31
Project acronym GalNUC
Project Astrophysical Dynamics and Statistical Physics of Galactic Nuclei
Researcher (PI) Bence Kocsis
Host Institution (HI) EOTVOS LORAND TUDOMANYEGYETEM
Call Details Starting Grant (StG), PE9, ERC-2014-STG
Summary We address some of the major unsolved questions of galactic nuclei using methods of condensed matter physics. Galactic nuclei host a central supermassive black hole, a dense population of stars and compact objects, and in many cases a bright gaseous disk feeding the supermassive black hole. The observed stellar distribution exhibits both spherical and counterrotating disk-like structures. Existing theoretical models cannot convincingly explain the origin of the stellar disks. Is there also a “dark cusp” or “dark disk” of stellar mass black holes? Are there intermediate mass black holes in the Galactic center? We examine the statistical physics of galactic nuclei and their long term dynamical evolution. A star orbiting a supermassive black hole on an eccentric precessing orbit covers an axisymmetric annulus. The long-term gravitational interaction between such annuli is similar to the Coulomb interaction between axisymmetric molecules constituting a liquid crystal. We apply standard methods of condensed matter physics to examine these astrophysical systems. The observed disk and spherical structures represent isotropic-nematic phase transitions. We derive the phase space distribution and time-evolution of different stellar components including a population of black holes. Further, we investigate the interaction of a stellar cluster with a gaseous disk, if present. This leads to the formation of gaps, warps, and spiral waves in the disk, the redistribution of stellar objects, and possibly the formation of intermediate mass black holes. We explore the implications for electromagnetic and gravitational wave observatories. Dark disks of black holes could provide the most frequent source of gravitational waves for LIGO and VIRGO. These detectors will open a new window on the Universe; the proposed project will open a new field in gravitational wave astrophysics to interpret the sources. We also explore implications for electromagnetic observations.
Summary
We address some of the major unsolved questions of galactic nuclei using methods of condensed matter physics. Galactic nuclei host a central supermassive black hole, a dense population of stars and compact objects, and in many cases a bright gaseous disk feeding the supermassive black hole. The observed stellar distribution exhibits both spherical and counterrotating disk-like structures. Existing theoretical models cannot convincingly explain the origin of the stellar disks. Is there also a “dark cusp” or “dark disk” of stellar mass black holes? Are there intermediate mass black holes in the Galactic center? We examine the statistical physics of galactic nuclei and their long term dynamical evolution. A star orbiting a supermassive black hole on an eccentric precessing orbit covers an axisymmetric annulus. The long-term gravitational interaction between such annuli is similar to the Coulomb interaction between axisymmetric molecules constituting a liquid crystal. We apply standard methods of condensed matter physics to examine these astrophysical systems. The observed disk and spherical structures represent isotropic-nematic phase transitions. We derive the phase space distribution and time-evolution of different stellar components including a population of black holes. Further, we investigate the interaction of a stellar cluster with a gaseous disk, if present. This leads to the formation of gaps, warps, and spiral waves in the disk, the redistribution of stellar objects, and possibly the formation of intermediate mass black holes. We explore the implications for electromagnetic and gravitational wave observatories. Dark disks of black holes could provide the most frequent source of gravitational waves for LIGO and VIRGO. These detectors will open a new window on the Universe; the proposed project will open a new field in gravitational wave astrophysics to interpret the sources. We also explore implications for electromagnetic observations.
Max ERC Funding
1 511 436 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym HIGHACCTC
Project High-accuracy models in theoretical chemistry
Researcher (PI) Mihály Kállay
Host Institution (HI) BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Even today, quantum chemical calculations with experimental accuracy are only feasible for small molecules. This statement is especially true if the considered molecule is far from the equilibrium structure, where the overwhelming majority of quantum chemical models break down. The main purpose of this proposal is to develop new quantum chemical methods that are applicable to at least medium-sized molecules and simultaneously provide results sufficiently close to the experimental data and are capable of describing entire potential energy surfaces. The accuracy goal will be achieved through the reduction of the computational cost of high-precision quantum chemical calculations, which are currently practical for molecules of up to 15 atoms. The cost reduction will be accomplished principally by decreasing the number of numerical parameters to be optimized without sacrificing accuracy. To this end, the negligible parameters will be identified and dropped by adopting the corresponding techniques of computer science. The correct behavior of the models for distorted structures will be ensured by developing new approaches that use a linear combination of functions rather than a single function as a starting point for the description of electronic states. Since the programming work associated with the implementation of the proposed schemes is very complex, the project will rely on the automated programming tools previously developed by the proposer. In addition to the outlined challenging tasks, the proposal aims to implement several more straightforward objectives. In particular, the high-accuracy calculations will be extended to molecular properties that are presently not available. Furthermore, the developed methods will be applied to real-life problems, especially in the field of spectroscopy and atmospheric chemistry.
Summary
Even today, quantum chemical calculations with experimental accuracy are only feasible for small molecules. This statement is especially true if the considered molecule is far from the equilibrium structure, where the overwhelming majority of quantum chemical models break down. The main purpose of this proposal is to develop new quantum chemical methods that are applicable to at least medium-sized molecules and simultaneously provide results sufficiently close to the experimental data and are capable of describing entire potential energy surfaces. The accuracy goal will be achieved through the reduction of the computational cost of high-precision quantum chemical calculations, which are currently practical for molecules of up to 15 atoms. The cost reduction will be accomplished principally by decreasing the number of numerical parameters to be optimized without sacrificing accuracy. To this end, the negligible parameters will be identified and dropped by adopting the corresponding techniques of computer science. The correct behavior of the models for distorted structures will be ensured by developing new approaches that use a linear combination of functions rather than a single function as a starting point for the description of electronic states. Since the programming work associated with the implementation of the proposed schemes is very complex, the project will rely on the automated programming tools previously developed by the proposer. In addition to the outlined challenging tasks, the proposal aims to implement several more straightforward objectives. In particular, the high-accuracy calculations will be extended to molecular properties that are presently not available. Furthermore, the developed methods will be applied to real-life problems, especially in the field of spectroscopy and atmospheric chemistry.
Max ERC Funding
500 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym HybridSolarFuels
Project Efficient Photoelectrochemical Transformation of CO2 to Useful Fuels on Nanostructured Hybrid Electrodes
Researcher (PI) Csaba JANAKY
Host Institution (HI) Szegedi Tudomanyegyetem - Hungarian-Netherlands School of Educational Management
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Given that CO2 is a greenhouse gas, using the energy of sunlight to convert CO2 to transportation fuels (such as methanol) represents a value-added approach to the simultaneous generation of alternative fuels and environmental remediation of carbon emissions. Photoelectrochemistry has been proven to be a useful avenue for solar water splitting. CO2 reduction, however, is multi-electron in nature (e.g., 6 e- to methanol) with considerable kinetic barriers to electron transfer. It therefore requires the use of carefully designed electrode surfaces to accelerate e- transfer rates to levels that make practical sense. In addition, novel flow-cell configurations have to be designed to overcome mass transport limitations of this reaction.
We are going to design and assemble nanostructured hybrid materials to be simultaneously applied as both adsorber and cathode-material to photoelectrochemically convert CO2 to valuable liquid fuels. The three main goals of this project are to (i) gain fundamental understanding of morphological-, size-, and surface functional group effects on the photoelectrochemical (PEC) behavior at the nanoscale (ii) design and synthesize new functional hybrid materials for PEC CO2 reduction, (iii) develop flow-reactors for PEC CO2 reduction. Rationally designed hybrid nanostructures of large surface area p-type semiconductors (e.g., SiC, CuMO2, or CuPbI3) and N-containing conducting polymers (e.g., polyaniline-based custom designed polymers) will be responsible for: (i) higher photocurrents due to facile charge transfer and better light absorption (ii) higher selectivity towards the formation of liquid fuels due to the adsorption of CO2 on the photocathode (iii) better stability of the photocathode. The challenges are great, but the possible rewards are enormous: performing CO2 adsorption and reduction on the same system may lead to PEC cells which can be deployed directly at the source point of CO2, which would go well beyond the state-of-the-art.
Summary
Given that CO2 is a greenhouse gas, using the energy of sunlight to convert CO2 to transportation fuels (such as methanol) represents a value-added approach to the simultaneous generation of alternative fuels and environmental remediation of carbon emissions. Photoelectrochemistry has been proven to be a useful avenue for solar water splitting. CO2 reduction, however, is multi-electron in nature (e.g., 6 e- to methanol) with considerable kinetic barriers to electron transfer. It therefore requires the use of carefully designed electrode surfaces to accelerate e- transfer rates to levels that make practical sense. In addition, novel flow-cell configurations have to be designed to overcome mass transport limitations of this reaction.
We are going to design and assemble nanostructured hybrid materials to be simultaneously applied as both adsorber and cathode-material to photoelectrochemically convert CO2 to valuable liquid fuels. The three main goals of this project are to (i) gain fundamental understanding of morphological-, size-, and surface functional group effects on the photoelectrochemical (PEC) behavior at the nanoscale (ii) design and synthesize new functional hybrid materials for PEC CO2 reduction, (iii) develop flow-reactors for PEC CO2 reduction. Rationally designed hybrid nanostructures of large surface area p-type semiconductors (e.g., SiC, CuMO2, or CuPbI3) and N-containing conducting polymers (e.g., polyaniline-based custom designed polymers) will be responsible for: (i) higher photocurrents due to facile charge transfer and better light absorption (ii) higher selectivity towards the formation of liquid fuels due to the adsorption of CO2 on the photocathode (iii) better stability of the photocathode. The challenges are great, but the possible rewards are enormous: performing CO2 adsorption and reduction on the same system may lead to PEC cells which can be deployed directly at the source point of CO2, which would go well beyond the state-of-the-art.
Max ERC Funding
1 498 750 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym JAXPERTISE
Project Joint action expertise: Behavioral, cognitive, and neural mechanisms for joint action learning
Researcher (PI) Natalie Sebanz
Host Institution (HI) KOZEP-EUROPAI EGYETEM
Call Details Consolidator Grant (CoG), SH4, ERC-2013-CoG
Summary Human life is full of joint action and our achievements are, to a large extent, joint achievements that require the coordination of two or more individuals. Piano duets and tangos, but also complex technical and medical operations rely on and exist because of coordinated actions. In recent years, research has begun to identify the basic mechanisms of joint action. This work focused on simple tasks that can be performed together without practice. However, a striking aspect of human joint action is the expertise interaction partners acquire together. How people acquire joint expertise is still poorly understood. JAXPERTISE will break new ground by identifying the behavioural, cognitive, and neural mechanisms underlying the learning of joint action. Participating in joint activities is also a motor for individual development. Although this has long been recognized, the mechanisms underlying individual learning through engagement in joint activities remain to be spelled out from a cognitive science perspective. JAXPERTISE will make this crucial step by investigating how joint action affects source memory, semantic memory, and individual skill learning. Carefully designed experiments will optimize the balance between capturing relevant interpersonal phenomena and maximizing experimental control. The proposed studies employ behavioural measures, electroencephalography, and physiological measures. Studies tracing learning processes in novices will be complemented by studies analyzing expert performance in music and dance. New approaches, such as training participants to regulate each other’s brain activity, will lead to methodological breakthroughs. JAXPERTISE will generate basic scientific knowledge that will be relevant to a large number of different disciplines in the social sciences, cognitive sciences, and humanities. The insights gained in this project will have impact on the design of robot helpers and the development of social training interventions.
Summary
Human life is full of joint action and our achievements are, to a large extent, joint achievements that require the coordination of two or more individuals. Piano duets and tangos, but also complex technical and medical operations rely on and exist because of coordinated actions. In recent years, research has begun to identify the basic mechanisms of joint action. This work focused on simple tasks that can be performed together without practice. However, a striking aspect of human joint action is the expertise interaction partners acquire together. How people acquire joint expertise is still poorly understood. JAXPERTISE will break new ground by identifying the behavioural, cognitive, and neural mechanisms underlying the learning of joint action. Participating in joint activities is also a motor for individual development. Although this has long been recognized, the mechanisms underlying individual learning through engagement in joint activities remain to be spelled out from a cognitive science perspective. JAXPERTISE will make this crucial step by investigating how joint action affects source memory, semantic memory, and individual skill learning. Carefully designed experiments will optimize the balance between capturing relevant interpersonal phenomena and maximizing experimental control. The proposed studies employ behavioural measures, electroencephalography, and physiological measures. Studies tracing learning processes in novices will be complemented by studies analyzing expert performance in music and dance. New approaches, such as training participants to regulate each other’s brain activity, will lead to methodological breakthroughs. JAXPERTISE will generate basic scientific knowledge that will be relevant to a large number of different disciplines in the social sciences, cognitive sciences, and humanities. The insights gained in this project will have impact on the design of robot helpers and the development of social training interventions.
Max ERC Funding
1 992 331 €
Duration
Start date: 2014-08-01, End date: 2019-07-31
Project acronym NanoFab2D
Project Novel 2D quantum device concepts enabled by sub-nanometre precision nanofabrication
Researcher (PI) Levente Tapaszto
Host Institution (HI) MAGYAR TUDOMANYOS AKADEMIA ENERGIATUDOMANYI KUTATOKOZPONT
Call Details Starting Grant (StG), PE3, ERC-2015-STG
Summary In today’s electronics, the information storage and processing are performed by independent technologies. The information-processing is based on semiconductor (silicon) devices, while non-volatile data storage relies on ferromagnetic metals. Integrating these tasks on a single chip and within the same material technology would enable disruptively new device concepts opening the way towards ultra-high speed electronic circuits. Due to the unique versatility of its electronic and magnetic properties, graphene has a strong potential as a platform for the implementation of such devices. By engineering their structure at the atomic level, graphene nanostructures of metallic, semiconducting, as well as magnetic properties can be realized. Here we propose that the unmatched precision and full edge orientation control of our STM-based nanofabrication technique enables the reliable implementation of such graphene nanostructures, as well as their complex, functional networks. In particular, we propose to experimentally demonstrate the feasibility of (1) semiconductor graphene nanostructures based on the quantum confinement effect, (2) spin-based devices from graphene nanostructures with magnetic edges, as well as (3) novel operation principles based on the interplay of the electronic and spin-degrees of freedom. We propose to demonstrate the electrical control of magnetism in graphene nanostructures, as well as a novel switching mechanism for graphene field effect transistors induced by the transition between two magnetic edge configurations. Exploiting such novel operation mechanisms in graphene nanostructure engineered at the atomic scale is expected to lay the foundations of disruptively new device concepts combining electronic and spin-based mechanisms that can overcome some of the fundamental limitations of today’s electronics.
Summary
In today’s electronics, the information storage and processing are performed by independent technologies. The information-processing is based on semiconductor (silicon) devices, while non-volatile data storage relies on ferromagnetic metals. Integrating these tasks on a single chip and within the same material technology would enable disruptively new device concepts opening the way towards ultra-high speed electronic circuits. Due to the unique versatility of its electronic and magnetic properties, graphene has a strong potential as a platform for the implementation of such devices. By engineering their structure at the atomic level, graphene nanostructures of metallic, semiconducting, as well as magnetic properties can be realized. Here we propose that the unmatched precision and full edge orientation control of our STM-based nanofabrication technique enables the reliable implementation of such graphene nanostructures, as well as their complex, functional networks. In particular, we propose to experimentally demonstrate the feasibility of (1) semiconductor graphene nanostructures based on the quantum confinement effect, (2) spin-based devices from graphene nanostructures with magnetic edges, as well as (3) novel operation principles based on the interplay of the electronic and spin-degrees of freedom. We propose to demonstrate the electrical control of magnetism in graphene nanostructures, as well as a novel switching mechanism for graphene field effect transistors induced by the transition between two magnetic edge configurations. Exploiting such novel operation mechanisms in graphene nanostructure engineered at the atomic scale is expected to lay the foundations of disruptively new device concepts combining electronic and spin-based mechanisms that can overcome some of the fundamental limitations of today’s electronics.
Max ERC Funding
1 496 500 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym OSTREFCOM
Project Human infants' preparedness for relevance-guided learning through ostensive-referential communication
Researcher (PI) Gergely Csibra
Host Institution (HI) KOZEP-EUROPAI EGYETEM
Call Details Advanced Grant (AdG), SH4, ERC-2009-AdG
Summary A recent hypothesis (the theory of 'natural pedagogy') proposes that an important function of human ostensive-referential communication is to allow the transmission of generic (semantic) knowledge to others. The primary potential beneficiaries of such a communication system are children, who are always novices with respect to the culture they are born into. This proposal aims to explore whether and how human infants are prepared to learn from adults through communication, what cognitive and neural systems support such learning process, and how this social learning process changes infants' perception, interpretation and representation of the world. Beyond traditional behavioural methods, we plan to use eye-tracking, electrophysiological (EEG, ERP) and optical imaging (NIRS) techniques to get insights about the online processes of perception, attention and memory during, as well as the understanding of the social and physical world through, non-verbal communication. In particular, we seek to track (1) the early development of sensitivity to various ostensive-communicative signals, (2) their relation to the understanding of referential deictic gestures, which is essential to be engaged in triadic communication, (3) how these signals modulate what infants pay attention to and preserve in their memory about objects, and (4) how the functional understanding of human-made cultural artefacts (such as tools) is affected by their demonstrated use in ostensive-referential communicative settings. The new framework theory of natural pedagogy will also provide a novel perspective to elucidate how further cognitive systems, such as the understanding of actions or causal relations, as well as the processes of imitation and word learning contribute to cultural learning by communication.
Summary
A recent hypothesis (the theory of 'natural pedagogy') proposes that an important function of human ostensive-referential communication is to allow the transmission of generic (semantic) knowledge to others. The primary potential beneficiaries of such a communication system are children, who are always novices with respect to the culture they are born into. This proposal aims to explore whether and how human infants are prepared to learn from adults through communication, what cognitive and neural systems support such learning process, and how this social learning process changes infants' perception, interpretation and representation of the world. Beyond traditional behavioural methods, we plan to use eye-tracking, electrophysiological (EEG, ERP) and optical imaging (NIRS) techniques to get insights about the online processes of perception, attention and memory during, as well as the understanding of the social and physical world through, non-verbal communication. In particular, we seek to track (1) the early development of sensitivity to various ostensive-communicative signals, (2) their relation to the understanding of referential deictic gestures, which is essential to be engaged in triadic communication, (3) how these signals modulate what infants pay attention to and preserve in their memory about objects, and (4) how the functional understanding of human-made cultural artefacts (such as tools) is affected by their demonstrated use in ostensive-referential communicative settings. The new framework theory of natural pedagogy will also provide a novel perspective to elucidate how further cognitive systems, such as the understanding of actions or causal relations, as well as the processes of imitation and word learning contribute to cultural learning by communication.
Max ERC Funding
1 557 428 €
Duration
Start date: 2010-05-01, End date: 2015-10-31
Project acronym PARTNERS
Project Tracking and evaluating social relations and potential partners in infancy
Researcher (PI) Gergely Csibra
Host Institution (HI) KOZEP-EUROPAI EGYETEM
Call Details Advanced Grant (AdG), SH4, ERC-2016-ADG
Summary In order to navigate the social world, children must understand how social interactions unfold in their society. While many recent studies have investigated how children evaluate the roles that people play in everyday interactions and what inferences they draw from their observations, to date there is no unifying account for the conceptual repertoire and computational mechanisms used by infants to analyse their social environment. Taking a new theoretical perspective on this topic, we plan to study whether and how human infants and young children are able to infer the social relations that underlie observed interactions. The theoretical background of this approach is based on the combination of two proposals: (1) that actions are analysed in terms of the costs and benefits they produce to the actors and others affected, and (2) Alan Fiske’s theory, according to which human social relations could be classified into basic elementary forms. Using a variety of behavioural and neuroimaging techniques, we intend to investigate whether children infer the specific social relation that the intentional structure and the cost-benefit outcome of an observed interaction could reveal. More specifically, while resource transfer events (e.g., giving, taking) alter the distribution of goods among participants, they may also cue certain types of underlying relations that would ensure that all parties benefit, directly or indirectly, from the exchange on the long run (e.g., by reciprocity). We aim to establish whether drawing inferences to social relations enjoys the priority in the infant mind over attribution of social dispositions, whether infants predict the outcome of new, previously unobserved interactions, what information children use to choose partners for cooperative tasks, and how they track individuals across social contexts. This research will also provide a new perspective on the development of moral psychology by extending its domain from actions to social interactions.
Summary
In order to navigate the social world, children must understand how social interactions unfold in their society. While many recent studies have investigated how children evaluate the roles that people play in everyday interactions and what inferences they draw from their observations, to date there is no unifying account for the conceptual repertoire and computational mechanisms used by infants to analyse their social environment. Taking a new theoretical perspective on this topic, we plan to study whether and how human infants and young children are able to infer the social relations that underlie observed interactions. The theoretical background of this approach is based on the combination of two proposals: (1) that actions are analysed in terms of the costs and benefits they produce to the actors and others affected, and (2) Alan Fiske’s theory, according to which human social relations could be classified into basic elementary forms. Using a variety of behavioural and neuroimaging techniques, we intend to investigate whether children infer the specific social relation that the intentional structure and the cost-benefit outcome of an observed interaction could reveal. More specifically, while resource transfer events (e.g., giving, taking) alter the distribution of goods among participants, they may also cue certain types of underlying relations that would ensure that all parties benefit, directly or indirectly, from the exchange on the long run (e.g., by reciprocity). We aim to establish whether drawing inferences to social relations enjoys the priority in the infant mind over attribution of social dispositions, whether infants predict the outcome of new, previously unobserved interactions, what information children use to choose partners for cooperative tasks, and how they track individuals across social contexts. This research will also provide a new perspective on the development of moral psychology by extending its domain from actions to social interactions.
Max ERC Funding
2 498 748 €
Duration
Start date: 2018-01-01, End date: 2022-12-31