Project acronym ADMIRE
Project Atomic-scale Design of Majorana states and their Innovative Real-space Exploration
Researcher (PI) Roland WIESENDANGER
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Advanced Grant (AdG), PE3, ERC-2017-ADG
Summary Fault-tolerant topological quantum computation has become one of the most exciting research directions in modern condensed matter physics. As a key operation the braiding of non-Abelian anyons has been proposed theoretically. Such exotic quasiparticles can be realized as zero-energy Majorana bound states at the ends of one-dimensional magnetic nanowires in proximity to s-wave superconductors in the presence of high spin-orbit coupling. In contrast to previous attempts to realize such systems experimentally, based on the growth of semiconducting nanowires or the self-assembly of ferromagnetic nanowires on s-wave superconductors, we propose to design Majorana bound states in artificially constructed single-atom chains with non-collinear spin-textures on elemental superconducting substrates using scanning tunnelling microscope (STM)-based atom manipulation techniques. We would like to study at the atomic level the formation of Shiba bands as a result of hybridization of individual Shiba impurity states as well as the emergence of zero-energy Majorana bound states as a function of chain structure, length, and composition. Moreover, we will construct model-type platforms, such as T-junctions, rings, and more complex network structures with atomic-scale precision as a basis for demonstrating the manipulation and braiding of Majorana bound states. We will make use of sophisticated experimental techniques, such as spin-resolved scanning tunnelling spectroscopy (STS) at micro-eV energy resolution, scanning Josephson tunnelling spectroscopy, and multi-probe STS under well-defined ultra-high vacuum conditions, in order to directly probe the nature of the magnetic state of the atomic wires, the spin-polarization of the emergent Majorana states, as well as the spatial nature of the superconducting order parameter in real space. Finally, we will try to directly probe the quantum exchange statistics of non-Abelian anyons in these atomically precise fabricated model-type systems.
Summary
Fault-tolerant topological quantum computation has become one of the most exciting research directions in modern condensed matter physics. As a key operation the braiding of non-Abelian anyons has been proposed theoretically. Such exotic quasiparticles can be realized as zero-energy Majorana bound states at the ends of one-dimensional magnetic nanowires in proximity to s-wave superconductors in the presence of high spin-orbit coupling. In contrast to previous attempts to realize such systems experimentally, based on the growth of semiconducting nanowires or the self-assembly of ferromagnetic nanowires on s-wave superconductors, we propose to design Majorana bound states in artificially constructed single-atom chains with non-collinear spin-textures on elemental superconducting substrates using scanning tunnelling microscope (STM)-based atom manipulation techniques. We would like to study at the atomic level the formation of Shiba bands as a result of hybridization of individual Shiba impurity states as well as the emergence of zero-energy Majorana bound states as a function of chain structure, length, and composition. Moreover, we will construct model-type platforms, such as T-junctions, rings, and more complex network structures with atomic-scale precision as a basis for demonstrating the manipulation and braiding of Majorana bound states. We will make use of sophisticated experimental techniques, such as spin-resolved scanning tunnelling spectroscopy (STS) at micro-eV energy resolution, scanning Josephson tunnelling spectroscopy, and multi-probe STS under well-defined ultra-high vacuum conditions, in order to directly probe the nature of the magnetic state of the atomic wires, the spin-polarization of the emergent Majorana states, as well as the spatial nature of the superconducting order parameter in real space. Finally, we will try to directly probe the quantum exchange statistics of non-Abelian anyons in these atomically precise fabricated model-type systems.
Max ERC Funding
2 499 750 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym DarkSERS
Project Harvesting dark plasmons for surface-enhanced Raman scattering
Researcher (PI) Stephanie REICH
Host Institution (HI) FREIE UNIVERSITAET BERLIN
Call Details Consolidator Grant (CoG), PE3, ERC-2017-COG
Summary Metal nanostructures show pronounced electromagnetic resonances that arise from localized surface plasmons. These collective oscillations of free electrons in the metal give rise to confined electromagnetic near fields. Surface-enhanced spectroscopy exploits the near-field intensity to enhance the optical response of nanomaterials by many orders of magnitude.
Plasmons are classified as bright and dark depending on their interaction with far-field radiation. Bright modes are dipole-allowed excitations that absorb and scatter light. Dark modes are resonances of the electromagnetic near field only that do not couple to propagating modes. The suppressed photon emission of dark plasmons makes their resonances spectrally narrow and intense, which is highly desirable for enhanced spectroscopy as well as storing and transporting electromagnetic energy in nanostructures. The suppressed absorption, however, prevents us from routinely exploiting dark modes in nanoplasmonic systems.
I propose using spatially patterned light beams to excite dark plasmons with far-field radiation. By this I mean a beam profile with varying polarization and intensity that will be matched to the dark electromagnetic eigenmode. My approach activates the excitation of dark modes, while their radiative decay remains suppressed. I will show how to harvest dark modes for surface-enhanced Raman scattering providing superior intensity and an enhancement that is tailored to a specific vibration. Another feature of dark modes is their strong coupling to the vibrations of nanostructures. I will use this to amplify vibrational modes and, ultimately, induce phonon lasing.
The proposed research aims at an enabling technology that unlocks a novel range of nanoplasmonic properties. It will put dark plasmons on par with the well-recognized bright modes to be used in fundamental science and for applications in analytics, optoelectronic, and nanoimaging.
Summary
Metal nanostructures show pronounced electromagnetic resonances that arise from localized surface plasmons. These collective oscillations of free electrons in the metal give rise to confined electromagnetic near fields. Surface-enhanced spectroscopy exploits the near-field intensity to enhance the optical response of nanomaterials by many orders of magnitude.
Plasmons are classified as bright and dark depending on their interaction with far-field radiation. Bright modes are dipole-allowed excitations that absorb and scatter light. Dark modes are resonances of the electromagnetic near field only that do not couple to propagating modes. The suppressed photon emission of dark plasmons makes their resonances spectrally narrow and intense, which is highly desirable for enhanced spectroscopy as well as storing and transporting electromagnetic energy in nanostructures. The suppressed absorption, however, prevents us from routinely exploiting dark modes in nanoplasmonic systems.
I propose using spatially patterned light beams to excite dark plasmons with far-field radiation. By this I mean a beam profile with varying polarization and intensity that will be matched to the dark electromagnetic eigenmode. My approach activates the excitation of dark modes, while their radiative decay remains suppressed. I will show how to harvest dark modes for surface-enhanced Raman scattering providing superior intensity and an enhancement that is tailored to a specific vibration. Another feature of dark modes is their strong coupling to the vibrations of nanostructures. I will use this to amplify vibrational modes and, ultimately, induce phonon lasing.
The proposed research aims at an enabling technology that unlocks a novel range of nanoplasmonic properties. It will put dark plasmons on par with the well-recognized bright modes to be used in fundamental science and for applications in analytics, optoelectronic, and nanoimaging.
Max ERC Funding
2 299 506 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym DrySeasonPf
Project Dry season P. falciparum reservoir
Researcher (PI) Silvia VILAR PORTUGAL
Host Institution (HI) UNIVERSITATSKLINIKUM HEIDELBERG
Call Details Starting Grant (StG), LS6, ERC-2017-STG
Summary The mosquito-borne Plasmodium falciparum parasite is responsible for over 200 million malaria cases and nearly half a million deaths each year among African children. Dependent on Anopheles mosquito for transmission, the parasite faces a challenge during the dry season in the regions where rain seasonality limits vector availability for several months. While malaria cases are restricted to the wet season, clinically silent P. falciparum infections can persist through the dry season and are an important reservoir for transmission. Our preliminary data provides unequivocal evidence that P. falciparum modulates its transcription during the dry season, while the host immune response seems to be minimally affected, suggesting that the parasite has the ability to adapt to a vector-free environment for long periods of time. Understanding the mechanisms which allow the parasite to remain undetectable in absence of mosquito vector, and to restart transmission in the ensuing rainy season will reveal complex interactions between P. falciparum and its host. To that end I propose to: (i) Identify the Plasmodium signalling pathway(s) and metabolic profile associated with long-term maintenance of low parasitaemias during the dry season, (ii) Determine which PfEMP1 are expressed by parasites during the dry season and how effectively they are detected by the immune system, and (iii) Investigate the kinetics of P. falciparum gametocytogenesis, its ability to transmit during the dry season, and uncover sensing molecules and mechanisms of the disappearance and return of the mosquito vector Undoubtedly, results arising from the present multidisciplinary proposal will provide novel insights into the cell biology of dry season P. falciparum parasites, will increase our understanding of their interactions with their hosts and environment. Furthermore, it may benefit the international development agenda goals to design public health strategies to fight malaria.
Summary
The mosquito-borne Plasmodium falciparum parasite is responsible for over 200 million malaria cases and nearly half a million deaths each year among African children. Dependent on Anopheles mosquito for transmission, the parasite faces a challenge during the dry season in the regions where rain seasonality limits vector availability for several months. While malaria cases are restricted to the wet season, clinically silent P. falciparum infections can persist through the dry season and are an important reservoir for transmission. Our preliminary data provides unequivocal evidence that P. falciparum modulates its transcription during the dry season, while the host immune response seems to be minimally affected, suggesting that the parasite has the ability to adapt to a vector-free environment for long periods of time. Understanding the mechanisms which allow the parasite to remain undetectable in absence of mosquito vector, and to restart transmission in the ensuing rainy season will reveal complex interactions between P. falciparum and its host. To that end I propose to: (i) Identify the Plasmodium signalling pathway(s) and metabolic profile associated with long-term maintenance of low parasitaemias during the dry season, (ii) Determine which PfEMP1 are expressed by parasites during the dry season and how effectively they are detected by the immune system, and (iii) Investigate the kinetics of P. falciparum gametocytogenesis, its ability to transmit during the dry season, and uncover sensing molecules and mechanisms of the disappearance and return of the mosquito vector Undoubtedly, results arising from the present multidisciplinary proposal will provide novel insights into the cell biology of dry season P. falciparum parasites, will increase our understanding of their interactions with their hosts and environment. Furthermore, it may benefit the international development agenda goals to design public health strategies to fight malaria.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym DYNACQM
Project Dynamics of Correlated Quantum Matter: From Dynamical Probes to Novel Phases of Matter
Researcher (PI) Frank POLLMANN
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Consolidator Grant (CoG), PE3, ERC-2017-COG
Summary The interplay of quantum fluctuations and correlation effects in condensed matter can yield emergent phases with fascinating properties. Understanding these challenging quantum-many body systems is a problem of central importance in theoretical physics and the basis for the development of new materials for future technologies. Dynamical properties can provide characteristic fingerprints that allow to identify novel phases in newly synthesized materials and optical lattice systems. Moreover, when brought out of equilibrium, correlated quantum matter can exhibit dynamical phases that cannot occur in equilibrium settings.
DYNACQM will develop new theoretical and numerical frameworks to study dynamical properties of correlated quantum matter. On the theoretical side, we will investigate how many-body entanglement affects dynamical properties and predict universal features that can be measured in experiments. For example, dynamical spin correlation functions, measured in neutron scattering experiments, provide signatures of topologically ordered spin liquids. Furthermore, we will study the role of disorder and many-body localization in static as well as in driven quantum systems. On the numerical side, we will develop efficient tensor-product state based algorithms to simulate the dynamics of quantum many-body systems. These will allow us to study realistic microscopic model systems and to understand their dynamical properties.
Recent developments in the creation of synthetic quantum systems and advances in high resolution spectroscopy allow for an unprecedented precision with which the dynamics of quantum systems can be studied and manipulated experimentally. In this light, it is particularly important to theoretically understand the dynamics of correlated quantum systems and to make testable predictions. DYNACQM will bridge between the fundamental understanding of many-body entanglement in correlated quantum matter and experiments.
Summary
The interplay of quantum fluctuations and correlation effects in condensed matter can yield emergent phases with fascinating properties. Understanding these challenging quantum-many body systems is a problem of central importance in theoretical physics and the basis for the development of new materials for future technologies. Dynamical properties can provide characteristic fingerprints that allow to identify novel phases in newly synthesized materials and optical lattice systems. Moreover, when brought out of equilibrium, correlated quantum matter can exhibit dynamical phases that cannot occur in equilibrium settings.
DYNACQM will develop new theoretical and numerical frameworks to study dynamical properties of correlated quantum matter. On the theoretical side, we will investigate how many-body entanglement affects dynamical properties and predict universal features that can be measured in experiments. For example, dynamical spin correlation functions, measured in neutron scattering experiments, provide signatures of topologically ordered spin liquids. Furthermore, we will study the role of disorder and many-body localization in static as well as in driven quantum systems. On the numerical side, we will develop efficient tensor-product state based algorithms to simulate the dynamics of quantum many-body systems. These will allow us to study realistic microscopic model systems and to understand their dynamical properties.
Recent developments in the creation of synthetic quantum systems and advances in high resolution spectroscopy allow for an unprecedented precision with which the dynamics of quantum systems can be studied and manipulated experimentally. In this light, it is particularly important to theoretically understand the dynamics of correlated quantum systems and to make testable predictions. DYNACQM will bridge between the fundamental understanding of many-body entanglement in correlated quantum matter and experiments.
Max ERC Funding
1 998 750 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym ECHOE
Project An Electronic Corpus of Anonymous Homilies in Old English
Researcher (PI) Winfried RUDOLF
Host Institution (HI) GEORG-AUGUST-UNIVERSITAT GOTTINGENSTIFTUNG OFFENTLICHEN RECHTS
Call Details Consolidator Grant (CoG), SH5, ERC-2017-COG
Summary Anonymous Old English preaching texts, written and copied between the ninth and late twelfth centuries, survive in ca. 350 versions in ca. 55 manuscripts. They represent the most comprehensive vernacular preaching corpus of medieval Europe before 1200 AD and depend almost entirely on a wide variety of Latin sources from all over the continent. This project will revolutionise scholarly work on Old English anonymous homilies by tracing, visualising, and studying their highly complex material and textual transmission in full. It will recover, unite, and systematise all surviving Old English anonymous homilies (ca. 500,000 words) in an online and interactive digital corpus that brings to the fore the individual manuscript version and all its revisional layers from before 1200. The project counters traditional editorial models of collation by exposing substantial textual difference and by analysing compositional and variational strategies. This will enable users for the first time to comprehensively study Old English anonymous homilies as living texts through the centuries. ECHOE will a) introduce a new taxonomy for the homiletic corpus, b) identify the closest Latin and Old English sources, c) identify the compositional structure of mobile textual units between related versions of the corpus, d) mark up decisive palaeographical features, idiosyncratic diction, formulas, themes, and genres, and e) assess the historical, social, and theological dimension of revisions and the roles of individual revisers in the making of English Christianity. The digital corpus will reveal for the first time the complex network of interrelated versions and allow for a swift in-depth comparison of parallels and their sources. It will further allow modern audiences to explore the chronological as well as geographical relations between Old English homilies and their European sources, and will open up new perspectives on the identity of authors, revisers, users, and audiences.
Summary
Anonymous Old English preaching texts, written and copied between the ninth and late twelfth centuries, survive in ca. 350 versions in ca. 55 manuscripts. They represent the most comprehensive vernacular preaching corpus of medieval Europe before 1200 AD and depend almost entirely on a wide variety of Latin sources from all over the continent. This project will revolutionise scholarly work on Old English anonymous homilies by tracing, visualising, and studying their highly complex material and textual transmission in full. It will recover, unite, and systematise all surviving Old English anonymous homilies (ca. 500,000 words) in an online and interactive digital corpus that brings to the fore the individual manuscript version and all its revisional layers from before 1200. The project counters traditional editorial models of collation by exposing substantial textual difference and by analysing compositional and variational strategies. This will enable users for the first time to comprehensively study Old English anonymous homilies as living texts through the centuries. ECHOE will a) introduce a new taxonomy for the homiletic corpus, b) identify the closest Latin and Old English sources, c) identify the compositional structure of mobile textual units between related versions of the corpus, d) mark up decisive palaeographical features, idiosyncratic diction, formulas, themes, and genres, and e) assess the historical, social, and theological dimension of revisions and the roles of individual revisers in the making of English Christianity. The digital corpus will reveal for the first time the complex network of interrelated versions and allow for a swift in-depth comparison of parallels and their sources. It will further allow modern audiences to explore the chronological as well as geographical relations between Old English homilies and their European sources, and will open up new perspectives on the identity of authors, revisers, users, and audiences.
Max ERC Funding
1 951 250 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym EvoTrap
Project Mechanisms to emerge and replicate the first sequence information of life in geothermal microfluidics of early Earth
Researcher (PI) Dieter BRAUN
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE3, ERC-2017-ADG
Summary Can we reconstruct in the lab the onset of molecular evolution? To trigger the autonomous emergence of the first oligonucleotide sequences, we will explore non-equilibrium boundary conditions and selective mechanisms to host the fast progressing prebiotic replication chemistry of oligonucleotides. We will explore novel water-fog microfluidic settings to boost the replication and selection of the first RNA sequences. The findings aims to enable the creation of primitive life forms in the lab, starting from simple molecules in heated rock pores of early Earth.
Autonomous replication and metabolism. We will expand our thermal gradient expertise to host three replication chemistries. Using 3D printed microfluidics, we will mimick conditions in pores on early Earth. Thermophoresis will select long over short strands, accumulate small food molecules and strands will be separated by thermal convection and novel mechanisms in water-air systems. With respective collaboration partners, we will drive the replication from RNA ribozymes (Joyce), base-by-base RNA replication (Szostak) and EDC activated DNA ligation (Richert) and monitor the results with Illumina sequencing and TOF LC/MS. The ligation will be also explored with Taq ligase since we expect a cooperative replication dynamics with hypercycle-like characteristics. Thermal gradients will drive early metabolism to boost RNA polymerization and select ATP over ADP to drive modern biochemistry.
Sequence selection in low pressure water-air systems. Oligonucleotides bind to water-air interfaces. and can be accumulated 800-fold by heat-driven capillary flows. Based on this, we expect interesting selection effects under microfluidic boiling, fog formation and recondensation dynamics. The settings are tested for sequence selective hydro-gelation of RNA/DNA and enhanced replication chemistry. The temperature of boiling water will be limited below 60°C by using air pressures <200mbar, mimicking very early Earth conditions.
Summary
Can we reconstruct in the lab the onset of molecular evolution? To trigger the autonomous emergence of the first oligonucleotide sequences, we will explore non-equilibrium boundary conditions and selective mechanisms to host the fast progressing prebiotic replication chemistry of oligonucleotides. We will explore novel water-fog microfluidic settings to boost the replication and selection of the first RNA sequences. The findings aims to enable the creation of primitive life forms in the lab, starting from simple molecules in heated rock pores of early Earth.
Autonomous replication and metabolism. We will expand our thermal gradient expertise to host three replication chemistries. Using 3D printed microfluidics, we will mimick conditions in pores on early Earth. Thermophoresis will select long over short strands, accumulate small food molecules and strands will be separated by thermal convection and novel mechanisms in water-air systems. With respective collaboration partners, we will drive the replication from RNA ribozymes (Joyce), base-by-base RNA replication (Szostak) and EDC activated DNA ligation (Richert) and monitor the results with Illumina sequencing and TOF LC/MS. The ligation will be also explored with Taq ligase since we expect a cooperative replication dynamics with hypercycle-like characteristics. Thermal gradients will drive early metabolism to boost RNA polymerization and select ATP over ADP to drive modern biochemistry.
Sequence selection in low pressure water-air systems. Oligonucleotides bind to water-air interfaces. and can be accumulated 800-fold by heat-driven capillary flows. Based on this, we expect interesting selection effects under microfluidic boiling, fog formation and recondensation dynamics. The settings are tested for sequence selective hydro-gelation of RNA/DNA and enhanced replication chemistry. The temperature of boiling water will be limited below 60°C by using air pressures <200mbar, mimicking very early Earth conditions.
Max ERC Funding
2 364 500 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym ExQuiSid
Project Extreme Quantum Matter in Solids
Researcher (PI) Christian PFLEIDERER
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE3, ERC-2017-ADG
Summary Quantum stochastic processes in solids, representing many-body systems par excellence, are believed to lead to extreme forms of quantum entanglement and non-local correlations (extreme quantum matter), that offer a well-defined starting point for an understanding of a wide range of anomalous materials properties, as well as emergent electronic phases such as magnetically mediated superconductivity or partial spin and charge order. While overwhelming experimental evidence clearly suggests a breakdown of traditional concepts such as well-defined quasi-particle excitations, the striking present-day disagreement between experiment and theory may be traced to the lack of experimental information on the spectrum of quantum stochastic many-body processes in solids in the low-energy and low-temperature limit close to and far from equilibrium.
ExQuiSid will advance the understanding of the nature of extreme quantum matter in the most extensively studied model systems, notably simple magnetic materials (insulators and metals) tuned through a quantum phase transition. For the proposed studies my group has implemented a new generation of methods covering for the first time neutron spectroscopy with an unprecedented nano-eV resolution even under large magnetic fields, transverse-field vector magnetometry, calorimetry and transport down to milli-Kelvin temperatures, and, ultra-high purity single-crystal growth combined with advanced materials characterisation.
ExQuiSid will (i) solve long-standing mysteries in model-systems of extreme quantum phase transitions, (ii) experimentally enable and permit pioneering studies on the creation, nature and classification of non-equilibrium quantum matter in solids at ultra-low energies and temperatures, and (iii) experimentally enable and permit pioneering studies of quantum matter driven periodically out of equilibrium to identify dynamical quantum instabilities and dynamical quantum phases such as many body localisation.
Summary
Quantum stochastic processes in solids, representing many-body systems par excellence, are believed to lead to extreme forms of quantum entanglement and non-local correlations (extreme quantum matter), that offer a well-defined starting point for an understanding of a wide range of anomalous materials properties, as well as emergent electronic phases such as magnetically mediated superconductivity or partial spin and charge order. While overwhelming experimental evidence clearly suggests a breakdown of traditional concepts such as well-defined quasi-particle excitations, the striking present-day disagreement between experiment and theory may be traced to the lack of experimental information on the spectrum of quantum stochastic many-body processes in solids in the low-energy and low-temperature limit close to and far from equilibrium.
ExQuiSid will advance the understanding of the nature of extreme quantum matter in the most extensively studied model systems, notably simple magnetic materials (insulators and metals) tuned through a quantum phase transition. For the proposed studies my group has implemented a new generation of methods covering for the first time neutron spectroscopy with an unprecedented nano-eV resolution even under large magnetic fields, transverse-field vector magnetometry, calorimetry and transport down to milli-Kelvin temperatures, and, ultra-high purity single-crystal growth combined with advanced materials characterisation.
ExQuiSid will (i) solve long-standing mysteries in model-systems of extreme quantum phase transitions, (ii) experimentally enable and permit pioneering studies on the creation, nature and classification of non-equilibrium quantum matter in solids at ultra-low energies and temperatures, and (iii) experimentally enable and permit pioneering studies of quantum matter driven periodically out of equilibrium to identify dynamical quantum instabilities and dynamical quantum phases such as many body localisation.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym GB-CORRELATE
Project Correlating the State and Properties of Grain Boundaries
Researcher (PI) Gerhard Dehm
Host Institution (HI) MAX PLANCK INSTITUT FUR EISENFORSCHUNG GMBH
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary Phase diagrams revolutionized materials development by predicting the conditions for phase stability and transformations, providing a thermodynamic concept for materials design including synthesis, processing and application. Similarly, surface science has established thermodynamic concepts for surface states and transitions, but the analogon for grain boundaries (GB) is just emerging due to their complexity. GB are among the most prominent microstructure defects separating grains in polycrystalline materials spanning a multidimensional space. Unlocking control of GB phases and their transitions will enable a new level of materials design allowing to tailor functional & structural properties. This proposal targets on (i) predicting and resolving GB phase transitions, (ii) establishing guidelines for GB phase transitions and GB phase diagrams, (iii) correlating GB phase transitions with property changes, (iv) providing compositional-structural design criteria for GB engineering, (v) which will be tested by demonstrators with tailored GB strength and GB mobility. GB-CORRELATE focusses on Cu and Al alloys in form of thin films as this allows to implement a hierarchical strategy expanding from individual special GB to GB networks and a transfer of the GB concepts to thin film applications.
The infinite number of GB requires also statistical approaches; combinatorial thin film deposition will be used to establish Cu and Al alloy films with substitutional (Ag, Al, Cu, Si, Ni) and interstitial (B) solute elements. High throughput grain growth experiments will be employed to detect GB phase transitions by changes in GB mobility. Advanced atomic resolved correlated microscopy and spectroscopy supported by powerful computational approaches will identify GB phases and correlate them with transport properties. Sophisticated in-situ micromechanical studies lay the ground for interlinking GB phases and GB mechanics, finally harvested to create mechanically exceptional materials.
Summary
Phase diagrams revolutionized materials development by predicting the conditions for phase stability and transformations, providing a thermodynamic concept for materials design including synthesis, processing and application. Similarly, surface science has established thermodynamic concepts for surface states and transitions, but the analogon for grain boundaries (GB) is just emerging due to their complexity. GB are among the most prominent microstructure defects separating grains in polycrystalline materials spanning a multidimensional space. Unlocking control of GB phases and their transitions will enable a new level of materials design allowing to tailor functional & structural properties. This proposal targets on (i) predicting and resolving GB phase transitions, (ii) establishing guidelines for GB phase transitions and GB phase diagrams, (iii) correlating GB phase transitions with property changes, (iv) providing compositional-structural design criteria for GB engineering, (v) which will be tested by demonstrators with tailored GB strength and GB mobility. GB-CORRELATE focusses on Cu and Al alloys in form of thin films as this allows to implement a hierarchical strategy expanding from individual special GB to GB networks and a transfer of the GB concepts to thin film applications.
The infinite number of GB requires also statistical approaches; combinatorial thin film deposition will be used to establish Cu and Al alloy films with substitutional (Ag, Al, Cu, Si, Ni) and interstitial (B) solute elements. High throughput grain growth experiments will be employed to detect GB phase transitions by changes in GB mobility. Advanced atomic resolved correlated microscopy and spectroscopy supported by powerful computational approaches will identify GB phases and correlate them with transport properties. Sophisticated in-situ micromechanical studies lay the ground for interlinking GB phases and GB mechanics, finally harvested to create mechanically exceptional materials.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym HOLOMAN
Project Holographic acoustic assembly and manipulation
Researcher (PI) Peer Fischer
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary Acoustic waves exert forces when they interact with matter. Sound, and in particular ultrasound, which has a wavelength of a few hundred microns in water, is a benign and versatile tool, that has been successfully used to manipulate, trap and levitate microparticles and cells. The acoustic contrast between the material and the medium, and the spatial variation of the ultrasound field determine the interaction. Resonators and arrays of a few hundred transducers have thus far been used to generate the sound fields, but the former only yields highly symmetrical pressure patterns, and the latter cannot be scaled to achieve complex fields.
Our radically new approach uses a finely contoured 3D printed acoustic hologram to generate pressure fields with orders of magnitude higher complexity than what has been possible to date. The acoustic hologram technology is a route towards truly sophisticated and 3D sound fields. This project will research the necessary computational and experimental tools to generate designed 3D ultrasound fields. We will investigate ways to use acoustic holograms for rapid manufacturing, the controlled manipulation of microrobots, and the assembly of cells. The 3D pressure fields promise the assembly and fabrication of an entire 3D object in “one shot”, something that has not been realized to date. We will also study the formation of 3D cellular assemblies, and more realistic 3D tumour models. This project will develop the technology, materials, processes, and understanding needed for the generation and use of sophisticated 3D ultrasound fields, which opens up entirely new possibilities in physical acoustics and the manipulation of matter with sound.
Summary
Acoustic waves exert forces when they interact with matter. Sound, and in particular ultrasound, which has a wavelength of a few hundred microns in water, is a benign and versatile tool, that has been successfully used to manipulate, trap and levitate microparticles and cells. The acoustic contrast between the material and the medium, and the spatial variation of the ultrasound field determine the interaction. Resonators and arrays of a few hundred transducers have thus far been used to generate the sound fields, but the former only yields highly symmetrical pressure patterns, and the latter cannot be scaled to achieve complex fields.
Our radically new approach uses a finely contoured 3D printed acoustic hologram to generate pressure fields with orders of magnitude higher complexity than what has been possible to date. The acoustic hologram technology is a route towards truly sophisticated and 3D sound fields. This project will research the necessary computational and experimental tools to generate designed 3D ultrasound fields. We will investigate ways to use acoustic holograms for rapid manufacturing, the controlled manipulation of microrobots, and the assembly of cells. The 3D pressure fields promise the assembly and fabrication of an entire 3D object in “one shot”, something that has not been realized to date. We will also study the formation of 3D cellular assemblies, and more realistic 3D tumour models. This project will develop the technology, materials, processes, and understanding needed for the generation and use of sophisticated 3D ultrasound fields, which opens up entirely new possibilities in physical acoustics and the manipulation of matter with sound.
Max ERC Funding
2 420 125 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ImageToSim
Project Multiscale Imaging-through-analysis Methods for Autonomous Patient-specific Simulation Workflows
Researcher (PI) Dominik SCHILLINGER
Host Institution (HI) GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Due to the intricate process of transferring diagnostic imaging data into patient-specific models, simulation workflows involving complex physiological geometries largely rely on the manual intervention of specially trained analysts. This constitutes a significant roadblock for a wider adoption of predictive simulation in clinical practice, as the associated cost and response times are incompatible with tight budgets and urgent decision-making. Therefore, a new generation of imaging-through-analysis tools is needed that can be run autonomously in hospitals and medical clinics. The overarching goal of ImageToSim is to make substantial progress towards automation by casting image processing, geometry segmentation and physiology-based simulation into a unifying finite element framework that will overcome the dependence of state-of-the-art procedures on manual intervention. In this context, ImageToSim will fill fundamental technology gaps by developing a series of novel comprehensive variational multiscale methodologies that address robust active contour segmentation, upscaling of voxel-scale parameters, transition of micro- to macro-scale failure and flow through vascular networks of largely varying length scales. Focusing on osteoporotic bone fracture and liver perfusion, ImageToSim will integrate the newly developed techniques into an imaging-through-analysis prototype that will come significantly closer to automated operation than any existing framework. Tested and validated in collaboration with clinicians, it will showcase pathways to new simulation-based clinical protocols in osteoporosis prevention and liver surgery planning. Beyond its technical scope, ImageToSim will help establish a new paradigm for patient-specific simulation research that emphasizes full automation as a key objective, accelerating the much-needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, and person-centered.
Summary
Due to the intricate process of transferring diagnostic imaging data into patient-specific models, simulation workflows involving complex physiological geometries largely rely on the manual intervention of specially trained analysts. This constitutes a significant roadblock for a wider adoption of predictive simulation in clinical practice, as the associated cost and response times are incompatible with tight budgets and urgent decision-making. Therefore, a new generation of imaging-through-analysis tools is needed that can be run autonomously in hospitals and medical clinics. The overarching goal of ImageToSim is to make substantial progress towards automation by casting image processing, geometry segmentation and physiology-based simulation into a unifying finite element framework that will overcome the dependence of state-of-the-art procedures on manual intervention. In this context, ImageToSim will fill fundamental technology gaps by developing a series of novel comprehensive variational multiscale methodologies that address robust active contour segmentation, upscaling of voxel-scale parameters, transition of micro- to macro-scale failure and flow through vascular networks of largely varying length scales. Focusing on osteoporotic bone fracture and liver perfusion, ImageToSim will integrate the newly developed techniques into an imaging-through-analysis prototype that will come significantly closer to automated operation than any existing framework. Tested and validated in collaboration with clinicians, it will showcase pathways to new simulation-based clinical protocols in osteoporosis prevention and liver surgery planning. Beyond its technical scope, ImageToSim will help establish a new paradigm for patient-specific simulation research that emphasizes full automation as a key objective, accelerating the much-needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, and person-centered.
Max ERC Funding
1 555 403 €
Duration
Start date: 2019-01-01, End date: 2023-12-31