Project acronym AFIRMATIVE
Project Acoustic-Flow Interaction Models for Advancing Thermoacoustic Instability prediction in Very low Emission combustors
Researcher (PI) Aimee MORGANS
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary Gas turbines are an essential ingredient in the long-term energy and aviation mix. They are flexible, offer fast start-up and the ability to burn renewable-generated fuels. However, they generate NOx emissions, which cause air pollution and damage human health, and reducing these is an air quality imperative. A major hurdle to this is that lean premixed combustion, essential for further NOx emission reductions, is highly susceptible to thermoacoustic instability. This is caused by a two-way coupling between unsteady combustion and acoustic waves, and the resulting large pressure oscillations can cause severe mechanical damage. Computational methods for predicting thermoacoustic instability, fast and accurate enough to be used as part of the industrial design process, are urgently needed.
The only computational methods with the prospect of being fast enough are those based on coupled treatment of the acoustic waves and unsteady combustion. These exploit the amenity of the acoustic waves to analytical modelling, allowing costly simulations to be directed only at the more complex flame. They show real promise: my group recently demonstrated the first accurate coupled predictions for lab-scale combustors. The method does not yet extend to industrial combustors, the more complex flow-fields in these rendering current acoustic models overly-simplistic. I propose to comprehensively overhaul acoustic models across the entirety of the combustor, accounting for real and important acoustic-flow interactions. These new models will offer the breakthrough prospect of extending efficient, accurate predictive capability to industrial combustors, which has a real chance of facilitating future, instability free, very low NOx gas turbines.
Summary
Gas turbines are an essential ingredient in the long-term energy and aviation mix. They are flexible, offer fast start-up and the ability to burn renewable-generated fuels. However, they generate NOx emissions, which cause air pollution and damage human health, and reducing these is an air quality imperative. A major hurdle to this is that lean premixed combustion, essential for further NOx emission reductions, is highly susceptible to thermoacoustic instability. This is caused by a two-way coupling between unsteady combustion and acoustic waves, and the resulting large pressure oscillations can cause severe mechanical damage. Computational methods for predicting thermoacoustic instability, fast and accurate enough to be used as part of the industrial design process, are urgently needed.
The only computational methods with the prospect of being fast enough are those based on coupled treatment of the acoustic waves and unsteady combustion. These exploit the amenity of the acoustic waves to analytical modelling, allowing costly simulations to be directed only at the more complex flame. They show real promise: my group recently demonstrated the first accurate coupled predictions for lab-scale combustors. The method does not yet extend to industrial combustors, the more complex flow-fields in these rendering current acoustic models overly-simplistic. I propose to comprehensively overhaul acoustic models across the entirety of the combustor, accounting for real and important acoustic-flow interactions. These new models will offer the breakthrough prospect of extending efficient, accurate predictive capability to industrial combustors, which has a real chance of facilitating future, instability free, very low NOx gas turbines.
Max ERC Funding
1 985 288 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym AMBH
Project Ancient Music Beyond Hellenisation
Researcher (PI) Stefan HAGEL
Host Institution (HI) OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN
Call Details Advanced Grant (AdG), SH5, ERC-2017-ADG
Summary From medieval times, Arabic as well as European music was analysed in terms that were inherited from Classical Antiquity and had thus developed in a very different music culture. In spite of recent breakthroughs in the understanding of the latter, whose technicalities we access not only through texts and iconography, but also through instrument finds and surviving notated melodies, its relation to music traditions known from later periods and different places is almost uncharted territory.
The present project explores relations between Hellenic/Hellenistic music as pervaded the theatres and concert halls throughout and beyond the Roman empire, Near Eastern traditions – from the diatonic system emerging from cuneiform sources to the flourishing musical world of the caliphates – and, as far as possible, African musical life south of Egypt as well – a region that maintained close ties both with the Hellenised culture of its northern neighbours and with the Arabian Peninsula.
On the one hand, this demands collaboration between Classical Philology and Arabic Studies, extending methods recently developed within music archaeological research related to the Classical Mediterranean. Arabic writings need to be examined in close reading, using recent insights into the interplay between ancient music theory and practice, in order to segregate the influence of Greek thinking from ideas and facts that must relate to contemporaneous ‘Arabic’ music-making. In this way we hope better to define the relation of this tradition to the ‘Classical world’, potentially breaking free of Orientalising bias informing modern views. On the other hand, the study and reconstruction, virtual and material, of wind instruments of Hellenistic pedigree but found outside the confinements of the Hellenistic ‘heartlands’ may provide evidence of ‘foreign’ tonality employed in those regions – specifically the royal city of Meroë in modern Sudan and the Oxus Temple in modern Tajikistan.
Summary
From medieval times, Arabic as well as European music was analysed in terms that were inherited from Classical Antiquity and had thus developed in a very different music culture. In spite of recent breakthroughs in the understanding of the latter, whose technicalities we access not only through texts and iconography, but also through instrument finds and surviving notated melodies, its relation to music traditions known from later periods and different places is almost uncharted territory.
The present project explores relations between Hellenic/Hellenistic music as pervaded the theatres and concert halls throughout and beyond the Roman empire, Near Eastern traditions – from the diatonic system emerging from cuneiform sources to the flourishing musical world of the caliphates – and, as far as possible, African musical life south of Egypt as well – a region that maintained close ties both with the Hellenised culture of its northern neighbours and with the Arabian Peninsula.
On the one hand, this demands collaboration between Classical Philology and Arabic Studies, extending methods recently developed within music archaeological research related to the Classical Mediterranean. Arabic writings need to be examined in close reading, using recent insights into the interplay between ancient music theory and practice, in order to segregate the influence of Greek thinking from ideas and facts that must relate to contemporaneous ‘Arabic’ music-making. In this way we hope better to define the relation of this tradition to the ‘Classical world’, potentially breaking free of Orientalising bias informing modern views. On the other hand, the study and reconstruction, virtual and material, of wind instruments of Hellenistic pedigree but found outside the confinements of the Hellenistic ‘heartlands’ may provide evidence of ‘foreign’ tonality employed in those regions – specifically the royal city of Meroë in modern Sudan and the Oxus Temple in modern Tajikistan.
Max ERC Funding
775 959 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym APRA
Project Active Polymers for Renewable Functional Actuators
Researcher (PI) Eugene TERENTJEV
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary The idea of mechanical actuator based on intrinsic material properties of liquid-crystalline elastomers (rather than complex engineering of interacting components) has been understood for 20+ years. The remarkable characteristics of LCE actuation (fully reversible action; large-amplitude, with a stroke of 5%-300%; stress-strain-speed response almost exactly matching the human muscle) make it highly attractive in biomedical engineering, robotics, smart textiles, and other fields. Yet, there is a profound difficulty (bottleneck), which remains the reason why this concept has not found its way into any practical devices & applications. LCE actuation requires alignment (monodomain structure) of the local anisotropy in the permanently crosslinked polymer network - which has been impossible to achieve in any useful large-scale configuration except the flat film, due to the unavoidable restrictions of two competing processes: orientational alignment and network crosslinking.
Recently, we made a breakthrough, developing LCE vitrimers (polymer networks covalently crosslinked by a bond-exchange reaction). Vitrimers are much more stable than other transient elastomer networks, allow easy thermal re-moulding (making the material fully renewable), and permit molding of complex shapes with intricate local alignment (which are impossible in traditional elastomers). This project will bridge from the concept to technology, tuning the material design for robust nematic LCE vitrimers, imparting photo-actuation capacity with a controlled wavelength, and finally utilising them in practical-engineering actuator applications where the reversible mechanical action is stimulated by light, solvent exposure, or more traditionally - heat. These applications include (but not limited to): continuous spinning light-driven motor, tactile dynamic Braille display, capillary pump and toggle flow switch for microfuidics, active textile fibre, and heliotracking filament that always points at the Sun.
Summary
The idea of mechanical actuator based on intrinsic material properties of liquid-crystalline elastomers (rather than complex engineering of interacting components) has been understood for 20+ years. The remarkable characteristics of LCE actuation (fully reversible action; large-amplitude, with a stroke of 5%-300%; stress-strain-speed response almost exactly matching the human muscle) make it highly attractive in biomedical engineering, robotics, smart textiles, and other fields. Yet, there is a profound difficulty (bottleneck), which remains the reason why this concept has not found its way into any practical devices & applications. LCE actuation requires alignment (monodomain structure) of the local anisotropy in the permanently crosslinked polymer network - which has been impossible to achieve in any useful large-scale configuration except the flat film, due to the unavoidable restrictions of two competing processes: orientational alignment and network crosslinking.
Recently, we made a breakthrough, developing LCE vitrimers (polymer networks covalently crosslinked by a bond-exchange reaction). Vitrimers are much more stable than other transient elastomer networks, allow easy thermal re-moulding (making the material fully renewable), and permit molding of complex shapes with intricate local alignment (which are impossible in traditional elastomers). This project will bridge from the concept to technology, tuning the material design for robust nematic LCE vitrimers, imparting photo-actuation capacity with a controlled wavelength, and finally utilising them in practical-engineering actuator applications where the reversible mechanical action is stimulated by light, solvent exposure, or more traditionally - heat. These applications include (but not limited to): continuous spinning light-driven motor, tactile dynamic Braille display, capillary pump and toggle flow switch for microfuidics, active textile fibre, and heliotracking filament that always points at the Sun.
Max ERC Funding
2 012 136 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym ArsNova
Project European Ars Nova: Multilingual Poetry and Polyphonic Song in the Late Middle Ages
Researcher (PI) Maria Sofia LANNUTTI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI FIRENZE
Call Details Advanced Grant (AdG), SH5, ERC-2017-ADG
Summary Dante Alighieri at the dawn of the 1300s, as well as Eustache Deschamps almost a century later, conceived poetry as music in itself. But what happens with poetry when it is involved in the complex architecture of polyphony? The aim of this project is to study for the first time the corpus of 14th- and early 15th-century poetry set to music by Ars Nova polyphonists (more than 1200 texts). This repertoire gathers different poetic and musical traditions, as shown by the multilingual anthologies copied during the last years of the Schism. The choice of this corpus is motivated by two primary goals: a) to offer a new interpretation of its meaning and function in the cultural and historical context, one that may be then applied to the rest of coeval European lyric poetry; b) to overcome current disciplinary divisions in order to generate a new methodological balance between the project’s two main fields of interest (Comparative Literature / Musicology). Most Ars Nova polyphonists were directly associated with religious institutions. In many texts, the language of courtly love expresses the values of caritas, the theological virtue that guides wise rulers and leads them to desire the common good. Thus, the poetic figure of the lover becomes a metaphor for the political man, and love poetry can be used as a device for diplomacy, as well as for personal and institutional propaganda. From this unprecedented point of view, the project will develop three research lines in response to the following questions: 1) How is the relationship between poetry and music, and how is the dialogue between the different poetic and musical traditions viewed in relation to each context of production? 2) To what extent does Ars Nova poetry take part in the ‘soft power’ strategies exercised by the entire European political class of the time? 3) Is there a connection between the multilingualism of the manuscript tradition and the perception of the Ars Nova as a European, intercultural repertoire?
Summary
Dante Alighieri at the dawn of the 1300s, as well as Eustache Deschamps almost a century later, conceived poetry as music in itself. But what happens with poetry when it is involved in the complex architecture of polyphony? The aim of this project is to study for the first time the corpus of 14th- and early 15th-century poetry set to music by Ars Nova polyphonists (more than 1200 texts). This repertoire gathers different poetic and musical traditions, as shown by the multilingual anthologies copied during the last years of the Schism. The choice of this corpus is motivated by two primary goals: a) to offer a new interpretation of its meaning and function in the cultural and historical context, one that may be then applied to the rest of coeval European lyric poetry; b) to overcome current disciplinary divisions in order to generate a new methodological balance between the project’s two main fields of interest (Comparative Literature / Musicology). Most Ars Nova polyphonists were directly associated with religious institutions. In many texts, the language of courtly love expresses the values of caritas, the theological virtue that guides wise rulers and leads them to desire the common good. Thus, the poetic figure of the lover becomes a metaphor for the political man, and love poetry can be used as a device for diplomacy, as well as for personal and institutional propaganda. From this unprecedented point of view, the project will develop three research lines in response to the following questions: 1) How is the relationship between poetry and music, and how is the dialogue between the different poetic and musical traditions viewed in relation to each context of production? 2) To what extent does Ars Nova poetry take part in the ‘soft power’ strategies exercised by the entire European political class of the time? 3) Is there a connection between the multilingualism of the manuscript tradition and the perception of the Ars Nova as a European, intercultural repertoire?
Max ERC Funding
2 193 375 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ARTISTIC
Project Advanced and Reusable Theory for the In Silico-optimization of composite electrode fabrication processes for rechargeable battery Technologies with Innovative Chemistries
Researcher (PI) Alejandro Antonio FRANCO
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary The aim of this project is to develop and to demonstrate a novel theoretical framework devoted to rationalizing the formulation of composite electrodes containing next-generation material chemistries for high energy density secondary batteries. The framework will be established through the combination of discrete particle and continuum mathematical models within a multiscale computational workflow integrating the individual models and mimicking the different steps along the electrode fabrication process, including slurry preparation, drying and calendering. Strongly complemented by dedicated experimental characterizations which are devoted to its validation, the goal of this framework is to provide insights about the impacts of material properties and fabrication process parameters on the electrode mesostructures and their corresponding correlation to the resulting electrochemical performance. It targets self-organization mechanisms of material mixtures in slurries by considering the interactions between the active and conductive materials, solvent, binders and dispersants and the relationship between the materials properties such as surface chemistry and wettability. Optimal electrode formulation, fabrication process and the arising electrode mesostructure can then be achieved. Additionally, the framework will be integrated into an online and open access infrastructure, allowing predictive direct and reverse engineering for optimized electrode designs to attain high quality electrochemical performances. Through the demonstration of a multidisciplinary, flexible and transferable framework, this project has tremendous potential to provide insights leading to proposals of new and highly efficient industrial techniques for the fabrication of cheaper and reliable next-generation secondary battery electrodes for a wide spectrum of applications, including Electric Transportation.
Summary
The aim of this project is to develop and to demonstrate a novel theoretical framework devoted to rationalizing the formulation of composite electrodes containing next-generation material chemistries for high energy density secondary batteries. The framework will be established through the combination of discrete particle and continuum mathematical models within a multiscale computational workflow integrating the individual models and mimicking the different steps along the electrode fabrication process, including slurry preparation, drying and calendering. Strongly complemented by dedicated experimental characterizations which are devoted to its validation, the goal of this framework is to provide insights about the impacts of material properties and fabrication process parameters on the electrode mesostructures and their corresponding correlation to the resulting electrochemical performance. It targets self-organization mechanisms of material mixtures in slurries by considering the interactions between the active and conductive materials, solvent, binders and dispersants and the relationship between the materials properties such as surface chemistry and wettability. Optimal electrode formulation, fabrication process and the arising electrode mesostructure can then be achieved. Additionally, the framework will be integrated into an online and open access infrastructure, allowing predictive direct and reverse engineering for optimized electrode designs to attain high quality electrochemical performances. Through the demonstration of a multidisciplinary, flexible and transferable framework, this project has tremendous potential to provide insights leading to proposals of new and highly efficient industrial techniques for the fabrication of cheaper and reliable next-generation secondary battery electrodes for a wide spectrum of applications, including Electric Transportation.
Max ERC Funding
1 976 445 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym BETLIV
Project Returning to a Better Place: The (Re)assessment of the ‘Good Life’ in Times of Crisis
Researcher (PI) Valerio SIMONI RIBA
Host Institution (HI) FONDATION POUR L INSTITUT DE HAUTES ETUDES INTERNATIONALES ET DU DEVELOPPEMENT
Call Details Starting Grant (StG), SH5, ERC-2017-STG
Summary What makes for a valuable and good life is a question that many people in the contemporary world ask themselves, yet it is one that social science research has seldom addressed. Only recently have scholars started undertaking inductive comparative research on different notions of the ‘good life’, highlighting socio-cultural variations and calling for a better understanding of the different imaginaries, aspirations and values that guide people in their quest for better living conditions. Research is still lacking, however, on how people themselves evaluate, compare, and put into perspective different visions of good living and their socio-cultural anchorage. This project addresses such questions from an anthropological perspective, proposing an innovative study of how ideals of the good life are articulated, (re)assessed, and related to specific places and contexts as a result of the experience of crisis and migration. The case studies chosen to operationalize these lines of enquiry focus on the phenomenon of return migration, and consist in an analysis of the imaginaries and experience of return by Ecuadorian and Cuban men and women who migrated to Spain, are dissatisfied with their life there, and envisage/carry out the project of going back to their countries of origin (Ecuador and Cuba respectively). The project’s ambition is to bring together and contribute to three main scholarly areas of enquiry: 1) the study of morality, ethics and what counts as ‘good life’, 2) the study of the field of economic practice, its definition, value regimes, and ‘crises’, and 3) the study of migratory aspirations, projects, and trajectories. A multi-sited endeavour, the research is designed in three subprojects carried out in Spain (PhD student), Ecuador (Post-Doc), and Cuba (PI), in which ethnographic methods will be used to provide the first empirically grounded study of the links between notions and experiences of crisis, return migration, and the (re)assessment of good living.
Summary
What makes for a valuable and good life is a question that many people in the contemporary world ask themselves, yet it is one that social science research has seldom addressed. Only recently have scholars started undertaking inductive comparative research on different notions of the ‘good life’, highlighting socio-cultural variations and calling for a better understanding of the different imaginaries, aspirations and values that guide people in their quest for better living conditions. Research is still lacking, however, on how people themselves evaluate, compare, and put into perspective different visions of good living and their socio-cultural anchorage. This project addresses such questions from an anthropological perspective, proposing an innovative study of how ideals of the good life are articulated, (re)assessed, and related to specific places and contexts as a result of the experience of crisis and migration. The case studies chosen to operationalize these lines of enquiry focus on the phenomenon of return migration, and consist in an analysis of the imaginaries and experience of return by Ecuadorian and Cuban men and women who migrated to Spain, are dissatisfied with their life there, and envisage/carry out the project of going back to their countries of origin (Ecuador and Cuba respectively). The project’s ambition is to bring together and contribute to three main scholarly areas of enquiry: 1) the study of morality, ethics and what counts as ‘good life’, 2) the study of the field of economic practice, its definition, value regimes, and ‘crises’, and 3) the study of migratory aspirations, projects, and trajectories. A multi-sited endeavour, the research is designed in three subprojects carried out in Spain (PhD student), Ecuador (Post-Doc), and Cuba (PI), in which ethnographic methods will be used to provide the first empirically grounded study of the links between notions and experiences of crisis, return migration, and the (re)assessment of good living.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym BioELCell
Project Bioproducts Engineered from Lignocelluloses: from plants and upcycling to next generation materials
Researcher (PI) Orlando Rojas Gaona
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary BioELCell will deliver ground-breaking approaches to create next material generation based on renewable resources, mainly cellulose and lignin micro- and nano-particles (MNC, MNL). Our action will disassemble and re-engineer these plant-based polymers into functional materials that will respond to the demands of the bioeconomy of the future, critically important to Europe and the world. My ambitious, high gain research plan is underpinned in the use of multiphase systems with ultra-low interfacial tension to facilitate nanocellulose liberation and atomization of lignin solution streams into spherical particles.
BioELCell will design novel routes to control MNC and MNL reassembly in new 1-D, 2-D and 3-D structures. The systematic methodologies that I propose will address the main challenges for lignocellulose processing and deployment, considering the important effects of interactions with water. This BioELCell action presents a transformative approach by integrating complementary disciplines that will lead to a far-reaching understanding of lignocellulosic biopolymers and solve key challenges in their use, paving the way to functional product development. Results of this project permeates directly or indirectly in the grand challenges for engineering, namely, water use, carbon sequestration, nitrogen cycle, food and advanced materials. Indeed, after addressing the key fundamental elements of the research lines, BioELCell vindicates such effects based on rational use of plant-based materials as a sustainable resource, making possible the generation of new functions and advanced materials.
BioELCell goes far beyond what is known today about cellulose and lignin micro and nano-particles, some of the most promising materials of our century, which are emerging as key elements for the success of a sustainable society.
Summary
BioELCell will deliver ground-breaking approaches to create next material generation based on renewable resources, mainly cellulose and lignin micro- and nano-particles (MNC, MNL). Our action will disassemble and re-engineer these plant-based polymers into functional materials that will respond to the demands of the bioeconomy of the future, critically important to Europe and the world. My ambitious, high gain research plan is underpinned in the use of multiphase systems with ultra-low interfacial tension to facilitate nanocellulose liberation and atomization of lignin solution streams into spherical particles.
BioELCell will design novel routes to control MNC and MNL reassembly in new 1-D, 2-D and 3-D structures. The systematic methodologies that I propose will address the main challenges for lignocellulose processing and deployment, considering the important effects of interactions with water. This BioELCell action presents a transformative approach by integrating complementary disciplines that will lead to a far-reaching understanding of lignocellulosic biopolymers and solve key challenges in their use, paving the way to functional product development. Results of this project permeates directly or indirectly in the grand challenges for engineering, namely, water use, carbon sequestration, nitrogen cycle, food and advanced materials. Indeed, after addressing the key fundamental elements of the research lines, BioELCell vindicates such effects based on rational use of plant-based materials as a sustainable resource, making possible the generation of new functions and advanced materials.
BioELCell goes far beyond what is known today about cellulose and lignin micro and nano-particles, some of the most promising materials of our century, which are emerging as key elements for the success of a sustainable society.
Max ERC Funding
2 486 182 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym BIOELE
Project Functional Biointerface Elements via Biomicrofabrication
Researcher (PI) YANYAN HUANG
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Imagine in the future, bionic devices that can merge device and biology which can perform molecular sensing, simulate the functions of grown-organs in the lab, or even replace or improve parts of the organ as smart implants? Such bionic devices is set to transform a number of emerging fields, including synthetic biotechnology, regenerative medicine, and human-machine interfaces. Merging biology and man-made devices also mean that materials of vastly different properties need to be seamlessly integrated. One of the promising strategies to manufacture these devices is through 3D printing, which can structure different materials into functional devices, and simultaneously intertwining with biological matters. However, the requirement for biocompatibility, miniaturisation, portability and high performance in bionic devices pushes the current limit for micro- nanoscale 3D printing.
This proposal aims to develop a new multi-material, cross-length scale biofabrication platform, with specific focus in making future smart bionic devices. In particular, a new mechanism is proposed to smoothly interface diverse classes of materials, such that an active device component can be ‘shrunk’ into a single small fibre. This mechanism utilises the polymeric materials’ flow property under applied tensile forces, and their abilities to combine with other classes of materials, such as semi-conductors and metals to impart further functionalities. This smart device fibre can be custom-made to perform different tasks, such as light emission or energy harvesting, to bridge 3D bioprinting for the future creation of high performance, compact, and cell-friendly bionic and medical devices.
Summary
Imagine in the future, bionic devices that can merge device and biology which can perform molecular sensing, simulate the functions of grown-organs in the lab, or even replace or improve parts of the organ as smart implants? Such bionic devices is set to transform a number of emerging fields, including synthetic biotechnology, regenerative medicine, and human-machine interfaces. Merging biology and man-made devices also mean that materials of vastly different properties need to be seamlessly integrated. One of the promising strategies to manufacture these devices is through 3D printing, which can structure different materials into functional devices, and simultaneously intertwining with biological matters. However, the requirement for biocompatibility, miniaturisation, portability and high performance in bionic devices pushes the current limit for micro- nanoscale 3D printing.
This proposal aims to develop a new multi-material, cross-length scale biofabrication platform, with specific focus in making future smart bionic devices. In particular, a new mechanism is proposed to smoothly interface diverse classes of materials, such that an active device component can be ‘shrunk’ into a single small fibre. This mechanism utilises the polymeric materials’ flow property under applied tensile forces, and their abilities to combine with other classes of materials, such as semi-conductors and metals to impart further functionalities. This smart device fibre can be custom-made to perform different tasks, such as light emission or energy harvesting, to bridge 3D bioprinting for the future creation of high performance, compact, and cell-friendly bionic and medical devices.
Max ERC Funding
1 486 938 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BIOGEOS
Project Bio-mediated Geo-material Strengthening for engineering applications
Researcher (PI) Lyesse LALOUI
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary Given the increasing scarcity of suitable land for development, soil strengthening technologies have emerged in the past decade and go hand-in-hand with the implementation of the majority of foundation solutions. The goal is to alter the soil structure and its mechanical properties for ultimately securing the integrity of structures. The BIOGEOS project puts the focus on bio-mediated soil improvement, which falls within the broader framework of multi-physical processes in geo-mechanics. The goal of the project is to engineer a novel, natural material under controlled processes, for ultimately providing solutions to real problems in the geo-engineering and geo-energy fields by advancing knowledge around complex multi-physical phenomena in porous media. The bio-cemented geo-material, which is produced by carefully integrating the metabolic activity of native soil bacteria, is produced through the bio-mineralization of calcite bonds, which act as natural cementation for endowing the subsurface with real cohesion and increased resistance. A principal characteristic of the project is its multi-scale approach through advanced experimentation to identify the main physical mechanisms involved in the formation of the bio-mineralized bonds and their behaviour under mechanical loading. The development of such a bio-mediated technology will lead to innovative applications in a series of engineering problems such as the restoration of weak foundations, seismic retrofitting, erosion protection, and the enhancement of heat transfer in thermo-active geo-structures. The project foresees to adopt multiple loading conditions for its laboratory characterization and ultimately pass to the large experimental scale. BIOGEOS further aims to provide new knowledge around the way we perceive materials in relation with their micro-structure by implementing state-of-the-art inspection of the material’s structure in 3D space and subsequent prediction of their behaviour through numerical tools.
Summary
Given the increasing scarcity of suitable land for development, soil strengthening technologies have emerged in the past decade and go hand-in-hand with the implementation of the majority of foundation solutions. The goal is to alter the soil structure and its mechanical properties for ultimately securing the integrity of structures. The BIOGEOS project puts the focus on bio-mediated soil improvement, which falls within the broader framework of multi-physical processes in geo-mechanics. The goal of the project is to engineer a novel, natural material under controlled processes, for ultimately providing solutions to real problems in the geo-engineering and geo-energy fields by advancing knowledge around complex multi-physical phenomena in porous media. The bio-cemented geo-material, which is produced by carefully integrating the metabolic activity of native soil bacteria, is produced through the bio-mineralization of calcite bonds, which act as natural cementation for endowing the subsurface with real cohesion and increased resistance. A principal characteristic of the project is its multi-scale approach through advanced experimentation to identify the main physical mechanisms involved in the formation of the bio-mineralized bonds and their behaviour under mechanical loading. The development of such a bio-mediated technology will lead to innovative applications in a series of engineering problems such as the restoration of weak foundations, seismic retrofitting, erosion protection, and the enhancement of heat transfer in thermo-active geo-structures. The project foresees to adopt multiple loading conditions for its laboratory characterization and ultimately pass to the large experimental scale. BIOGEOS further aims to provide new knowledge around the way we perceive materials in relation with their micro-structure by implementing state-of-the-art inspection of the material’s structure in 3D space and subsequent prediction of their behaviour through numerical tools.
Max ERC Funding
2 497 115 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BIORECAR
Project Direct cell reprogramming therapy in myocardial regeneration through an engineered multifunctional platform integrating biochemical instructive cues
Researcher (PI) Valeria CHIONO
Host Institution (HI) POLITECNICO DI TORINO
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary In BIORECAR I will develop a new breakthrough multifunctional biomaterial-based platform for myocardial regeneration after myocardial infarction, provided with biochemical cues able to enhance the direct reprogramming of human cardiac fibroblasts into functional cardiomyocytes.
My expertise in bioartificial materials and biomimetic scaffolds and the versatile chemistry of polyurethanes will be the key elements to achieve a significant knowledge and technological advancement in cell reprogramming therapy, opening the way to the future translation of the therapy into the clinics.
I will implement this advanced approach through the design of a novel 3D in vitro tissue-engineered model of human cardiac fibrotic tissue, as a tool for testing and validation, to maximise research efforts and reduce animal tests.
I will adapt novel nanomedicine approaches I have recently developed for drug release to design innovative cell-friendly and efficient polyurethane nanoparticles for targeted reprogramming of cardiac fibroblasts.
I will design an injectable bioartificial hydrogel based on a blend of a thermosensitive polyurethane and a natural component selected among a novel cell-secreted natural polymer mixture (“biomatrix”) recapitulating the complexity of cardiac extracellular matrix or one of its main protein constituents. Such multifunctional hydrogel will deliver in situ agents stimulating recruitment of cardiac fibroblasts together with the nanoparticles loaded with reprogramming therapeutics, and will provide biochemical signalling to stimulate efficient conversion of fibroblasts into mature cardiomyocytes.
First-in-field biomaterials-based innovations introduced by BIORECAR will enable more effective regeneration of functional myocardial tissue respect to state-of-the art approaches. BIORECAR innovation is multidisciplinary in nature and will be accelerated towards future clinical translation through my clinical, scientific and industrial collaborations.
Summary
In BIORECAR I will develop a new breakthrough multifunctional biomaterial-based platform for myocardial regeneration after myocardial infarction, provided with biochemical cues able to enhance the direct reprogramming of human cardiac fibroblasts into functional cardiomyocytes.
My expertise in bioartificial materials and biomimetic scaffolds and the versatile chemistry of polyurethanes will be the key elements to achieve a significant knowledge and technological advancement in cell reprogramming therapy, opening the way to the future translation of the therapy into the clinics.
I will implement this advanced approach through the design of a novel 3D in vitro tissue-engineered model of human cardiac fibrotic tissue, as a tool for testing and validation, to maximise research efforts and reduce animal tests.
I will adapt novel nanomedicine approaches I have recently developed for drug release to design innovative cell-friendly and efficient polyurethane nanoparticles for targeted reprogramming of cardiac fibroblasts.
I will design an injectable bioartificial hydrogel based on a blend of a thermosensitive polyurethane and a natural component selected among a novel cell-secreted natural polymer mixture (“biomatrix”) recapitulating the complexity of cardiac extracellular matrix or one of its main protein constituents. Such multifunctional hydrogel will deliver in situ agents stimulating recruitment of cardiac fibroblasts together with the nanoparticles loaded with reprogramming therapeutics, and will provide biochemical signalling to stimulate efficient conversion of fibroblasts into mature cardiomyocytes.
First-in-field biomaterials-based innovations introduced by BIORECAR will enable more effective regeneration of functional myocardial tissue respect to state-of-the art approaches. BIORECAR innovation is multidisciplinary in nature and will be accelerated towards future clinical translation through my clinical, scientific and industrial collaborations.
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-07-01, End date: 2023-06-30