Project acronym ACUITY
Project Algorithms for coping with uncertainty and intractability
Researcher (PI) Nikhil Bansal
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Consolidator Grant (CoG), PE6, ERC-2013-CoG
Summary The two biggest challenges in solving practical optimization problems are computational intractability, and the presence
of uncertainty: most problems are either NP-hard, or have incomplete input data which
makes an exact computation impossible.
Recently, there has been a huge progress in our understanding of intractability, based on spectacular algorithmic and lower bound techniques. For several problems, especially those with only local constraints, we can design optimum
approximation algorithms that are provably the best possible.
However, typical optimization problems usually involve complex global constraints and are much less understood. The situation is even worse for coping with uncertainty. Most of the algorithms are based on ad-hoc techniques and there is no deeper understanding of what makes various problems easy or hard.
This proposal describes several new directions, together with concrete intermediate goals, that will break important new ground in the theory of approximation and online algorithms. The particular directions we consider are (i) extend the primal dual method to systematically design online algorithms, (ii) build a structural theory of online problems based on work functions, (iii) develop new tools to use the power of strong convex relaxations and (iv) design new algorithmic approaches based on non-constructive proof techniques.
The proposed research is at the
cutting edge of algorithm design, and builds upon the recent success of the PI in resolving several longstanding questions in these areas. Any progress is likely to be a significant contribution to theoretical
computer science and combinatorial optimization.
Summary
The two biggest challenges in solving practical optimization problems are computational intractability, and the presence
of uncertainty: most problems are either NP-hard, or have incomplete input data which
makes an exact computation impossible.
Recently, there has been a huge progress in our understanding of intractability, based on spectacular algorithmic and lower bound techniques. For several problems, especially those with only local constraints, we can design optimum
approximation algorithms that are provably the best possible.
However, typical optimization problems usually involve complex global constraints and are much less understood. The situation is even worse for coping with uncertainty. Most of the algorithms are based on ad-hoc techniques and there is no deeper understanding of what makes various problems easy or hard.
This proposal describes several new directions, together with concrete intermediate goals, that will break important new ground in the theory of approximation and online algorithms. The particular directions we consider are (i) extend the primal dual method to systematically design online algorithms, (ii) build a structural theory of online problems based on work functions, (iii) develop new tools to use the power of strong convex relaxations and (iv) design new algorithmic approaches based on non-constructive proof techniques.
The proposed research is at the
cutting edge of algorithm design, and builds upon the recent success of the PI in resolving several longstanding questions in these areas. Any progress is likely to be a significant contribution to theoretical
computer science and combinatorial optimization.
Max ERC Funding
1 519 285 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym AncientAdhesives
Project Ancient Adhesives - A window on prehistoric technological complexity
Researcher (PI) Geeske LANGEJANS
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary AncientAdhesives addresses the most crucial problem in Palaeolithic archaeology: How to reliably infer cognitively complex behaviour in the deep past. To study the evolution of Neandertal and modern human cognitive capacities, certain find categories are taken to reflect behavioural and thus cognitive complexitye.g. Among these are art objects, personal ornaments and complex technology. Of these technology is best-suited to trace changing behavioural complexity, because 1) it is the least vulnerable to differential preservation, and 2) technological behaviours are present throughout the history of our genus. Adhesives are the oldest examples of highly complex technology. They are also known earlier from Neandertal than from modern human contexts. Understanding their technological complexity is thus essential to resolve debates on differences in cognitive complexity of both species. However, currently, there is no agreed-upon method to measure technological complexity.
The aim of AncientAdhesives is to create the first reliable method to compare the complexity of Neandertal and modern human technologies. This is achieved through three main objectives:
1. Collate the first comprehensive body of knowledge on adhesives, including ethnography, archaeology and (experimental) material properties (e.g. preservation, production).
2. Develop a new archaeological methodology by modifying industrial process modelling for archaeological applications.
3. Evaluate the development of adhesive technological complexity through time and across species using a range of explicit complexity measures.
By analysing adhesives, it is possible to measure technological complexity, to identify idiosyncratic behaviours and to track adoption and loss of complex technological know-how. This represents a step-change in debates about the development of behavioural complexity and differences/similarities between Neanderthals and modern humans.
Summary
AncientAdhesives addresses the most crucial problem in Palaeolithic archaeology: How to reliably infer cognitively complex behaviour in the deep past. To study the evolution of Neandertal and modern human cognitive capacities, certain find categories are taken to reflect behavioural and thus cognitive complexitye.g. Among these are art objects, personal ornaments and complex technology. Of these technology is best-suited to trace changing behavioural complexity, because 1) it is the least vulnerable to differential preservation, and 2) technological behaviours are present throughout the history of our genus. Adhesives are the oldest examples of highly complex technology. They are also known earlier from Neandertal than from modern human contexts. Understanding their technological complexity is thus essential to resolve debates on differences in cognitive complexity of both species. However, currently, there is no agreed-upon method to measure technological complexity.
The aim of AncientAdhesives is to create the first reliable method to compare the complexity of Neandertal and modern human technologies. This is achieved through three main objectives:
1. Collate the first comprehensive body of knowledge on adhesives, including ethnography, archaeology and (experimental) material properties (e.g. preservation, production).
2. Develop a new archaeological methodology by modifying industrial process modelling for archaeological applications.
3. Evaluate the development of adhesive technological complexity through time and across species using a range of explicit complexity measures.
By analysing adhesives, it is possible to measure technological complexity, to identify idiosyncratic behaviours and to track adoption and loss of complex technological know-how. This represents a step-change in debates about the development of behavioural complexity and differences/similarities between Neanderthals and modern humans.
Max ERC Funding
1 499 926 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym COORDINATINGforLIFE
Project Coordinating for life. Success and failure of Western European societies in coping with rural hazards and disasters, 1300-1800
Researcher (PI) Balthassar Jozef Paul (Bas) Van Bavel
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Advanced Grant (AdG), SH6, ERC-2013-ADG
Summary Societies in past and present are regularly confronted with major hazards, which sometimes have disastrous effects. Some societies are successful in preventing these effects and buffering threats, or they recover quickly, while others prove highly vulnerable. Why is this?
Increasingly it is clear that disasters are not merely natural events, and also that wealth and technology alone are not adequate to prevent them. Rather, hazards and disasters are social occurrences as well, and they form a tough test for the organizational capacities of a society, both in mitigation and recovery. This project targets a main element of this capacity, namely: the way societies have organized the exchange, allocation and use of resources. It aims to explain why some societies do well in preventing or remedying disasters through these institutional arrangements and others not.
In order to do so, this project analyses four key variables: the mix of coordination systems available within that society, its degree of autarky, economic equity and political equality. The recent literature on historical and present-day disasters suggests these factors as possible causes of success or failure of institutional arrangements in their confrontation with hazards, but their discussion remains largely descriptive and they have never been systematically analyzed.
This research project offers such a systematic investigation, using rural societies in Western Europe in the period 1300-1800 - with their variety of socio-economic characteristics - as a testing ground. The historical perspective enables us to compare widely differing cases, also over the long run, and to test for the variables chosen, in order to isolate the determining factors in the resilience of different societies. By using the opportunities offered by history in this way, we will increase our insight into the relative performance of societies and gain a better understanding of a critical determinant of human wellbeing.
Summary
Societies in past and present are regularly confronted with major hazards, which sometimes have disastrous effects. Some societies are successful in preventing these effects and buffering threats, or they recover quickly, while others prove highly vulnerable. Why is this?
Increasingly it is clear that disasters are not merely natural events, and also that wealth and technology alone are not adequate to prevent them. Rather, hazards and disasters are social occurrences as well, and they form a tough test for the organizational capacities of a society, both in mitigation and recovery. This project targets a main element of this capacity, namely: the way societies have organized the exchange, allocation and use of resources. It aims to explain why some societies do well in preventing or remedying disasters through these institutional arrangements and others not.
In order to do so, this project analyses four key variables: the mix of coordination systems available within that society, its degree of autarky, economic equity and political equality. The recent literature on historical and present-day disasters suggests these factors as possible causes of success or failure of institutional arrangements in their confrontation with hazards, but their discussion remains largely descriptive and they have never been systematically analyzed.
This research project offers such a systematic investigation, using rural societies in Western Europe in the period 1300-1800 - with their variety of socio-economic characteristics - as a testing ground. The historical perspective enables us to compare widely differing cases, also over the long run, and to test for the variables chosen, in order to isolate the determining factors in the resilience of different societies. By using the opportunities offered by history in this way, we will increase our insight into the relative performance of societies and gain a better understanding of a critical determinant of human wellbeing.
Max ERC Funding
2 227 326 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym EPOQUE
Project Engineering post-quantum cryptography
Researcher (PI) Peter SCHWABE
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Starting Grant (StG), PE6, ERC-2018-STG
Summary "Our digital society critically relies on protection of data and communication against espionage and cyber crime. Underlying all protection mechanisms is cryptography, which we are using
daily to protect, for example, internet communication or e-banking. This protection is threatened by the dawn of universal quantum computers, which will break large parts of the
cryptography in use today. Transitioning current cryptographic algorithms to crypto that resist attacks by large quantum computers, so called ""post-quantum cryptography"", is possibly the
largest challenge applied cryptography is facing since becoming a domain of public research in the second half of the last century. Large standardization bodies, most prominently ETSI and
NIST, have started efforts to evaluate concrete proposals of post-quantum crypto for standardization and deployment. NIST's effort follows in the tradition of successful public ""crypto
competitions"" with strong involvement by the academic cryptographic community. It is expected to run through the next 5 years.
This project will tackle the engineering challenges of post-quantum cryptography following two main research directions. The first direction investigates implementation characteristics of
submissions to NIST for standardization. These include speed on various platforms, code size, and RAM usage. Furthermore we will study so-called side-channel attacks and propose suitable
countermeasures. Side-channel attacks use information such as timing or power consumption of cryptographic devices to obtain secret information. The second direction is about protocol
integration. We will examine how different real-world cryptographic protocols can accommodate the drastically different performance characteristics of post-quantum cryptography, explore
what algorithms suit best the requirements of common usage scenarios of these protocols, and investigate if changes to the high-level protocol layer are advisable to improve overall system
performance."
Summary
"Our digital society critically relies on protection of data and communication against espionage and cyber crime. Underlying all protection mechanisms is cryptography, which we are using
daily to protect, for example, internet communication or e-banking. This protection is threatened by the dawn of universal quantum computers, which will break large parts of the
cryptography in use today. Transitioning current cryptographic algorithms to crypto that resist attacks by large quantum computers, so called ""post-quantum cryptography"", is possibly the
largest challenge applied cryptography is facing since becoming a domain of public research in the second half of the last century. Large standardization bodies, most prominently ETSI and
NIST, have started efforts to evaluate concrete proposals of post-quantum crypto for standardization and deployment. NIST's effort follows in the tradition of successful public ""crypto
competitions"" with strong involvement by the academic cryptographic community. It is expected to run through the next 5 years.
This project will tackle the engineering challenges of post-quantum cryptography following two main research directions. The first direction investigates implementation characteristics of
submissions to NIST for standardization. These include speed on various platforms, code size, and RAM usage. Furthermore we will study so-called side-channel attacks and propose suitable
countermeasures. Side-channel attacks use information such as timing or power consumption of cryptographic devices to obtain secret information. The second direction is about protocol
integration. We will examine how different real-world cryptographic protocols can accommodate the drastically different performance characteristics of post-quantum cryptography, explore
what algorithms suit best the requirements of common usage scenarios of these protocols, and investigate if changes to the high-level protocol layer are advisable to improve overall system
performance."
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym GWAS2FUNC
Project From GWAS to functional studies: Tackling the complex nature of brain disorders
Researcher (PI) Danielle POSTHUMA
Host Institution (HI) STICHTING VU
Call Details Advanced Grant (AdG), LS5, ERC-2018-ADG
Summary Genome-wide association studies (GWAS) of unprecedented sample size have recently provided robust insight into the polygenic architecture of many different brain disorders. Despite this exciting potential, GWAS results have rarely translated into mechanistic disease insight. This is because the detected genetic effects are small and numerous, and hardly ever directly actionable for functional follow-up. In addition, the polygenic nature of brain disorders comes with large genetic heterogeneity, where different patients with the same disorder may carry completely different combinations of genetic risk variants, possibly corresponding to different etiological mechanisms, requiring different treatment regimens. To benefit from GWAS, extensive biological interpretation and insight into genetic heterogeneity is needed. In this ERC I will develop much needed tools for (i) extensive biological interpretation at cellular resolution and (ii) assessing genetic heterogeneity, both aimed at formulating hypotheses that take into account the polygenic nature of brain disorders and can be tested in functional experiments. I will apply the developed tools to a wide range of brain-related traits, providing ample starting points for functional follow-up. As a proof-of-concept I will test the viability of two neuroscientific approaches (iPSC and DREADDs) for functional follow-up of GWAS results. First, I will conduct scRNA sequencing and electrophysiological assessments on iPSC derived neurons and astrocytes from genetically selected (schizophrenia) patients and controls. Second, I will use in vivo chemogenetic manipulation to target specific cell types that have been implicated by GWAS (for insomnia). The primary goal of this proposal is to bridge the gap between GWAS and function. The results will facilitate the translation of GWAS findings for brain disorders into functional mechanisms that are biologically important in disease pathogenesis and, ultimately, treatment design.
Summary
Genome-wide association studies (GWAS) of unprecedented sample size have recently provided robust insight into the polygenic architecture of many different brain disorders. Despite this exciting potential, GWAS results have rarely translated into mechanistic disease insight. This is because the detected genetic effects are small and numerous, and hardly ever directly actionable for functional follow-up. In addition, the polygenic nature of brain disorders comes with large genetic heterogeneity, where different patients with the same disorder may carry completely different combinations of genetic risk variants, possibly corresponding to different etiological mechanisms, requiring different treatment regimens. To benefit from GWAS, extensive biological interpretation and insight into genetic heterogeneity is needed. In this ERC I will develop much needed tools for (i) extensive biological interpretation at cellular resolution and (ii) assessing genetic heterogeneity, both aimed at formulating hypotheses that take into account the polygenic nature of brain disorders and can be tested in functional experiments. I will apply the developed tools to a wide range of brain-related traits, providing ample starting points for functional follow-up. As a proof-of-concept I will test the viability of two neuroscientific approaches (iPSC and DREADDs) for functional follow-up of GWAS results. First, I will conduct scRNA sequencing and electrophysiological assessments on iPSC derived neurons and astrocytes from genetically selected (schizophrenia) patients and controls. Second, I will use in vivo chemogenetic manipulation to target specific cell types that have been implicated by GWAS (for insomnia). The primary goal of this proposal is to bridge the gap between GWAS and function. The results will facilitate the translation of GWAS findings for brain disorders into functional mechanisms that are biologically important in disease pathogenesis and, ultimately, treatment design.
Max ERC Funding
2 378 412 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym MIND
Project The Muslim Individual in Imperial and Soviet Russia
Researcher (PI) Alfrid BUSTANOV
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary For European historiography, it is self-evident that diaries, correspondences, and other personal documents provide crucial insights not only into how individuals thought about certain issues, but also in how the authors expressed their individuality, and how they saw their active role in history. This holds true both for prominent and ordinary persons, and for a whole variety of genres. In the historiography of Muslim societies, expressions of individuality are rarely ever problematized; the individual is often seen merely as part of a faith community, and the writings of individuals are more often than not just treated as a source for factual information on Islam, politics, or broader social phenomena, not as an effort of personal self-reflection.
By analyzing practices of individualization in the personal archives of Muslims in Russia, this program places the Muslim subject at the center. How does a person engage with the Islamic tradition, with the demands of the state and the non-Muslim majority society, but also with other individuals, to design his or her conception of the self (Ar., shakhsiyya)? How is this individuality communicated to others, in letters about love, friendship, or a plethora of other personal matters (SP1)? What is the role of aesthetics in the narratives of the Muslim subject – how does a self-concept obtain a literary form, for instance when experiences are turned into poetry (SP2)? How do Muslims characterize other Muslims when they produce biographies (SP3), and how do they portray themselves in autobiographies (SP4)? And finally, how do Muslims employ photography for expressing their individuality, their belonging to tradition or to the contrary their difference; and how did visual self-conceptions develop, according to personal tastes, values, attitudes, and by mobilizing certain historical heritages (SP5)? Designed according to archival genres, the subprojects contribute to the central hypothesis of a Muslim culture of individuality.
Summary
For European historiography, it is self-evident that diaries, correspondences, and other personal documents provide crucial insights not only into how individuals thought about certain issues, but also in how the authors expressed their individuality, and how they saw their active role in history. This holds true both for prominent and ordinary persons, and for a whole variety of genres. In the historiography of Muslim societies, expressions of individuality are rarely ever problematized; the individual is often seen merely as part of a faith community, and the writings of individuals are more often than not just treated as a source for factual information on Islam, politics, or broader social phenomena, not as an effort of personal self-reflection.
By analyzing practices of individualization in the personal archives of Muslims in Russia, this program places the Muslim subject at the center. How does a person engage with the Islamic tradition, with the demands of the state and the non-Muslim majority society, but also with other individuals, to design his or her conception of the self (Ar., shakhsiyya)? How is this individuality communicated to others, in letters about love, friendship, or a plethora of other personal matters (SP1)? What is the role of aesthetics in the narratives of the Muslim subject – how does a self-concept obtain a literary form, for instance when experiences are turned into poetry (SP2)? How do Muslims characterize other Muslims when they produce biographies (SP3), and how do they portray themselves in autobiographies (SP4)? And finally, how do Muslims employ photography for expressing their individuality, their belonging to tradition or to the contrary their difference; and how did visual self-conceptions develop, according to personal tastes, values, attitudes, and by mobilizing certain historical heritages (SP5)? Designed according to archival genres, the subprojects contribute to the central hypothesis of a Muslim culture of individuality.
Max ERC Funding
1 499 148 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym PASSIM
Project Patristic sermons in the Middle Ages. The dissemination, manipulation and interpretation of late-antique sermons in the medieval Latin West
Researcher (PI) Shari BOODTS
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary PASSIM will study the medieval reception of the Latin sermons preached by the Early Church Fathers, using a digital network of manuscripts.
The sermons of Augustine, Gregory the Great and other patristic preachers were transmitted throughout medieval Europe in the form of sermon collections, preserved in thousands of manuscripts. Nearly every manuscript contains a new combination of sermons, attesting to a continuous, widespread engagement with the authorities of the Early Church. The dynamic tradition of reorganising and rewriting the patristic heritage is largely overlooked by scholars of medieval religious practices, who concentrate on medieval preachers, and by scholars of Early Christianity, whose focus is the patristic context.
Medieval collections of patristic sermons were part of the liturgical life of the monastery, but also of an intellectual tradition. They offer unique insights into medieval attitudes toward authority, techniques of appropriation, church organisation, monastic networks and knowledge exchange. PASSIM will execute the first large-scale analysis of the formation and spread of patristic sermon collections in medieval Europe. The project will develop a digital network of manuscripts, using well-tried principles from the field of textual criticism. Building on this network, PASSIM will pursue three lines of inquiry: the customizing of standard liturgical collections as indicative of individual purposes and contexts, the impact of transmission on the popularity of patristic sermons, and pseudo-epigraphic sermons as revelatory of medieval perceptions of the Church Fathers.
PASSIM will bridge two disciplinary divides, between patristic and medieval sermon studies and between textual criticism and reception studies. Developing an interdisciplinary methodology with a wide applicability in the study of intellectual history, this project will introduce patristic preaching as a vibrant strand in the tapestry of the medieval religious tradition.
Summary
PASSIM will study the medieval reception of the Latin sermons preached by the Early Church Fathers, using a digital network of manuscripts.
The sermons of Augustine, Gregory the Great and other patristic preachers were transmitted throughout medieval Europe in the form of sermon collections, preserved in thousands of manuscripts. Nearly every manuscript contains a new combination of sermons, attesting to a continuous, widespread engagement with the authorities of the Early Church. The dynamic tradition of reorganising and rewriting the patristic heritage is largely overlooked by scholars of medieval religious practices, who concentrate on medieval preachers, and by scholars of Early Christianity, whose focus is the patristic context.
Medieval collections of patristic sermons were part of the liturgical life of the monastery, but also of an intellectual tradition. They offer unique insights into medieval attitudes toward authority, techniques of appropriation, church organisation, monastic networks and knowledge exchange. PASSIM will execute the first large-scale analysis of the formation and spread of patristic sermon collections in medieval Europe. The project will develop a digital network of manuscripts, using well-tried principles from the field of textual criticism. Building on this network, PASSIM will pursue three lines of inquiry: the customizing of standard liturgical collections as indicative of individual purposes and contexts, the impact of transmission on the popularity of patristic sermons, and pseudo-epigraphic sermons as revelatory of medieval perceptions of the Church Fathers.
PASSIM will bridge two disciplinary divides, between patristic and medieval sermon studies and between textual criticism and reception studies. Developing an interdisciplinary methodology with a wide applicability in the study of intellectual history, this project will introduce patristic preaching as a vibrant strand in the tapestry of the medieval religious tradition.
Max ERC Funding
1 474 000 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym QIP
Project Towards a Quantitative Theory of Integer Programming
Researcher (PI) Daniel DADUSH
Host Institution (HI) STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTEN
Call Details Starting Grant (StG), PE6, ERC-2018-STG
Summary Integer programming (IP), i.e. linear optimization
with integrality constraints on variables, is one of the most successful
methods for solving large scale optimization problems in practice. While many
of the base IP problems such as the traveling salesman problem (TSP) or
satisfiability (SAT) are NP-Complete, IPs with tens of thousands of variables are
routinely solved in just a few hours by current state of the art IP solvers.
The main goal of this proposal is to develop a quantitative theory capable of
explaining when and how well different IP solver techniques will work on a wide
range of instances. Here we will study many of the principal tools used to solve
IPs including branch & bound, the simplex method, cutting planes and rounding
heuristics. Our first direction of study will be to develop parametrized classes
of instances, inspired by the structure of realistic models, on which branch &
bound and the simplex method are provably efficient. The second research
direction will be to develop alternatives to ad hoc rounding heuristics and
cutting plane selection strategies with provable guarantees and provide their
applications to important classes of IPs. Lastly, we will explore the power and
limitations of IP techniques in the context of algorithm design by comparing
them to powerful techniques in theoretical computer science and analyzing their
worst-case performance for solving general integer programs. While the main
thrust of this proposal is theoretical, it will be complimented by an
experimental component performed in collaboration with well-known experts in
computational IP, both to gain valuable insights on the structure of real-world
instances and to validate the effectiveness newly suggested approaches. The
proposed research is designed to make breakthroughs in our quantitative
understanding of IP techniques, many of which have long resisted theoretical
analysis.
Summary
Integer programming (IP), i.e. linear optimization
with integrality constraints on variables, is one of the most successful
methods for solving large scale optimization problems in practice. While many
of the base IP problems such as the traveling salesman problem (TSP) or
satisfiability (SAT) are NP-Complete, IPs with tens of thousands of variables are
routinely solved in just a few hours by current state of the art IP solvers.
The main goal of this proposal is to develop a quantitative theory capable of
explaining when and how well different IP solver techniques will work on a wide
range of instances. Here we will study many of the principal tools used to solve
IPs including branch & bound, the simplex method, cutting planes and rounding
heuristics. Our first direction of study will be to develop parametrized classes
of instances, inspired by the structure of realistic models, on which branch &
bound and the simplex method are provably efficient. The second research
direction will be to develop alternatives to ad hoc rounding heuristics and
cutting plane selection strategies with provable guarantees and provide their
applications to important classes of IPs. Lastly, we will explore the power and
limitations of IP techniques in the context of algorithm design by comparing
them to powerful techniques in theoretical computer science and analyzing their
worst-case performance for solving general integer programs. While the main
thrust of this proposal is theoretical, it will be complimented by an
experimental component performed in collaboration with well-known experts in
computational IP, both to gain valuable insights on the structure of real-world
instances and to validate the effectiveness newly suggested approaches. The
proposed research is designed to make breakthroughs in our quantitative
understanding of IP techniques, many of which have long resisted theoretical
analysis.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym QPROGRESS
Project "Progress in quantum computing: Algorithms, communication, and applications"
Researcher (PI) Ronald De Wolf
Host Institution (HI) STICHTING CENTRUM VOOR WISKUNDE EN INFORMATICA
Call Details Consolidator Grant (CoG), PE6, ERC-2013-CoG
Summary "Quantum computing combines computer science, physics and mathematics to fundamentally speed up computation using effects from quantum physics. Starting in the early 1980s with Feynman and Deutsch, and gaining momentum in the 1990s with the algorithms of Shor and Grover, this very interdisciplinary area has potentially far reaching consequences. While a large-scale quantum computer has not been built yet, experimenters are getting more optimistic: a recent prediction is that it will take another 10-15 years.
However, the tasks where such a quantum computer would be able to significantly outperform classical computers are still quite limited, which lends urgency to finding new applications. This proposal will find more such tasks, and produce new insights into the strengths and weaknesses of quantum computing. It is divided into three workpackages:
1. Algorithms & complexity. Find new quantum algorithms that are more efficient than the best classical algorithms, for example for matrix multiplication and graph problems. Extend our knowledge of the ultimate limitations of quantum algorithms, and possible parallelization (which has barely been studied so far).
2. Quantum communication. Communication complexity analyzes the amount of communication needed to solve distributed computational tasks, where separate parties each hold part of the input. Find new
distributed problems where quantum communication outperforms classical communication, and explore links with fundamental physics issues like the role of entanglement and Bell-inequality violations.
3. Classical applications. Apply the newly developed mathematical tools of quantum computing to analyze problems in other areas, as we recently did for linear programs for the traveling salesman problem. This
third workpackage will have impact regardless of progress in building a quantum computer.
The PI is one of the world’s top researchers in each of these three areas."
Summary
"Quantum computing combines computer science, physics and mathematics to fundamentally speed up computation using effects from quantum physics. Starting in the early 1980s with Feynman and Deutsch, and gaining momentum in the 1990s with the algorithms of Shor and Grover, this very interdisciplinary area has potentially far reaching consequences. While a large-scale quantum computer has not been built yet, experimenters are getting more optimistic: a recent prediction is that it will take another 10-15 years.
However, the tasks where such a quantum computer would be able to significantly outperform classical computers are still quite limited, which lends urgency to finding new applications. This proposal will find more such tasks, and produce new insights into the strengths and weaknesses of quantum computing. It is divided into three workpackages:
1. Algorithms & complexity. Find new quantum algorithms that are more efficient than the best classical algorithms, for example for matrix multiplication and graph problems. Extend our knowledge of the ultimate limitations of quantum algorithms, and possible parallelization (which has barely been studied so far).
2. Quantum communication. Communication complexity analyzes the amount of communication needed to solve distributed computational tasks, where separate parties each hold part of the input. Find new
distributed problems where quantum communication outperforms classical communication, and explore links with fundamental physics issues like the role of entanglement and Bell-inequality violations.
3. Classical applications. Apply the newly developed mathematical tools of quantum computing to analyze problems in other areas, as we recently did for linear programs for the traveling salesman problem. This
third workpackage will have impact regardless of progress in building a quantum computer.
The PI is one of the world’s top researchers in each of these three areas."
Max ERC Funding
1 453 700 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ReCoDE
Project Reshaping cortical circuits to decrease binge eating
Researcher (PI) Frank MEYE
Host Institution (HI) UNIVERSITAIR MEDISCH CENTRUM UTRECHT
Call Details Starting Grant (StG), LS5, ERC-2018-STG
Summary Obesity and eating disorders are critical problems in society. Many patients with these brain diseases cope with stress by ravenous food intake (binge eating), which engenders new stress and maintains the pathology. Evidence-based treatments for this are urgently needed, but their implementation is hindered by a knowledge gap on: (i) which stress-driven neural disruptions cause binge eating, and (ii) whether these neural circuit changes can be normalized for therapeutic gain.
Studies in humans and rodents link binge eating to dysfunction of the prefrontal cortex (PFC), a brain region orchestrating the stress response. However, it is unknown how effects of stress on PFC output cause binge eating. The PFC prominently innervates the lateral hypothalamus (LHA), a region with a crucial role in managing food intake, yet little is known about the function of PFC regulation of the LHA. I predict that stress-induced binge eating requires a functional reorganization of prefrontal cortical control over lateral hypothalamus feeding circuits, and that this control can be restored to limit binge eating.
I propose a cutting-edge threefold strategy to address these hypotheses in mouse models:
1. I will unravel the make-up of PFC-LHA circuitry, combining electrophysiology, optogenetics and neural tracing. I will assess how stress functionally alters this complex network.
2. I will determine the concurrent activity at multiple sites within PFC-LHA circuitry as mice engage in stress-driven binge eating, using fiber photometric calcium recordings.
3. I will assess if normalizing stress-altered PFC-LHA synapses rebalances this circuitry in vivo and limits binge eating. For this I will combine optogenetic plasticity protocols, with fiber photometric measurements in freely moving mice.
Overall, this challenging project aims to unravel the unclear neurobiology of stress-induced binge eating. If successful, this would provide a key advance in understanding binge eating pathologies.
Summary
Obesity and eating disorders are critical problems in society. Many patients with these brain diseases cope with stress by ravenous food intake (binge eating), which engenders new stress and maintains the pathology. Evidence-based treatments for this are urgently needed, but their implementation is hindered by a knowledge gap on: (i) which stress-driven neural disruptions cause binge eating, and (ii) whether these neural circuit changes can be normalized for therapeutic gain.
Studies in humans and rodents link binge eating to dysfunction of the prefrontal cortex (PFC), a brain region orchestrating the stress response. However, it is unknown how effects of stress on PFC output cause binge eating. The PFC prominently innervates the lateral hypothalamus (LHA), a region with a crucial role in managing food intake, yet little is known about the function of PFC regulation of the LHA. I predict that stress-induced binge eating requires a functional reorganization of prefrontal cortical control over lateral hypothalamus feeding circuits, and that this control can be restored to limit binge eating.
I propose a cutting-edge threefold strategy to address these hypotheses in mouse models:
1. I will unravel the make-up of PFC-LHA circuitry, combining electrophysiology, optogenetics and neural tracing. I will assess how stress functionally alters this complex network.
2. I will determine the concurrent activity at multiple sites within PFC-LHA circuitry as mice engage in stress-driven binge eating, using fiber photometric calcium recordings.
3. I will assess if normalizing stress-altered PFC-LHA synapses rebalances this circuitry in vivo and limits binge eating. For this I will combine optogenetic plasticity protocols, with fiber photometric measurements in freely moving mice.
Overall, this challenging project aims to unravel the unclear neurobiology of stress-induced binge eating. If successful, this would provide a key advance in understanding binge eating pathologies.
Max ERC Funding
1 499 966 €
Duration
Start date: 2019-07-01, End date: 2024-06-30