Project acronym NEWIRES
Project Next Generation Semiconductor Nanowires
Researcher (PI) Kimberly Thelander
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary Semiconductor nanowires composed of III-V materials have enormous potential to add new functionality to electronics and optical applications. However, integration of these promising structures into applications is severely limited by the current near-universal reliance on gold nanoparticles as seeds for nanowire fabrication. Although highly controlled fabrication is achieved, this metal is entirely incompatible with the Si-based electronics industry. It also presents limitations for the extension of nanowire research towards novel materials not existing in bulk. To date, exploration of alternatives has been limited to selective-area and self-seeded processes, both of which have major limitations in terms of size and morphology control, potential to combine materials, and crystal structure tuning. There is also very little understanding of precisely why gold has proven so successful for nanowire growth, and which alternatives may yield comparable or better results. The aim of this project will be to explore alternative nanoparticle seed materials to go beyond the use of gold in III-V nanowire fabrication. This will be achieved using a unique and recently developed capability for aerosol-phase fabrication of highly controlled nanoparticles directly integrated with conventional nanowire fabrication equipment. The primary goal will be to deepen the understanding of the nanowire fabrication process, and the specific advantages (and limitations) of gold as a seed material, in order to develop and optimize alternatives. The use of a wide variety of seed particle materials in nanowire fabrication will greatly broaden the variety of novel structures that can be fabricated. The results will also transform the nanowire fabrication research field, in order to develop important connections between nanowire research and the semiconductor industry, and to greatly improve the viability of nanowire integration into future devices.
Summary
Semiconductor nanowires composed of III-V materials have enormous potential to add new functionality to electronics and optical applications. However, integration of these promising structures into applications is severely limited by the current near-universal reliance on gold nanoparticles as seeds for nanowire fabrication. Although highly controlled fabrication is achieved, this metal is entirely incompatible with the Si-based electronics industry. It also presents limitations for the extension of nanowire research towards novel materials not existing in bulk. To date, exploration of alternatives has been limited to selective-area and self-seeded processes, both of which have major limitations in terms of size and morphology control, potential to combine materials, and crystal structure tuning. There is also very little understanding of precisely why gold has proven so successful for nanowire growth, and which alternatives may yield comparable or better results. The aim of this project will be to explore alternative nanoparticle seed materials to go beyond the use of gold in III-V nanowire fabrication. This will be achieved using a unique and recently developed capability for aerosol-phase fabrication of highly controlled nanoparticles directly integrated with conventional nanowire fabrication equipment. The primary goal will be to deepen the understanding of the nanowire fabrication process, and the specific advantages (and limitations) of gold as a seed material, in order to develop and optimize alternatives. The use of a wide variety of seed particle materials in nanowire fabrication will greatly broaden the variety of novel structures that can be fabricated. The results will also transform the nanowire fabrication research field, in order to develop important connections between nanowire research and the semiconductor industry, and to greatly improve the viability of nanowire integration into future devices.
Max ERC Funding
1 496 246 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym NINA
Project Nitride-based nanostructured novel thermoelectric thin-film materials
Researcher (PI) Per Daniel Eklund
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary My recent discovery of the anomalously high thermoelectric power factor of ScN thin films demonstrates that unexpected thermoelectric materials can be found among the early transition-metal and rare-earth nitrides. Corroborated by first-principles calculations, we have well-founded hypotheses that these properties stem from nitrogen vacancies, dopants, and alloying, which introduce controllable sharp features with a large slope at the Fermi level, causing a drastically increased Seebeck coefficient. In-depth fundamental studies are needed to enable property tuning and materials design in these systems, to timely exploit my discovery and break new ground.
The project concerns fundamental, primarily experimental, studies on scandium nitride-based and related single-phase and nanostructured films. The overall goal is to understand the complex correlations between electronic, thermal and thermoelectric properties and structural features such as layering, orientation, epitaxy, dopants and lattice defects. Ab initio calculations of band structures, mixing thermodynamics, and properties are integrated with the experimental activities. Novel mechanisms are proposed for drastic reduction of the thermal conductivity with retained high power factor. This will be realized by intentionally introduced secondary phases and artificial nanolaminates; the layering causing discontinuities in the phonon distribution and thus reducing thermal conductivity.
My expertise in thin-film processing and advanced materials characterization places me in a unique position to pursue this novel high-gain approach to thermoelectrics, and an ERC starting grant will be essential in achieving critical mass and consolidating an internationally leading research platform. The scientific impact and vision is in pioneering an understanding of a novel class of thermoelectric materials with potential for thermoelectric devices for widespread use in environmentally friendly energy applications.
Summary
My recent discovery of the anomalously high thermoelectric power factor of ScN thin films demonstrates that unexpected thermoelectric materials can be found among the early transition-metal and rare-earth nitrides. Corroborated by first-principles calculations, we have well-founded hypotheses that these properties stem from nitrogen vacancies, dopants, and alloying, which introduce controllable sharp features with a large slope at the Fermi level, causing a drastically increased Seebeck coefficient. In-depth fundamental studies are needed to enable property tuning and materials design in these systems, to timely exploit my discovery and break new ground.
The project concerns fundamental, primarily experimental, studies on scandium nitride-based and related single-phase and nanostructured films. The overall goal is to understand the complex correlations between electronic, thermal and thermoelectric properties and structural features such as layering, orientation, epitaxy, dopants and lattice defects. Ab initio calculations of band structures, mixing thermodynamics, and properties are integrated with the experimental activities. Novel mechanisms are proposed for drastic reduction of the thermal conductivity with retained high power factor. This will be realized by intentionally introduced secondary phases and artificial nanolaminates; the layering causing discontinuities in the phonon distribution and thus reducing thermal conductivity.
My expertise in thin-film processing and advanced materials characterization places me in a unique position to pursue this novel high-gain approach to thermoelectrics, and an ERC starting grant will be essential in achieving critical mass and consolidating an internationally leading research platform. The scientific impact and vision is in pioneering an understanding of a novel class of thermoelectric materials with potential for thermoelectric devices for widespread use in environmentally friendly energy applications.
Max ERC Funding
1 499 976 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym SIMONE
Project Single Molecule Nano Electronics (SIMONE)
Researcher (PI) Kasper Moth-Poulsen
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary "The development of micro fabrication and field effect transistors are key enabling technologies for todays information society. It is hard to imagine superfast and omnipresent electronic devices, information technology, the Internet and mobile communication technologies without access to continuously cheaper and miniaturized microprocessors. The giant leaps in performance of microprocessors from the first personal computing machines to todays mobile devices are to a large extent realized via miniaturization of the active components. The ultimate limit of miniaturization of electronic components is the realization of single molecule electronics. Due to fundamental physical limitations, single molecule resolution cannot be achieved using classical top-down lithographic techniques. At the same time, existing surface functionalization schemes do not provide any means of placing a single molecule with high precision at a specific location on a nanostructure. This project has the ambitious goal of establishing the first method ever allowing for self-assembly of multiple single molecule devices in a parallel way and thereby provide the first method ever allowing for multiple individual single molecule components to operate together in the same device.
The impact of the technology platforms described herein goes vastly beyond the field of single molecule electronics and utilization in ultra-sensitive plasmonic biosensors with a digital single molecule response will be explored in parallel with the main roadmaps of the project."
Summary
"The development of micro fabrication and field effect transistors are key enabling technologies for todays information society. It is hard to imagine superfast and omnipresent electronic devices, information technology, the Internet and mobile communication technologies without access to continuously cheaper and miniaturized microprocessors. The giant leaps in performance of microprocessors from the first personal computing machines to todays mobile devices are to a large extent realized via miniaturization of the active components. The ultimate limit of miniaturization of electronic components is the realization of single molecule electronics. Due to fundamental physical limitations, single molecule resolution cannot be achieved using classical top-down lithographic techniques. At the same time, existing surface functionalization schemes do not provide any means of placing a single molecule with high precision at a specific location on a nanostructure. This project has the ambitious goal of establishing the first method ever allowing for self-assembly of multiple single molecule devices in a parallel way and thereby provide the first method ever allowing for multiple individual single molecule components to operate together in the same device.
The impact of the technology platforms described herein goes vastly beyond the field of single molecule electronics and utilization in ultra-sensitive plasmonic biosensors with a digital single molecule response will be explored in parallel with the main roadmaps of the project."
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31