Project acronym 3D_Tryps
Project The role of three-dimensional genome architecture in antigenic variation
Researcher (PI) Tim Nicolai SIEGEL
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Summary
Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym AIM2 INFLAMMASOME
Project Cytosolic recognition of foreign nucleic acids: Molecular and functional characterization of AIM2, a central player in DNA-triggered inflammasome activation
Researcher (PI) Veit Hornung
Host Institution (HI) UNIVERSITAETSKLINIKUM BONN
Call Details Starting Grant (StG), LS6, ERC-2009-StG
Summary Host cytokines, chemokines and type I IFNs are critical effectors of the innate immune response to viral and bacterial pathogens. Several classes of germ-line encoded pattern recognition receptors have been identified, which sense non-self nucleic acids and trigger these responses. Recently NLRP-3, a member of the NOD-like receptor (NLR) family, has been shown to sense endogenous danger signals, environmental insults and the DNA viruses adenovirus and HSV. Activation of NLRP-3 induces the formation of a large multiprotein complex in cells termed inflammasome , which controls the activity of pro-caspase-1 and the maturation of pro-IL-1² and pro-IL18 into their active forms. NLRP-3, however, does not regulate these responses to double stranded cytosolic DNA. We identified the cytosolic protein AIM2 as the missing receptor for cytosolic DNA. AIM2 contains a HIN200 domain, which binds to DNA and a pyrin domain, which associates with the adapter molecule ASC to activate both NF-ºB and caspase-1. Knock down of AIM2 down-regulates caspase-1-mediated IL-1² responses following DNA stimulation or vaccinia virus infection. Collectively, these observations demonstrate that AIM2 forms an inflammasome with the DNA ligand and ASC to activate caspase-1. Our underlying hypothesis for this proposal is that AIM2 plays a central role in host-defence to cytosolic microbial pathogens and also in DNA-triggered autoimmunity. The goals of this research proposal are to further characterize the DNA ligand for AIM2, to explore the molecular mechanisms of AIM2 activation, to define the contribution of AIM2 to host-defence against viral and bacterial pathogens and to assess its function in nucleic acid triggered autoimmune disease. The characterization of AIM2 and its role in innate immunity could open new avenues in the advancement of immunotherapy and treatment of autoimmune disease.
Summary
Host cytokines, chemokines and type I IFNs are critical effectors of the innate immune response to viral and bacterial pathogens. Several classes of germ-line encoded pattern recognition receptors have been identified, which sense non-self nucleic acids and trigger these responses. Recently NLRP-3, a member of the NOD-like receptor (NLR) family, has been shown to sense endogenous danger signals, environmental insults and the DNA viruses adenovirus and HSV. Activation of NLRP-3 induces the formation of a large multiprotein complex in cells termed inflammasome , which controls the activity of pro-caspase-1 and the maturation of pro-IL-1² and pro-IL18 into their active forms. NLRP-3, however, does not regulate these responses to double stranded cytosolic DNA. We identified the cytosolic protein AIM2 as the missing receptor for cytosolic DNA. AIM2 contains a HIN200 domain, which binds to DNA and a pyrin domain, which associates with the adapter molecule ASC to activate both NF-ºB and caspase-1. Knock down of AIM2 down-regulates caspase-1-mediated IL-1² responses following DNA stimulation or vaccinia virus infection. Collectively, these observations demonstrate that AIM2 forms an inflammasome with the DNA ligand and ASC to activate caspase-1. Our underlying hypothesis for this proposal is that AIM2 plays a central role in host-defence to cytosolic microbial pathogens and also in DNA-triggered autoimmunity. The goals of this research proposal are to further characterize the DNA ligand for AIM2, to explore the molecular mechanisms of AIM2 activation, to define the contribution of AIM2 to host-defence against viral and bacterial pathogens and to assess its function in nucleic acid triggered autoimmune disease. The characterization of AIM2 and its role in innate immunity could open new avenues in the advancement of immunotherapy and treatment of autoimmune disease.
Max ERC Funding
1 727 920 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym ALLERGUT
Project Mucosal Tolerance and Allergic Predisposition: Does it all start in the gut?
Researcher (PI) Caspar OHNMACHT
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Currently, more than 30% of all Europeans suffer from one or more allergic disorder but treatment is still mostly symptomatic due to a lack of understanding the underlying causality. Allergies are caused by type 2 immune responses triggered by recognition of harmless antigens. Both genetic and environmental factors have been proposed to favour allergic predisposition and both factors have a huge impact on the symbiotic microbiota and the intestinal immune system. Recently we and others showed that the transcription factor ROR(γt) seems to play a key role in mucosal tolerance in the gut and also regulates intestinal type 2 immune responses.
Based on these results I postulate two major events in the gut for the development of an allergy in the lifetime of an individual: First, a failure to establish mucosal tolerance or anergy constitutes a necessity for the outbreak of allergic symptoms and allergic disease. Second, a certain ‘core’ microbiome or pathway of the intestinal microbiota predispose certain individuals for the later development of allergic disorders. Therefore, I will address the following aims:
1) Influence of ROR(γt) on mucosal tolerance induction and allergic disorders
2) Elucidate the T cell receptor repertoire of intestinal Th2 and ROR(γt)+ Tregs and assess the role of alternative NFκB pathway for induction of mucosal tolerance
3) Identification of ‘core’ microbiome signatures or metabolic pathways that favour allergic predisposition
ALLERGUT will provide ground-breaking knowledge on molecular mechanisms of the failure of mucosal tolerance in the gut and will prove if the resident ROR(γt)+ T(reg) cells can function as a mechanistic starting point for molecular intervention strategies on the background of the hygiene hypothesis. The vision of ALLERGUT is to diagnose mucosal disbalance, prevent and treat allergic disorders even before outbreak and thereby promote Public Health initiative for better living.
Summary
Currently, more than 30% of all Europeans suffer from one or more allergic disorder but treatment is still mostly symptomatic due to a lack of understanding the underlying causality. Allergies are caused by type 2 immune responses triggered by recognition of harmless antigens. Both genetic and environmental factors have been proposed to favour allergic predisposition and both factors have a huge impact on the symbiotic microbiota and the intestinal immune system. Recently we and others showed that the transcription factor ROR(γt) seems to play a key role in mucosal tolerance in the gut and also regulates intestinal type 2 immune responses.
Based on these results I postulate two major events in the gut for the development of an allergy in the lifetime of an individual: First, a failure to establish mucosal tolerance or anergy constitutes a necessity for the outbreak of allergic symptoms and allergic disease. Second, a certain ‘core’ microbiome or pathway of the intestinal microbiota predispose certain individuals for the later development of allergic disorders. Therefore, I will address the following aims:
1) Influence of ROR(γt) on mucosal tolerance induction and allergic disorders
2) Elucidate the T cell receptor repertoire of intestinal Th2 and ROR(γt)+ Tregs and assess the role of alternative NFκB pathway for induction of mucosal tolerance
3) Identification of ‘core’ microbiome signatures or metabolic pathways that favour allergic predisposition
ALLERGUT will provide ground-breaking knowledge on molecular mechanisms of the failure of mucosal tolerance in the gut and will prove if the resident ROR(γt)+ T(reg) cells can function as a mechanistic starting point for molecular intervention strategies on the background of the hygiene hypothesis. The vision of ALLERGUT is to diagnose mucosal disbalance, prevent and treat allergic disorders even before outbreak and thereby promote Public Health initiative for better living.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym ARCHAELLUM
Project Assembly and function of the crenarchaeal flagellum
Researcher (PI) Sonja-Verena Albers
Host Institution (HI) ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Call Details Starting Grant (StG), LS6, ERC-2012-StG_20111109
Summary "Archaea constitute the third domain of life and are believed to be close to the origin of life. They comprise a diverse group of micro-organisms that combine bacterial and eukaryotic features, but also employ many novel mechanisms. They possess a unique cell envelope with a cytoplasmic membrane of ether lipids surrounded by a proteinaceous S-layer and various cell appendages such as flagella, pili and more unusual structures. Studies have shown that the archaeal flagellum is an unique structure as it functionally resembles the bacterial flagellum, but structurally it is a simple type IV pilus. Moreover, we have shown that this type IV pilus can rotate. Therefore I propose to name the archaeal flagellum, the archaellum, as it is fundamentally different from the bacterial flagellum.
In this proposal I aim to understand the assembly and mechanism of rotation of the archaellum of the thermocacidophilic crenarchaen Sulfolobus acidocaldarius by using biochemical, genetic and biophysical methods. The main milestons are:
- Biochemical and structural characterization of all archaellum subunits
- To understand the assembly pathway of the archaellum and the interactions of its different
subunits
- To understand how rotation of the filament is achieved and which subunits are important
for this movement
This work will identify a new, relatively simple motor complex that has evolved from primordial type IV pili assembly machineries and therefore uncover general principles of macromolecular assemblies at cellular surfaces and a novel mechanism to generate mechanical force that can be translated into movement."
Summary
"Archaea constitute the third domain of life and are believed to be close to the origin of life. They comprise a diverse group of micro-organisms that combine bacterial and eukaryotic features, but also employ many novel mechanisms. They possess a unique cell envelope with a cytoplasmic membrane of ether lipids surrounded by a proteinaceous S-layer and various cell appendages such as flagella, pili and more unusual structures. Studies have shown that the archaeal flagellum is an unique structure as it functionally resembles the bacterial flagellum, but structurally it is a simple type IV pilus. Moreover, we have shown that this type IV pilus can rotate. Therefore I propose to name the archaeal flagellum, the archaellum, as it is fundamentally different from the bacterial flagellum.
In this proposal I aim to understand the assembly and mechanism of rotation of the archaellum of the thermocacidophilic crenarchaen Sulfolobus acidocaldarius by using biochemical, genetic and biophysical methods. The main milestons are:
- Biochemical and structural characterization of all archaellum subunits
- To understand the assembly pathway of the archaellum and the interactions of its different
subunits
- To understand how rotation of the filament is achieved and which subunits are important
for this movement
This work will identify a new, relatively simple motor complex that has evolved from primordial type IV pili assembly machineries and therefore uncover general principles of macromolecular assemblies at cellular surfaces and a novel mechanism to generate mechanical force that can be translated into movement."
Max ERC Funding
1 464 317 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym ARMOR-T
Project Armoring multifunctional T cells for cancer therapy
Researcher (PI) Sebastian Kobold
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS7, ERC-2017-STG
Summary Adoptive T cell therapy (ACT) is a powerful approach to treat even advanced cancer diseases where poor prognosis calls for innovative treatments. However ACT is critically limited by insufficient T cell infiltration into the tumor, T cell activation at the tumor site and local T cell suppression. Few advances have been made in the field to tackle these limitations besides increasing T cell activation. My group has focussed on these unaddressed issues but came to realise that tackling these one by one will not be sufficient. I have developed a panel of unpublished chemokine receptors and innovative modular antibody-activated receptors which have the potential to overcome the limitations of ACT against solid tumors. This ground-breaking portfolio places my group in the unique position to address combination of synergistic receptors and enable cellular therapies in previously unsuccessful indications. My project will provide the rationale for provision of an effective cancer treatment. The goal is to develop the next generation of ACT through T cell engineering both by forced expression of migratory and activating receptors and simultaneous deletion of immune suppressive molecules by gene editing. ARMOR-T will provide the basis for further preclinical and clinical development of a pioneering cellular product devoid of the limitations of available products to date. I will prove 1) synergy between migratory and modular activating receptors, 2) feasibility to integrate gene editing into a T cell expansion protocol, 3) synergy between gene editing, migratory and modular receptors and 4) efficacy, safety and mode of action. The main work of the project will be carried out in models of pancreatic cancer. The ARMOR-T platform will subsequently be translated to other cancer entities where response to ACT is likely such as melanoma, breast or colon cancer, providing less toxic and more effective therapies to otherwise untreatable disease.
Summary
Adoptive T cell therapy (ACT) is a powerful approach to treat even advanced cancer diseases where poor prognosis calls for innovative treatments. However ACT is critically limited by insufficient T cell infiltration into the tumor, T cell activation at the tumor site and local T cell suppression. Few advances have been made in the field to tackle these limitations besides increasing T cell activation. My group has focussed on these unaddressed issues but came to realise that tackling these one by one will not be sufficient. I have developed a panel of unpublished chemokine receptors and innovative modular antibody-activated receptors which have the potential to overcome the limitations of ACT against solid tumors. This ground-breaking portfolio places my group in the unique position to address combination of synergistic receptors and enable cellular therapies in previously unsuccessful indications. My project will provide the rationale for provision of an effective cancer treatment. The goal is to develop the next generation of ACT through T cell engineering both by forced expression of migratory and activating receptors and simultaneous deletion of immune suppressive molecules by gene editing. ARMOR-T will provide the basis for further preclinical and clinical development of a pioneering cellular product devoid of the limitations of available products to date. I will prove 1) synergy between migratory and modular activating receptors, 2) feasibility to integrate gene editing into a T cell expansion protocol, 3) synergy between gene editing, migratory and modular receptors and 4) efficacy, safety and mode of action. The main work of the project will be carried out in models of pancreatic cancer. The ARMOR-T platform will subsequently be translated to other cancer entities where response to ACT is likely such as melanoma, breast or colon cancer, providing less toxic and more effective therapies to otherwise untreatable disease.
Max ERC Funding
1 636 710 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym AutoCPS
Project Automated Synthesis of Cyber-Physical Systems: A Compositional Approach
Researcher (PI) Majid ZAMANI
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Embedded Control software plays a critical role in many safety-critical applications. For instance, modern vehicles use interacting software and hardware components to control steering and braking. Control software forms the main core of autonomous transportation, power networks, and aerospace. These applications are examples of cyber-physical systems (CPS), where distributed software systems interact tightly with spatially distributed physical systems with complex dynamics. CPS are becoming ubiquitous due to rapid advances in computation, communication, and memory. However, the development of core control software running in these systems is still ad hoc and error-prone and much of the engineering costs today go into ensuring that control software works correctly.
In order to reduce the design costs and guaranteeing its correctness, I aim to develop an innovative design process, in which the embedded control software is synthesized from high-level correctness requirements in a push-button and formal manner. Requirements for modern CPS applications go beyond conventional properties in control theory (e.g. stability) and in computer science (e.g. protocol design). Here, I propose a compositional methodology for automated synthesis of control software by combining compositional techniques from computer science (e.g. assume-guarantee rules) with those from control theory (e.g. small-gain theorems). I will leverage decomposition and abstraction as two key tools to tackle the design complexity, by either breaking the design object into semi-independent parts or by aggregating components and eliminating unnecessary details. My project is high-risk because it requires a fundamental re-thinking of design techniques till now studied in separate disciplines. It is high-gain because a successful method for automated synthesis of control software will make it finally possible to develop complex yet reliable CPS applications while considerably reducing the engineering cost.
Summary
Embedded Control software plays a critical role in many safety-critical applications. For instance, modern vehicles use interacting software and hardware components to control steering and braking. Control software forms the main core of autonomous transportation, power networks, and aerospace. These applications are examples of cyber-physical systems (CPS), where distributed software systems interact tightly with spatially distributed physical systems with complex dynamics. CPS are becoming ubiquitous due to rapid advances in computation, communication, and memory. However, the development of core control software running in these systems is still ad hoc and error-prone and much of the engineering costs today go into ensuring that control software works correctly.
In order to reduce the design costs and guaranteeing its correctness, I aim to develop an innovative design process, in which the embedded control software is synthesized from high-level correctness requirements in a push-button and formal manner. Requirements for modern CPS applications go beyond conventional properties in control theory (e.g. stability) and in computer science (e.g. protocol design). Here, I propose a compositional methodology for automated synthesis of control software by combining compositional techniques from computer science (e.g. assume-guarantee rules) with those from control theory (e.g. small-gain theorems). I will leverage decomposition and abstraction as two key tools to tackle the design complexity, by either breaking the design object into semi-independent parts or by aggregating components and eliminating unnecessary details. My project is high-risk because it requires a fundamental re-thinking of design techniques till now studied in separate disciplines. It is high-gain because a successful method for automated synthesis of control software will make it finally possible to develop complex yet reliable CPS applications while considerably reducing the engineering cost.
Max ERC Funding
1 470 800 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym Baby DCs
Project Age-dependent Regulation of Dendritic Cell Development and Function
Researcher (PI) Barbara Ursula SCHRAML
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Early life immune balance is essential for survival and establishment of healthy immunity in later life. We aim to define how age-dependent regulation of dendritic cell (DC) development contributes to this crucial immune balance. DCs are versatile controllers of immunity that in neonates are qualitatively distinct from adults. Why such age-dependent differences exist is unclear but newborn DCs are considered underdeveloped and functionally immature.
Using ontogenetic tracing of conventional DC precursors, I have found a previously unappreciated developmental heterogeneity of DCs that is particularly prominent in young mice. Preliminary data indicate that distinct waves of DC poiesis contribute to the functional differences between neonatal and adult DCs. I hypothesize that the neonatal DC compartment is not immature but rather that DC poiesis is developmentally regulated to create essential age-dependent immune balance. Further, I have identified a unique situation in early life to address a fundamental biological question, namely to what extent cellular function is pre-programmed by developmental origin (nature) versus environmental factors (nurture).
In this proposal, we will first use novel models to fate map the origin of the DC compartment with age. We will then define to what extent cellular origin determines age-dependent functions of DCs in immunity. Using innovative comparative gene expression profiling and integrative epigenomic analysis the cell intrinsic mechanisms regulating the age-dependent functions of DCs will be characterized. Because environmental factors in utero and after birth critically influence immune balance, we will finally define the impact of maternal infection and metabolic disease, as well as early microbial encounter on DC poiesis. Characterizing how developmentally regulated DC poiesis shapes the unique features of early life immunity will provide novel insights into immune development that are vital to advance vaccine strategies.
Summary
Early life immune balance is essential for survival and establishment of healthy immunity in later life. We aim to define how age-dependent regulation of dendritic cell (DC) development contributes to this crucial immune balance. DCs are versatile controllers of immunity that in neonates are qualitatively distinct from adults. Why such age-dependent differences exist is unclear but newborn DCs are considered underdeveloped and functionally immature.
Using ontogenetic tracing of conventional DC precursors, I have found a previously unappreciated developmental heterogeneity of DCs that is particularly prominent in young mice. Preliminary data indicate that distinct waves of DC poiesis contribute to the functional differences between neonatal and adult DCs. I hypothesize that the neonatal DC compartment is not immature but rather that DC poiesis is developmentally regulated to create essential age-dependent immune balance. Further, I have identified a unique situation in early life to address a fundamental biological question, namely to what extent cellular function is pre-programmed by developmental origin (nature) versus environmental factors (nurture).
In this proposal, we will first use novel models to fate map the origin of the DC compartment with age. We will then define to what extent cellular origin determines age-dependent functions of DCs in immunity. Using innovative comparative gene expression profiling and integrative epigenomic analysis the cell intrinsic mechanisms regulating the age-dependent functions of DCs will be characterized. Because environmental factors in utero and after birth critically influence immune balance, we will finally define the impact of maternal infection and metabolic disease, as well as early microbial encounter on DC poiesis. Characterizing how developmentally regulated DC poiesis shapes the unique features of early life immunity will provide novel insights into immune development that are vital to advance vaccine strategies.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym BIO-IRT
Project Biologically individualized, model-based radiotherapy on the basis of multi-parametric molecular tumour profiling
Researcher (PI) Daniela Thorwarth
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary High precision radiotherapy (RT) allows extremely flexible tumour treatments achieving highly conformal radiation doses while sparing surrounding organs at risk. Nevertheless, failure rates of up to 50% are reported for head and neck cancer (HNC) due to radiation resistance induced by pathophysiologic factors such as hypoxia and other clinical factors as HPV-status, stage and tumour volume.
This project aims at developing a multi-parametric model for individualized RT (iRT) dose prescriptions in HNC based on biological markers and functional PET/MR imaging. This project goes far beyond current research standards and clinical practice as it aims for establishing hypoxia PET and f-MRI as well as biological markers in HNC as a role model for a novel concept from anatomy-based to biologically iRT.
During this project, a multi-parametric model will be developed on a preclinical basis that combines biological markers such as different oncogenes and hypoxia gene classifier with functional PET/MR imaging, such as FMISO PET in combination with different f-MRI techniques, like DW-, DCE- and BOLD-MRI in addition to MR spectroscopy. The ultimate goal of this project is a multi-parametric model to predict therapy outcome and guide iRT.
In a second part, a clinical study will be carried out to validate the preclinical model in patients. Based on the most informative radiobiological and imaging parameters as identified during the pre-clinical phase, biological markers and advanced PET/MR imaging will be evaluated in terms of their potential for iRT dose prescription.
Successful development of a model for biologically iRT prescription on the basis of multi-parametric molecular profiling would provide a unique basis for personalized cancer treatment. A validated multi-parametric model for RT outcome would represent a paradigm shift from anatomy-based to biologically iRT concepts with the ultimate goal of improving cancer cure rates.
Summary
High precision radiotherapy (RT) allows extremely flexible tumour treatments achieving highly conformal radiation doses while sparing surrounding organs at risk. Nevertheless, failure rates of up to 50% are reported for head and neck cancer (HNC) due to radiation resistance induced by pathophysiologic factors such as hypoxia and other clinical factors as HPV-status, stage and tumour volume.
This project aims at developing a multi-parametric model for individualized RT (iRT) dose prescriptions in HNC based on biological markers and functional PET/MR imaging. This project goes far beyond current research standards and clinical practice as it aims for establishing hypoxia PET and f-MRI as well as biological markers in HNC as a role model for a novel concept from anatomy-based to biologically iRT.
During this project, a multi-parametric model will be developed on a preclinical basis that combines biological markers such as different oncogenes and hypoxia gene classifier with functional PET/MR imaging, such as FMISO PET in combination with different f-MRI techniques, like DW-, DCE- and BOLD-MRI in addition to MR spectroscopy. The ultimate goal of this project is a multi-parametric model to predict therapy outcome and guide iRT.
In a second part, a clinical study will be carried out to validate the preclinical model in patients. Based on the most informative radiobiological and imaging parameters as identified during the pre-clinical phase, biological markers and advanced PET/MR imaging will be evaluated in terms of their potential for iRT dose prescription.
Successful development of a model for biologically iRT prescription on the basis of multi-parametric molecular profiling would provide a unique basis for personalized cancer treatment. A validated multi-parametric model for RT outcome would represent a paradigm shift from anatomy-based to biologically iRT concepts with the ultimate goal of improving cancer cure rates.
Max ERC Funding
1 370 799 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym BIOSENSORIMAGING
Project Hyperpolarized Biosensors in Molecular Imaging
Researcher (PI) Leif Schröder
Host Institution (HI) FORSCHUNGSVERBUND BERLIN EV
Call Details Starting Grant (StG), LS7, ERC-2009-StG
Summary Xenon biosensors have an outstanding potential to increase the significance of magnetic resonance imaging (MRI) in molecular imaging and to combine the advantages of MRI with the high sensitivity of hyperpolarized Xe-129 and the specificity of a functionalized contrast agent. Based on new detection schemes (Hyper-CEST method) in Xe MRI, this novel concept in molecular diagnostics will be made available for biomedical applications. The advancement focuses on high-sensitivity in vitro diagnostics for localization of tumour cells in cell cultures and first demonstrations on animal models based on a transferrin-functionalized biosensor. Such a sensor will enable detection of subcutaneous tumours at high sensitivity without any background signal. More detailed work on the different available Hyper-CEST contrast parameters focuses on an absolute quantification of new molecular markers that will improve non-invasive tumour diagnostics significantly. NMR detection of functionalized Xe biosensors have the potential to close the sensitivity gap between modalities of nuclear medicine like PET/SPECT and MRI without using ionizing radiation or making compromises in penetration depth like in optical methods.
Summary
Xenon biosensors have an outstanding potential to increase the significance of magnetic resonance imaging (MRI) in molecular imaging and to combine the advantages of MRI with the high sensitivity of hyperpolarized Xe-129 and the specificity of a functionalized contrast agent. Based on new detection schemes (Hyper-CEST method) in Xe MRI, this novel concept in molecular diagnostics will be made available for biomedical applications. The advancement focuses on high-sensitivity in vitro diagnostics for localization of tumour cells in cell cultures and first demonstrations on animal models based on a transferrin-functionalized biosensor. Such a sensor will enable detection of subcutaneous tumours at high sensitivity without any background signal. More detailed work on the different available Hyper-CEST contrast parameters focuses on an absolute quantification of new molecular markers that will improve non-invasive tumour diagnostics significantly. NMR detection of functionalized Xe biosensors have the potential to close the sensitivity gap between modalities of nuclear medicine like PET/SPECT and MRI without using ionizing radiation or making compromises in penetration depth like in optical methods.
Max ERC Funding
1 848 600 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym BREATHE
Project Biochemically modified messenger RNA encoding nucleases for in vivo gene correction of severe inherited lung diseases
Researcher (PI) Michael Kormann
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Starting Grant (StG), LS7, ERC-2014-STG
Summary Surfactant Protein B (SP-B) deficiency and Cystic Fibrosis (CF) are severe, fatal inherited diseases affecting the lungs of ten thousands of people, for which there is currently no available cure. Although gene therapy is a promising therapeutic approach, various technical problems, including numerous physical and immune-mediated barriers, have prevented successful application to date. My recent studies were the first to demonstrate the life-saving efficacy of repeated pulmonary delivery of chemically modified messenger RNA (mRNA) in a mouse model of congenital SP-B deficiency. By incorporating balanced amounts of modified nucleotides to mimic endogenous transcripts, I developed a safe and therapeutically efficient vehicle for lung transfection that eliminates the risk of genomic integration commonly associated with DNA-based vectors. I also assessed the delivery of mRNA-encoded site-specific nucleases to the lung to facilitate targeted gene correction of the underlying disease-causing mutations. In comprehensive studies, we show that a single application of nucleases encoded by nucleotide-modified RNA (nec-mRNA) can generate in vivo correction of terminally differentiated alveolar type II cells, which more than quadrupled the life span of SP-B deficient mice. Together with my working group, I aim to further develop this technology to enhance the efficiency and safety of nec-mRNA-mediated in vivo lung stem cell targeting, providing an ultimate cure by permanent correction. Specifically, we will test this approach in humanized mouse models of SP-B deficiency and CF. Developing and genetically engineering humanized models in vivo will be a critical step towards the safe translation of mRNA based nuclease technology to the clinic. With my competitive edge in lung-transfection technology and strong data, I feel that my group is uniquely suited to achieve these goals and to make a highly valuable contribution to the development of an efficient treatment.
Summary
Surfactant Protein B (SP-B) deficiency and Cystic Fibrosis (CF) are severe, fatal inherited diseases affecting the lungs of ten thousands of people, for which there is currently no available cure. Although gene therapy is a promising therapeutic approach, various technical problems, including numerous physical and immune-mediated barriers, have prevented successful application to date. My recent studies were the first to demonstrate the life-saving efficacy of repeated pulmonary delivery of chemically modified messenger RNA (mRNA) in a mouse model of congenital SP-B deficiency. By incorporating balanced amounts of modified nucleotides to mimic endogenous transcripts, I developed a safe and therapeutically efficient vehicle for lung transfection that eliminates the risk of genomic integration commonly associated with DNA-based vectors. I also assessed the delivery of mRNA-encoded site-specific nucleases to the lung to facilitate targeted gene correction of the underlying disease-causing mutations. In comprehensive studies, we show that a single application of nucleases encoded by nucleotide-modified RNA (nec-mRNA) can generate in vivo correction of terminally differentiated alveolar type II cells, which more than quadrupled the life span of SP-B deficient mice. Together with my working group, I aim to further develop this technology to enhance the efficiency and safety of nec-mRNA-mediated in vivo lung stem cell targeting, providing an ultimate cure by permanent correction. Specifically, we will test this approach in humanized mouse models of SP-B deficiency and CF. Developing and genetically engineering humanized models in vivo will be a critical step towards the safe translation of mRNA based nuclease technology to the clinic. With my competitive edge in lung-transfection technology and strong data, I feel that my group is uniquely suited to achieve these goals and to make a highly valuable contribution to the development of an efficient treatment.
Max ERC Funding
1 497 125 €
Duration
Start date: 2015-04-01, End date: 2020-03-31