Project acronym EMERG-ANT
Project Ant navigation: how complex behaviours emerge from mini-brains in interaction with their natural habitats
Researcher (PI) Antoine WYSTRACH
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS8, ERC-2017-STG
Summary Navigation is one of the most crucial and most challenging problems animals face. Behavioural analyses have shown that animals make use of a number of different mechanisms to navigate, but very little is known of how spatial information is processed and integrated by the brain. This project will exploit the stunning ability of ants in learning long visual routes to investigate the mechanisms of navigation in a brain numerically much simpler than vertebrate. We will combine an ecological approach with state-of-the-art technologies to enable a thorough control of sensory-motor cues while the ant is navigating in virtual-reality reconstructions of its natural environments. This new and powerful method will enable us to dissect the mechanisms underlying the emergence of navigational behaviours by performing straightforward manipulations. The results will be modelled in the light of insect neurobiology and integrated into an increasingly complete neural architecture. This neural architecture will be embedded into an agent navigating in the same virtual-reality environment as the real ants for testing. The advantage of such an inter-disciplinary approach is that failures of our agent will help us identify gaps in our knowledge and thus fuel new experimentation. Reciprocally, our agent will become increasingly refined in the light of incoming experimental results. This will create a positive feedback towards a complete, multi-level understanding of navigation in the wild. The findings will inspire new robust solutions for navigational problems that can be applied to bio-robotics.
Summary
Navigation is one of the most crucial and most challenging problems animals face. Behavioural analyses have shown that animals make use of a number of different mechanisms to navigate, but very little is known of how spatial information is processed and integrated by the brain. This project will exploit the stunning ability of ants in learning long visual routes to investigate the mechanisms of navigation in a brain numerically much simpler than vertebrate. We will combine an ecological approach with state-of-the-art technologies to enable a thorough control of sensory-motor cues while the ant is navigating in virtual-reality reconstructions of its natural environments. This new and powerful method will enable us to dissect the mechanisms underlying the emergence of navigational behaviours by performing straightforward manipulations. The results will be modelled in the light of insect neurobiology and integrated into an increasingly complete neural architecture. This neural architecture will be embedded into an agent navigating in the same virtual-reality environment as the real ants for testing. The advantage of such an inter-disciplinary approach is that failures of our agent will help us identify gaps in our knowledge and thus fuel new experimentation. Reciprocally, our agent will become increasingly refined in the light of incoming experimental results. This will create a positive feedback towards a complete, multi-level understanding of navigation in the wild. The findings will inspire new robust solutions for navigational problems that can be applied to bio-robotics.
Max ERC Funding
1 439 893 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym EPIC
Project Energy transfer Processes at gas/wall Interfaces under extreme Conditions
Researcher (PI) Brian PETERSON
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary In the future, high-efficiency (low CO2) vehicles will be powered in part by reinvented internal combustion (IC) engines that are “downsized” and operate with new combustion modes. These engine concepts are subject to problems such as increased transient heat transfer and flame quenching in small passages. Near-wall transient heat transfer is not well-understood in engine environments; the gas is not constant in pressure, temperature, or velocity such that physical processes quickly digress from established theory. EPIC is uniquely placed to address these problems. A novel constant-volume chamber, offering realistic engine passages but with optical access, and which emulates the pressure/temperature time curve of a real engine, will be developed. This chamber will make it possible to measure the highly transient and highly variable processes at the gas/wall interface (including a highly dynamic flame front) for single- and two-wall passages. Measurements will be made using a suite of advanced laser diagnostics; a novel aspect of the proposed work as they have not been used in combination to study such a problem before. Hybrid fs/ps rotational coherent Raman (i.e. CARS) in a line format will provide transient gas temperature and species profiles normal to the wall surface in high-risk/high-gain packages. PIV/PTV measurements will further elucidate flow dynamics at the surface. Planar OH-LIF will help interpret CARS measurements and provide necessary details of flame transport and quenching. As the flame approaches the surface, phosphor thermometry will measure wall temperature and heat flux to elucidate the highly dynamic inter-coupling between flame and wall. EPIC will provide substantial breakthroughs in knowledge by measuring unsteady boundary layer development and understanding its influence on flame quenching for single- and two-wall surfaces. As such, EPIC will provide the fundamental knowledge that supports cleaner combustion technology for the future.
Summary
In the future, high-efficiency (low CO2) vehicles will be powered in part by reinvented internal combustion (IC) engines that are “downsized” and operate with new combustion modes. These engine concepts are subject to problems such as increased transient heat transfer and flame quenching in small passages. Near-wall transient heat transfer is not well-understood in engine environments; the gas is not constant in pressure, temperature, or velocity such that physical processes quickly digress from established theory. EPIC is uniquely placed to address these problems. A novel constant-volume chamber, offering realistic engine passages but with optical access, and which emulates the pressure/temperature time curve of a real engine, will be developed. This chamber will make it possible to measure the highly transient and highly variable processes at the gas/wall interface (including a highly dynamic flame front) for single- and two-wall passages. Measurements will be made using a suite of advanced laser diagnostics; a novel aspect of the proposed work as they have not been used in combination to study such a problem before. Hybrid fs/ps rotational coherent Raman (i.e. CARS) in a line format will provide transient gas temperature and species profiles normal to the wall surface in high-risk/high-gain packages. PIV/PTV measurements will further elucidate flow dynamics at the surface. Planar OH-LIF will help interpret CARS measurements and provide necessary details of flame transport and quenching. As the flame approaches the surface, phosphor thermometry will measure wall temperature and heat flux to elucidate the highly dynamic inter-coupling between flame and wall. EPIC will provide substantial breakthroughs in knowledge by measuring unsteady boundary layer development and understanding its influence on flame quenching for single- and two-wall surfaces. As such, EPIC will provide the fundamental knowledge that supports cleaner combustion technology for the future.
Max ERC Funding
1 499 351 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym ExtreFlow
Project Extreme deformation of structured fluids and interfaces. Exploiting ultrafast collapse and yielding phenomena for new processes and formulated products
Researcher (PI) Valeria Garbin
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary The increasing demand for environmentally friendly, healthier, and better performing formulated products means that the process industry needs more than ever predictive models of formulation performance for rapid, effective, and sustainable screening of new products. Processing flows and end use produce deformations that are extreme compared to what is accessible with existing experimental methods. As a consequence, the effects of extreme deformation are often overlooked without justification.
Extreme deformation of structured fluids and soft materials is an unexplored dynamic regime where unexpected phenomena may emerge. New flow-induced microstructures can arise due to periodic forcing that is much faster than the relaxation timescale of the system, leading to collective behaviors and large transient stresses.
The goal of this research is to introduce a radically innovative approach to explore and characterize the regime of extreme deformation of structured fluids and interfaces. By combining cutting-edge techniques including acoustofluidics, microfluidics, and high-speed imaging, I will perform pioneering high-precision measurements of macroscopic stresses and evolution of the microstructure. I will also explore strategies to exploit the phenomena emerging upon extreme deformation (collapse under ultrafast compression, yielding) for new processes and for adding new functionality to formulated products.
These experimental results, complemented by discrete particle simulations and continuum-scale modeling, will provide new insights that will lay the foundations of the new field of ultrafast soft matter. Ultimately the results of this research program will guide the development of predictive tools that can tackle the time scales of realistic flow conditions for applications to virtual screening of new formulations.
Summary
The increasing demand for environmentally friendly, healthier, and better performing formulated products means that the process industry needs more than ever predictive models of formulation performance for rapid, effective, and sustainable screening of new products. Processing flows and end use produce deformations that are extreme compared to what is accessible with existing experimental methods. As a consequence, the effects of extreme deformation are often overlooked without justification.
Extreme deformation of structured fluids and soft materials is an unexplored dynamic regime where unexpected phenomena may emerge. New flow-induced microstructures can arise due to periodic forcing that is much faster than the relaxation timescale of the system, leading to collective behaviors and large transient stresses.
The goal of this research is to introduce a radically innovative approach to explore and characterize the regime of extreme deformation of structured fluids and interfaces. By combining cutting-edge techniques including acoustofluidics, microfluidics, and high-speed imaging, I will perform pioneering high-precision measurements of macroscopic stresses and evolution of the microstructure. I will also explore strategies to exploit the phenomena emerging upon extreme deformation (collapse under ultrafast compression, yielding) for new processes and for adding new functionality to formulated products.
These experimental results, complemented by discrete particle simulations and continuum-scale modeling, will provide new insights that will lay the foundations of the new field of ultrafast soft matter. Ultimately the results of this research program will guide the development of predictive tools that can tackle the time scales of realistic flow conditions for applications to virtual screening of new formulations.
Max ERC Funding
1 499 186 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym EyeRegen
Project Engineering a scaffold based therapy for corneal regeneration
Researcher (PI) Mark Joseph Ahearne
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary Corneal blindness resulting from disease, physical injury or chemical burns affects millions worldwide and has a considerable economic and social impact on the lives of people across Europe. In many cases corneal transplants can restore vision however the shortage of donor corneas suitable for transplantation has necessitated the development of alternative treatments. The aim of this project is to develop a new approach to corneal tissue regeneration. Previous approaches at engineering corneal tissue have required access to donor cells and lengthy culture periods in an attempt to grow tissue in vitro prior to implantation with only limited success and at great expense. Our approach will differ fundamentally from these in that we will design artificial corneal scaffolds that do not require donated cells or in vitro culture but instead will recruit the patient’s own cells to regenerate the cornea post-implantation. These biomaterial scaffolds will incorporate specific chemical and physical cues with the deliberate aim of attracting cells and inducing tissue formation. Studies will be undertaken to examine how different chemical, biochemical, physical and mechanical cues can be used to control the behaviour of corneal epithelial, stromal and endothelial cells. Once the optimal combination of these cues has been determined, this information will be incorporated into the design of the scaffold. Recent advances in manufacturing and material processing technology will enable us to develop scaffolds with organized nanometric architectures and that incorporate controlled growth factor release mechanisms. Techniques such as 3D bio-printing and nanofiber electrospinning will be used to fabricate scaffolds. The ability of the scaffold to attract cells and promote matrix remodelling will be examined by developing an in vitro bioreactor system capable of mimicking the ocular environment and by performing in vivo tests using a live animal model.
Summary
Corneal blindness resulting from disease, physical injury or chemical burns affects millions worldwide and has a considerable economic and social impact on the lives of people across Europe. In many cases corneal transplants can restore vision however the shortage of donor corneas suitable for transplantation has necessitated the development of alternative treatments. The aim of this project is to develop a new approach to corneal tissue regeneration. Previous approaches at engineering corneal tissue have required access to donor cells and lengthy culture periods in an attempt to grow tissue in vitro prior to implantation with only limited success and at great expense. Our approach will differ fundamentally from these in that we will design artificial corneal scaffolds that do not require donated cells or in vitro culture but instead will recruit the patient’s own cells to regenerate the cornea post-implantation. These biomaterial scaffolds will incorporate specific chemical and physical cues with the deliberate aim of attracting cells and inducing tissue formation. Studies will be undertaken to examine how different chemical, biochemical, physical and mechanical cues can be used to control the behaviour of corneal epithelial, stromal and endothelial cells. Once the optimal combination of these cues has been determined, this information will be incorporated into the design of the scaffold. Recent advances in manufacturing and material processing technology will enable us to develop scaffolds with organized nanometric architectures and that incorporate controlled growth factor release mechanisms. Techniques such as 3D bio-printing and nanofiber electrospinning will be used to fabricate scaffolds. The ability of the scaffold to attract cells and promote matrix remodelling will be examined by developing an in vitro bioreactor system capable of mimicking the ocular environment and by performing in vivo tests using a live animal model.
Max ERC Funding
1 498 734 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym FibreRemodel
Project Frontier research in arterial fibre remodelling for vascular disease diagnosis and tissue engineering
Researcher (PI) Caitriona Lally
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary Each year cardiovascular diseases such as atherosclerosis and aneurysms cause 48% of all deaths in Europe. Arteries may be regarded as fibre-reinforced materials, with the stiffer collagen fibres present in the arterial wall bearing most of the load during pressurisation. Degenerative vascular diseases such as atherosclerosis and aneurysms alter the macroscopic mechanical properties of arterial tissue and therefore change the arterial wall composition and the quality and orientation of the underlying fibrous architecture. Information on the complex fibre architecture of arterial tissues is therefore at the core of understanding the aetiology of vascular diseases. The current proposal aims to use a combination of in vivo Diffusion Tensor Magnetic Resonance Imaging, with parallel in silico modelling, to non-invasively identify differences in the fibre architecture of human carotid arteries which can be directly linked with carotid artery disease and hence used to diagnose vulnerable plaque rupture risk.
Knowledge of arterial fibre patterns, and how these fibres alter in response to their mechanical environment, also provides a means of understanding remodelling of tissue engineered vessels. Therefore, in the second phase of this project, this novel imaging framework will be used to determine fibre patterns of decellularised arterial constructs in vitro with a view to directing mesenchymal stem cell growth and differentiation and creating a biologically and mechanically compatible tissue engineered vessel. In silico mechanobiological models will also be used to help identify the optimum loading environment for the vessels to encourage cell repopulation but prevent excessive intimal hyperplasia.
This combination of novel in vivo, in vitro and in silico work has the potential to revolutionise approaches to early diagnosis of vascular diseases and vascular tissue engineering strategies.
Summary
Each year cardiovascular diseases such as atherosclerosis and aneurysms cause 48% of all deaths in Europe. Arteries may be regarded as fibre-reinforced materials, with the stiffer collagen fibres present in the arterial wall bearing most of the load during pressurisation. Degenerative vascular diseases such as atherosclerosis and aneurysms alter the macroscopic mechanical properties of arterial tissue and therefore change the arterial wall composition and the quality and orientation of the underlying fibrous architecture. Information on the complex fibre architecture of arterial tissues is therefore at the core of understanding the aetiology of vascular diseases. The current proposal aims to use a combination of in vivo Diffusion Tensor Magnetic Resonance Imaging, with parallel in silico modelling, to non-invasively identify differences in the fibre architecture of human carotid arteries which can be directly linked with carotid artery disease and hence used to diagnose vulnerable plaque rupture risk.
Knowledge of arterial fibre patterns, and how these fibres alter in response to their mechanical environment, also provides a means of understanding remodelling of tissue engineered vessels. Therefore, in the second phase of this project, this novel imaging framework will be used to determine fibre patterns of decellularised arterial constructs in vitro with a view to directing mesenchymal stem cell growth and differentiation and creating a biologically and mechanically compatible tissue engineered vessel. In silico mechanobiological models will also be used to help identify the optimum loading environment for the vessels to encourage cell repopulation but prevent excessive intimal hyperplasia.
This combination of novel in vivo, in vitro and in silico work has the potential to revolutionise approaches to early diagnosis of vascular diseases and vascular tissue engineering strategies.
Max ERC Funding
1 521 875 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym FoQAL
Project Frontiers of Quantum Atom-Light Interactions
Researcher (PI) Darrick Chang
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Call Details Starting Grant (StG), PE2, ERC-2014-STG
Summary FoQAL aims to completely re-define our ability to control light-matter interactions at the quantum level. This potential revolution will make use of cold atoms interfaced with nanophotonic systems, exploiting unique features such as control over the dimensionality and dispersion of light, the engineering of quantum vacuum forces, and strong optical fields and forces associated with light confined to the nanoscale. We will develop powerful and fundamentally new paradigms for atomic trapping, tailoring atomic interactions, and quantum nonlinear optics, which cannot be duplicated in macroscopic systems even in principle. Targeted breakthroughs include:
1) Nanoscale traps using quantum vacuum forces. Nanophotonic structures enable strong quantum vacuum forces acting on atoms near dielectric surfaces to be harnessed for novel “vacuum traps.” Their figures of merit (e.g., trap depth and spatial confinement) will exceed what is possible with conventional trapping techniques by 1-2 orders of magnitude.
2) Strong long-range spin-photon-phonon interactions. We will show that nanophotonic systems enable the formation of new “quasi-particles” consisting of atoms dressed by localized photonic clouds. These clouds produce strong multi-physics coupling between photons and atomic spins and motion, facilitating novel long-range interactions and the generation of exotic quantum states of light and matter.
3) New routes to single-photon nonlinear optics. We will develop novel techniques to attain strong interactions between individual photons, which are not based upon the saturation of atomic transitions. These approaches will take advantage of engineered long-range interactions between atoms, and “atom-optomechanics” in which the optical response of atoms and their motion strongly couple. Significantly, our protocols will enable a growth in nonlinearities for moderate atom number N, in contrast to conventional cavity QED where the optimal operating point is N=1.
Summary
FoQAL aims to completely re-define our ability to control light-matter interactions at the quantum level. This potential revolution will make use of cold atoms interfaced with nanophotonic systems, exploiting unique features such as control over the dimensionality and dispersion of light, the engineering of quantum vacuum forces, and strong optical fields and forces associated with light confined to the nanoscale. We will develop powerful and fundamentally new paradigms for atomic trapping, tailoring atomic interactions, and quantum nonlinear optics, which cannot be duplicated in macroscopic systems even in principle. Targeted breakthroughs include:
1) Nanoscale traps using quantum vacuum forces. Nanophotonic structures enable strong quantum vacuum forces acting on atoms near dielectric surfaces to be harnessed for novel “vacuum traps.” Their figures of merit (e.g., trap depth and spatial confinement) will exceed what is possible with conventional trapping techniques by 1-2 orders of magnitude.
2) Strong long-range spin-photon-phonon interactions. We will show that nanophotonic systems enable the formation of new “quasi-particles” consisting of atoms dressed by localized photonic clouds. These clouds produce strong multi-physics coupling between photons and atomic spins and motion, facilitating novel long-range interactions and the generation of exotic quantum states of light and matter.
3) New routes to single-photon nonlinear optics. We will develop novel techniques to attain strong interactions between individual photons, which are not based upon the saturation of atomic transitions. These approaches will take advantage of engineered long-range interactions between atoms, and “atom-optomechanics” in which the optical response of atoms and their motion strongly couple. Significantly, our protocols will enable a growth in nonlinearities for moderate atom number N, in contrast to conventional cavity QED where the optimal operating point is N=1.
Max ERC Funding
1 340 873 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym FUN-PM
Project Fundamental Understanding of Nanoparticle chemistry: towards the prediction of Particulate emissions and Material synthesis
Researcher (PI) Andrea COMANDINI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary While modern societies are facing urgent challenges related to reduction of particulate matter emissions from transportation engines, recent discoveries on the extraordinary properties of carbonaceous functional nanomaterials have revealed opportunities associated with large-scale, flame-based synthesis of these otherwise unwanted combustion products. In both cases, our ability to study new, optimized solutions based on the specific industrial end-user needs is limited by the absence of theoretical tools able to accurately predict the fluid dynamics and the chemistry involved in nanoparticle formation. Indeed, current knowledge on this fascinating but complex process is still rather incomplete. The proposed research program, FUN-PM, will apply an innovative multi-disciplinary, multi-step approach in order to finally answer many unresolved kinetic questions concerning in particular: 1) formation and growth of molecular PAH precursors; 2) particle inception; 3) subsequent particle growth and oxidation. Each single step will be experimentally isolated taking full advantage of complementary conventional shock tube techniques and up-to-date synchrotron-based detection technologies coupled to a newly constructed high-rate repetition shock tube. If successful, the novel synchrotron-shock tube techniques will be utilized for the first time to obtain unique information on unknown key processes. The experimental results, with extensive theoretical ab-initio calculations on relevant PAH reaction pathways, will constitute the base for the development of a comprehensive, detailed chemical kinetic model for particle chemistry applied to Real Fuels. Such model will improve the prediction capabilities of current CFD codes for use in engine design, fuel reformulation, or industrial process optimization, with considerable benefits to the standards of living of European citizens, the environment, and the EU economy, towards the future of clean transportations and novel nanomaterials.
Summary
While modern societies are facing urgent challenges related to reduction of particulate matter emissions from transportation engines, recent discoveries on the extraordinary properties of carbonaceous functional nanomaterials have revealed opportunities associated with large-scale, flame-based synthesis of these otherwise unwanted combustion products. In both cases, our ability to study new, optimized solutions based on the specific industrial end-user needs is limited by the absence of theoretical tools able to accurately predict the fluid dynamics and the chemistry involved in nanoparticle formation. Indeed, current knowledge on this fascinating but complex process is still rather incomplete. The proposed research program, FUN-PM, will apply an innovative multi-disciplinary, multi-step approach in order to finally answer many unresolved kinetic questions concerning in particular: 1) formation and growth of molecular PAH precursors; 2) particle inception; 3) subsequent particle growth and oxidation. Each single step will be experimentally isolated taking full advantage of complementary conventional shock tube techniques and up-to-date synchrotron-based detection technologies coupled to a newly constructed high-rate repetition shock tube. If successful, the novel synchrotron-shock tube techniques will be utilized for the first time to obtain unique information on unknown key processes. The experimental results, with extensive theoretical ab-initio calculations on relevant PAH reaction pathways, will constitute the base for the development of a comprehensive, detailed chemical kinetic model for particle chemistry applied to Real Fuels. Such model will improve the prediction capabilities of current CFD codes for use in engine design, fuel reformulation, or industrial process optimization, with considerable benefits to the standards of living of European citizens, the environment, and the EU economy, towards the future of clean transportations and novel nanomaterials.
Max ERC Funding
1 493 839 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym GADGET
Project Geometry and Anomalous Dynamic Growth of Elastic instabiliTies
Researcher (PI) Dominic Vella
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary Elastic instabilities are ubiquitous, from the wrinkles that form on skin to the ‘snap-through’ of an umbrella on a windy day. The complex patterns such instabilities make, and the great speed with which they develop, have led to a host of technological and scientific applications. However, recent experiments have revealed significant gaps in our theoretical understanding of such instabilities, particularly in the roles played by geometry and dynamics. I will establish a group to develop and validate a theoretical framework within which these results can be understood. Central to my approach is an appreciation of the crucial role of geometry in the pattern formation and dynamics of elastic instabilities.
As a starting point, I will consider the model problem of a pressurized elastic shell subject to a geometrically large deformation. This system develops either wrinkles or a stress-focusing instability depending on the internal pressure. As such, this is a natural paradigm with which to understand geometrical features of deformation relevant across length scales from deformed viruses to the subduction zones in Earth’s tectonic plates. My team will combine theoretical and computational approaches with tabletop experiments to determine a new set of shell deformations that are generically observed in contradiction of the classic ‘mirror buckling’. Understanding why these new shapes emerge will transform our perception of shell instabilities and provide new fundamental building blocks with which to model them. These ideas will also be used to transform our understanding of a number of other, previously mysterious, elastic instabilities of practical interest. Turning our focus to the dynamics of instabilities such as the snap-through of shells, we will show that accounting for geometry is again crucial. The new insight gained through this project will increase our ability to control elastic instabilities, benefitting a range of technological and scientific applications.
Summary
Elastic instabilities are ubiquitous, from the wrinkles that form on skin to the ‘snap-through’ of an umbrella on a windy day. The complex patterns such instabilities make, and the great speed with which they develop, have led to a host of technological and scientific applications. However, recent experiments have revealed significant gaps in our theoretical understanding of such instabilities, particularly in the roles played by geometry and dynamics. I will establish a group to develop and validate a theoretical framework within which these results can be understood. Central to my approach is an appreciation of the crucial role of geometry in the pattern formation and dynamics of elastic instabilities.
As a starting point, I will consider the model problem of a pressurized elastic shell subject to a geometrically large deformation. This system develops either wrinkles or a stress-focusing instability depending on the internal pressure. As such, this is a natural paradigm with which to understand geometrical features of deformation relevant across length scales from deformed viruses to the subduction zones in Earth’s tectonic plates. My team will combine theoretical and computational approaches with tabletop experiments to determine a new set of shell deformations that are generically observed in contradiction of the classic ‘mirror buckling’. Understanding why these new shapes emerge will transform our perception of shell instabilities and provide new fundamental building blocks with which to model them. These ideas will also be used to transform our understanding of a number of other, previously mysterious, elastic instabilities of practical interest. Turning our focus to the dynamics of instabilities such as the snap-through of shells, we will show that accounting for geometry is again crucial. The new insight gained through this project will increase our ability to control elastic instabilities, benefitting a range of technological and scientific applications.
Max ERC Funding
1 361 077 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym GEL-SYS
Project Smart HydroGEL SYStems – From Bioinspired Design to Soft Electronics and Machines
Researcher (PI) Martin KALTENBRUNNER
Host Institution (HI) UNIVERSITAT LINZ
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Hydrogels evolved as versatile building blocks of life – we all are in essence gel-embodied soft machines. Drawing inspiration from the diversity found in living creatures, GEL-SYS will develop a set of concepts, materials approaches and design rules for wide ranging classes of soft, hydrogel-based electronic, ionic and photonic devices in three core aims.
Aim (A) will pursue a high level of complexity in soft, yet tough biomimetic devices and machines by introducing nature-inspired instant strong bonds between hydrogels and antagonistic materials – from soft and elastic to hard and brittle. Building on these newly developed interfaces, aim (B) will pursue biocompatible hydrogel electronics with iontronic transducers and large area multimodal sensor arrays for a new class of medical tools and health monitors. Aim (C) will foster the current soft revolution of robotics with self-sensing, transparent grippers not occluding objects and workspace. A soft robotic visual system with hydrogel-based adaptive optical elements and ultraflexible photosensor arrays will allow robots to see while grasping. Autonomous operation will be a central question in soft systems, tackled with tough stretchable batteries and energy harvesting from mechanical motion on small and large scales with soft membranes. GEL-SYS will use our experience on soft, “imperceptible” electronics and devices. By fusing this technology platform with tough hydrogels - nature’s most pluripotent ingredient of soft machines - we aim to create the next generation of bionic systems. The envisioned hybrids promise new discoveries in the nonlinear mechanical responses of soft systems, and may allow exploiting triggered elastic instabilities for unconventional locomotion. Exploring soft matter, intimately united with solid materials, will trigger novel concepts for medical equipment, healthcare, consumer electronics, energy harvesting from renewable sources and in robotics, with imminent impact on our society.
Summary
Hydrogels evolved as versatile building blocks of life – we all are in essence gel-embodied soft machines. Drawing inspiration from the diversity found in living creatures, GEL-SYS will develop a set of concepts, materials approaches and design rules for wide ranging classes of soft, hydrogel-based electronic, ionic and photonic devices in three core aims.
Aim (A) will pursue a high level of complexity in soft, yet tough biomimetic devices and machines by introducing nature-inspired instant strong bonds between hydrogels and antagonistic materials – from soft and elastic to hard and brittle. Building on these newly developed interfaces, aim (B) will pursue biocompatible hydrogel electronics with iontronic transducers and large area multimodal sensor arrays for a new class of medical tools and health monitors. Aim (C) will foster the current soft revolution of robotics with self-sensing, transparent grippers not occluding objects and workspace. A soft robotic visual system with hydrogel-based adaptive optical elements and ultraflexible photosensor arrays will allow robots to see while grasping. Autonomous operation will be a central question in soft systems, tackled with tough stretchable batteries and energy harvesting from mechanical motion on small and large scales with soft membranes. GEL-SYS will use our experience on soft, “imperceptible” electronics and devices. By fusing this technology platform with tough hydrogels - nature’s most pluripotent ingredient of soft machines - we aim to create the next generation of bionic systems. The envisioned hybrids promise new discoveries in the nonlinear mechanical responses of soft systems, and may allow exploiting triggered elastic instabilities for unconventional locomotion. Exploring soft matter, intimately united with solid materials, will trigger novel concepts for medical equipment, healthcare, consumer electronics, energy harvesting from renewable sources and in robotics, with imminent impact on our society.
Max ERC Funding
1 499 975 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym GQCOP
Project Genuine Quantumness in Cooperative Phenomena
Researcher (PI) Gerardo Adesso
Host Institution (HI) THE UNIVERSITY OF NOTTINGHAM
Call Details Starting Grant (StG), PE2, ERC-2014-STG
Summary The proposed research programme addresses issues of fundamental and technological importance in quantum information science and its interplay with complexity. The main aim of this project is to provide a new paradigmatic foundation for the characterisation of quantumness in cooperative phenomena and to develop novel platforms for its practical utilisation in quantum technology applications.
To reach its main goal, this programme will target five specific objectives:
O1. Constructing a quantitative theory of quantumness in composite systems;
O2. Benchmarking genuine quantumness in information and communication protocols;
O3. Devising practical solutions for quantum-enhanced metrology in noisy conditions;
O4. Developing quantum thermal engineering for refrigerators and heat engines;
O5. Establishing a cybernetics framework for regulative phenomena in the quantum domain.
This project is deeply driven by the scientific curiosity to explore the ultimate range of applicability of quantum mechanics. Along the route to satisfying such curiosity, this project will fulfill a crucial two-fold mission. On the fundamental side, it will lead to a radically new level of understanding of quantumness, in its various manifestations, and the functional role it plays for natural and artificial complex systems traditionally confined to a classical domain of investigation. On the practical side, it will deliver novel concrete recipes for communication, sensing and cooling technologies in realistic conditions, rigorously assessing in which ways and to which extent these can be enhanced by engineering and harnessing quantumness.
Along with a skillful team which this grant will allow to assemble, benefitting from the vivid research environment at Nottingham, and mainly thanks to his creativity, broad mathematical and physical preparation and relevant inter-disciplinary expertise, the applicant is in a unique position to accomplish this timely and ambitious mission.
Summary
The proposed research programme addresses issues of fundamental and technological importance in quantum information science and its interplay with complexity. The main aim of this project is to provide a new paradigmatic foundation for the characterisation of quantumness in cooperative phenomena and to develop novel platforms for its practical utilisation in quantum technology applications.
To reach its main goal, this programme will target five specific objectives:
O1. Constructing a quantitative theory of quantumness in composite systems;
O2. Benchmarking genuine quantumness in information and communication protocols;
O3. Devising practical solutions for quantum-enhanced metrology in noisy conditions;
O4. Developing quantum thermal engineering for refrigerators and heat engines;
O5. Establishing a cybernetics framework for regulative phenomena in the quantum domain.
This project is deeply driven by the scientific curiosity to explore the ultimate range of applicability of quantum mechanics. Along the route to satisfying such curiosity, this project will fulfill a crucial two-fold mission. On the fundamental side, it will lead to a radically new level of understanding of quantumness, in its various manifestations, and the functional role it plays for natural and artificial complex systems traditionally confined to a classical domain of investigation. On the practical side, it will deliver novel concrete recipes for communication, sensing and cooling technologies in realistic conditions, rigorously assessing in which ways and to which extent these can be enhanced by engineering and harnessing quantumness.
Along with a skillful team which this grant will allow to assemble, benefitting from the vivid research environment at Nottingham, and mainly thanks to his creativity, broad mathematical and physical preparation and relevant inter-disciplinary expertise, the applicant is in a unique position to accomplish this timely and ambitious mission.
Max ERC Funding
1 351 461 €
Duration
Start date: 2015-05-01, End date: 2020-04-30