Project acronym BioCircuit
Project Programmable BioMolecular Circuits: Emulating Regulatory Functions in Living Cells Using a Bottom-Up Approach
Researcher (PI) Tom Antonius Franciscus De greef
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary Programmable biomolecular circuits have received increasing attention in recent years as the scope of chemistry expands from the synthesis of individual molecules to the construction of chemical networks that can perform sophisticated functions such as logic operations and feedback control. Rationally engineered biomolecular circuits that robustly execute higher-order spatiotemporal behaviours typically associated with intracellular regulatory functions present a unique and uncharted platform to systematically explore the molecular logic and physical design principles of the cell. The experience gained by in-vitro construction of artificial cells displaying advanced system-level functions deepens our understanding of regulatory networks in living cells and allows theoretical assumptions and models to be refined in a controlled setting. This proposal combines elements from systems chemistry, in-vitro synthetic biology and micro-engineering and explores generic strategies to investigate the molecular logic of biology’s regulatory circuits by applying a physical chemistry-driven bottom-up approach. Progress in this field requires 1) proof-of-principle systems where in-vitro biomolecular circuits are designed to emulate characteristic system-level functions of regulatory circuits in living cells and 2) novel experimental tools to operate biochemical networks under out-of-equilibrium conditions. Here, a comprehensive research program is proposed that addresses these challenges by engineering three biochemical model systems that display elementary signal transduction and information processing capabilities. In addition, an open microfluidic droplet reactor is developed that will allow, for the first time, high-throughput analysis of biomolecular circuits encapsulated in water-in-oil droplets. An integral part of the research program is to combine the computational design of in-vitro circuits with novel biochemistry and innovative micro-engineering tools.
Summary
Programmable biomolecular circuits have received increasing attention in recent years as the scope of chemistry expands from the synthesis of individual molecules to the construction of chemical networks that can perform sophisticated functions such as logic operations and feedback control. Rationally engineered biomolecular circuits that robustly execute higher-order spatiotemporal behaviours typically associated with intracellular regulatory functions present a unique and uncharted platform to systematically explore the molecular logic and physical design principles of the cell. The experience gained by in-vitro construction of artificial cells displaying advanced system-level functions deepens our understanding of regulatory networks in living cells and allows theoretical assumptions and models to be refined in a controlled setting. This proposal combines elements from systems chemistry, in-vitro synthetic biology and micro-engineering and explores generic strategies to investigate the molecular logic of biology’s regulatory circuits by applying a physical chemistry-driven bottom-up approach. Progress in this field requires 1) proof-of-principle systems where in-vitro biomolecular circuits are designed to emulate characteristic system-level functions of regulatory circuits in living cells and 2) novel experimental tools to operate biochemical networks under out-of-equilibrium conditions. Here, a comprehensive research program is proposed that addresses these challenges by engineering three biochemical model systems that display elementary signal transduction and information processing capabilities. In addition, an open microfluidic droplet reactor is developed that will allow, for the first time, high-throughput analysis of biomolecular circuits encapsulated in water-in-oil droplets. An integral part of the research program is to combine the computational design of in-vitro circuits with novel biochemistry and innovative micro-engineering tools.
Max ERC Funding
1 887 180 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym COMPLEXITY
Project Understanding the Complexity of Modern Financial Systems
Researcher (PI) Vikrant Vig
Host Institution (HI) LONDON BUSINESS SCHOOL
Call Details Starting Grant (StG), SH1, ERC-2015-STG
Summary The modern financial system has undergone immense transformation in recent years and is far more complex than ever before. In lockstep, financial regulation has also become more complex. This research proposal attempts to improve our understanding of potential drivers of this complexity and the implications of this change on the allocation of resources.
Taking a positive rather than a normative approach, I will analyse post-crisis changes at both the micro- and at the macro-levels to create a broader understanding of complexities in the current financial system. In order to do so, I will employ a set of advanced research designs, as well as a uniquely assembled micro-level dataset covering state and privately owned financial institutions in Asia, Africa, South America and Europe.
This project will focus on two interconnected areas of research: 1) Organisation of Credit, 2) Financial regulation in a complex environment. The aim of this project is to create a sustainable framework for the study of post-crisis financial systems, and to shape the current debate on the future of post-crisis financial structures and the development of policy in this area. Not only will this research have a considerable impact on our understanding of financial systems, it will also impact fields beyond finance, like Organisational Economics, Industrial Organisation and Development Economics.
Summary
The modern financial system has undergone immense transformation in recent years and is far more complex than ever before. In lockstep, financial regulation has also become more complex. This research proposal attempts to improve our understanding of potential drivers of this complexity and the implications of this change on the allocation of resources.
Taking a positive rather than a normative approach, I will analyse post-crisis changes at both the micro- and at the macro-levels to create a broader understanding of complexities in the current financial system. In order to do so, I will employ a set of advanced research designs, as well as a uniquely assembled micro-level dataset covering state and privately owned financial institutions in Asia, Africa, South America and Europe.
This project will focus on two interconnected areas of research: 1) Organisation of Credit, 2) Financial regulation in a complex environment. The aim of this project is to create a sustainable framework for the study of post-crisis financial systems, and to shape the current debate on the future of post-crisis financial structures and the development of policy in this area. Not only will this research have a considerable impact on our understanding of financial systems, it will also impact fields beyond finance, like Organisational Economics, Industrial Organisation and Development Economics.
Max ERC Funding
1 498 947 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym ComplexSwimmers
Project Biocompatible and Interactive Artificial Micro- and Nanoswimmers and Their Applications
Researcher (PI) Giovanni Volpe
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary Microswimmers, i.e., biological and artificial microscopic objects capable of self-propulsion, have been attracting a growing interest from the biological and physical communities. From the fundamental side, their study can shed light on the far-from-equilibrium physics underlying the adaptive and collective behavior of biological entities such as chemotactic bacteria and eukaryotic cells. From the more applied side, they provide tantalizing options to perform tasks not easily achievable with other available techniques, such as the targeted localization, pick-up and delivery of microscopic and nanoscopic cargoes, e.g., in drug delivery, bioremediation and chemical sensing.
However, there are still several open challenges that need to be tackled in order to achieve the full scientific and technological potential of microswimmers in real-life settings. The main challenges are: (1) to identify a biocompatible propulstion mechanism and energy supply capable of lasting for the whole particle life-cycle; (2) to understand their behavior in complex and crowded environments; (3) to learn how to engineer emergent behaviors; and (4) to scale down their dimensions towards the nanoscale.
This project aims at tackling these challenges by developing biocompatible microswimmers capable of elaborate behaviors, by engineering their performance when interacting with other particles and with a complex environment, and by developing working nanoswimmers.
To achieve these goals, we have laid out a roadmap that will lead us to push the frontiers of the current understanding of active matter both at the mesoscopic and at the nanoscopic scale, and will permit us to develop some technologically disruptive techniques, namely, targeted delivery of cargoes within complex environments, which is of interest for drug delivery and bioremediation, and efficient sorting of chiral nanoparticles, which is of interest for biomedical and pharmaceutical applications.
Summary
Microswimmers, i.e., biological and artificial microscopic objects capable of self-propulsion, have been attracting a growing interest from the biological and physical communities. From the fundamental side, their study can shed light on the far-from-equilibrium physics underlying the adaptive and collective behavior of biological entities such as chemotactic bacteria and eukaryotic cells. From the more applied side, they provide tantalizing options to perform tasks not easily achievable with other available techniques, such as the targeted localization, pick-up and delivery of microscopic and nanoscopic cargoes, e.g., in drug delivery, bioremediation and chemical sensing.
However, there are still several open challenges that need to be tackled in order to achieve the full scientific and technological potential of microswimmers in real-life settings. The main challenges are: (1) to identify a biocompatible propulstion mechanism and energy supply capable of lasting for the whole particle life-cycle; (2) to understand their behavior in complex and crowded environments; (3) to learn how to engineer emergent behaviors; and (4) to scale down their dimensions towards the nanoscale.
This project aims at tackling these challenges by developing biocompatible microswimmers capable of elaborate behaviors, by engineering their performance when interacting with other particles and with a complex environment, and by developing working nanoswimmers.
To achieve these goals, we have laid out a roadmap that will lead us to push the frontiers of the current understanding of active matter both at the mesoscopic and at the nanoscopic scale, and will permit us to develop some technologically disruptive techniques, namely, targeted delivery of cargoes within complex environments, which is of interest for drug delivery and bioremediation, and efficient sorting of chiral nanoparticles, which is of interest for biomedical and pharmaceutical applications.
Max ERC Funding
1 497 500 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CSI.interface
Project A molecular interface science approach: Decoding single molecular reactions and interactions at dynamic solid/liquid interfaces
Researcher (PI) Markus Valtiner
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary After decades of truly transformative advancements in single molecule (bio)physics and surface science, it is still no more than a vision to predict and control macroscopic phenomena such as adhesion or electrochemical reaction rates at solid/liquid interfaces based on well-characterized single molecular interactions. How exactly do inherently dynamic and simultaneous interactions of a countless number of interacting “crowded” molecules lead to a concerted outcome/property on a macroscopic scale?
Here, I propose a unique approach that will allow us to unravel the scaling of single molecule interactions towards macroscopic properties at adhesive and redox-active solid/liquid interfaces. Combining Atomic Force Microscopy (AFM) based single molecule force spectroscopy and macroscopic Surface Forces Apparatus (SFA) experiments CSI.interface will (1) derive rules for describing nonlinearities observed in complex, crowded (water and ions) and chemically diverse adhesive solid/liquid interfaces; (2) uniquely characterize all relevant kinetic parameters (interaction free energy and transition states) of electrochemical and adhesive reactions/interactions of single molecules at chemically defined surfaces as well as electrified single crystal facets and step edges. Complementary, (3) my team and I will build a novel molecular force apparatus in order to measure single-molecule steady-state dynamics of both redox cycles as well as binding unbinding cycles of specific interactions, and how these react to environmental triggers.
CSI.interface goes well beyond present applications of AFM and SFA and has the long-term potential to revolutionize our understanding of interfacial interaction under steady state, responsive and dynamic conditions. This work will pave the road for knowledge based designing of next-generation technologies in gluing, coating, bio-adhesion, materials design and much beyond.
Summary
After decades of truly transformative advancements in single molecule (bio)physics and surface science, it is still no more than a vision to predict and control macroscopic phenomena such as adhesion or electrochemical reaction rates at solid/liquid interfaces based on well-characterized single molecular interactions. How exactly do inherently dynamic and simultaneous interactions of a countless number of interacting “crowded” molecules lead to a concerted outcome/property on a macroscopic scale?
Here, I propose a unique approach that will allow us to unravel the scaling of single molecule interactions towards macroscopic properties at adhesive and redox-active solid/liquid interfaces. Combining Atomic Force Microscopy (AFM) based single molecule force spectroscopy and macroscopic Surface Forces Apparatus (SFA) experiments CSI.interface will (1) derive rules for describing nonlinearities observed in complex, crowded (water and ions) and chemically diverse adhesive solid/liquid interfaces; (2) uniquely characterize all relevant kinetic parameters (interaction free energy and transition states) of electrochemical and adhesive reactions/interactions of single molecules at chemically defined surfaces as well as electrified single crystal facets and step edges. Complementary, (3) my team and I will build a novel molecular force apparatus in order to measure single-molecule steady-state dynamics of both redox cycles as well as binding unbinding cycles of specific interactions, and how these react to environmental triggers.
CSI.interface goes well beyond present applications of AFM and SFA and has the long-term potential to revolutionize our understanding of interfacial interaction under steady state, responsive and dynamic conditions. This work will pave the road for knowledge based designing of next-generation technologies in gluing, coating, bio-adhesion, materials design and much beyond.
Max ERC Funding
1 499 750 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym DIRECT-fMRI
Project Sensing activity-induced cell swellings and ensuing neurotransmitter releases for in-vivo functional imaging sans hemodynamics
Researcher (PI) Noam Shemesh
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary Functional-Magnetic Resonance Imaging (fMRI) has transformed our understanding of brain function due to its ability to noninvasively tag ‘active’ brain regions. Nevertheless, fMRI only detects neural activity indirectly, by relying on slow hemodynamic couplings whose relationships with underlying neural activity are not fully known.
We have recently pioneered two unique MR approaches: Non-Uniform Oscillating-Gradient Spin-Echo (NOGSE) MRI and Relaxation Enhanced MR Spectroscopy (RE MRS). NOGSE-MRI is an exquisite microstructural probe, sensing cell sizes (l) with an unprecedented l^6 sensitivity (compared to l^2 in conventional approaches); RE MRS is a new spectral technique capable of recording metabolic signals with extraordinary fidelity at ultrahigh fields.
This proposal aims to harness these novel concepts for mapping neural activity directly, without relying on hemodynamics. The specific objectives of this proposal are:
(1) Mapping neural activity via sensing cell swellings upon activity (μfMRI): we hypothesize that NOGSE can robustly sense subtle changes in cellular microstructure upon neural firings and hence convey neural activity directly.
(2) Probing the nature of elicited activity via detection of neurotransmitter release: we posit that RE MRS is sufficiently sensitive to robustly detect changes in Glutamate and GABA signals upon activation.
(3) Network mapping in optogenetically-stimulated, behaving mice: we propose to couple our novel approaches with optogenetics to resolve neural correlates of behavior in awake, behaving mice.
Simulations for μfMRI predict >4% signal changes upon subtle cell swellings; further, our in vivo RE MRS experiments have detected metabolites with SNR>50 in only 6 seconds. Hence, these two complementary –and importantly, hemodynamics-independent– approaches will represent a true paradigm shift: from indirect detection of neurovasculature couplings towards direct and noninvasive mapping of neural activity in vivo.
Summary
Functional-Magnetic Resonance Imaging (fMRI) has transformed our understanding of brain function due to its ability to noninvasively tag ‘active’ brain regions. Nevertheless, fMRI only detects neural activity indirectly, by relying on slow hemodynamic couplings whose relationships with underlying neural activity are not fully known.
We have recently pioneered two unique MR approaches: Non-Uniform Oscillating-Gradient Spin-Echo (NOGSE) MRI and Relaxation Enhanced MR Spectroscopy (RE MRS). NOGSE-MRI is an exquisite microstructural probe, sensing cell sizes (l) with an unprecedented l^6 sensitivity (compared to l^2 in conventional approaches); RE MRS is a new spectral technique capable of recording metabolic signals with extraordinary fidelity at ultrahigh fields.
This proposal aims to harness these novel concepts for mapping neural activity directly, without relying on hemodynamics. The specific objectives of this proposal are:
(1) Mapping neural activity via sensing cell swellings upon activity (μfMRI): we hypothesize that NOGSE can robustly sense subtle changes in cellular microstructure upon neural firings and hence convey neural activity directly.
(2) Probing the nature of elicited activity via detection of neurotransmitter release: we posit that RE MRS is sufficiently sensitive to robustly detect changes in Glutamate and GABA signals upon activation.
(3) Network mapping in optogenetically-stimulated, behaving mice: we propose to couple our novel approaches with optogenetics to resolve neural correlates of behavior in awake, behaving mice.
Simulations for μfMRI predict >4% signal changes upon subtle cell swellings; further, our in vivo RE MRS experiments have detected metabolites with SNR>50 in only 6 seconds. Hence, these two complementary –and importantly, hemodynamics-independent– approaches will represent a true paradigm shift: from indirect detection of neurovasculature couplings towards direct and noninvasive mapping of neural activity in vivo.
Max ERC Funding
1 787 500 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym DOPING-ON-DEMAND
Project Doping on Demand: precise and permanent control of the Fermi level in nanocrystal assemblies
Researcher (PI) Arjan Houtepen
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary The aim of the work proposed here is to develop a completely new method to electronically dope assemblies of semiconductor nanocrystals (a.k.a quantum dots, QDs), and porous semiconductors in general. External dopants are added on demand in the form of electrolyte ions in the voids between QDs. These ions will be introduced via electrochemical charge injection, and will subsequently be immobilized by (1) freezing the electrolyte solvent at room temperature or (2) chemically linking the ions to ligands on the QD surface, or by a combination of both. Encapsulating doped QD films using atomic layer deposition will provide further stability. This will result in stable doped nanocrystal assemblies with a constant Fermi level that is controlled by the potential set during electrochemical charging.
QDs are small semiconductor crystals with size-tunable electronic properties that are considered promising materials for a range of opto-electronic applications. Electronic doping of QDs remains a big challenge even after two decades of research into this area. At the same time it is highly desired to dope QDs in a controlled way for applications such as LEDs, FETs and solar cells. This research project will provide unprecedented control over the doping level in QD films and will provided a major step in the optimization of optoelectronic devices based on QDs. The “Doping-on-Demand” approach will be exploited to develop degenerately doped, low-threshold QD lasers that can be operated under continuous wave excitation, and QD laser diodes that use electrical injection of charge carriers. The precise control of the Fermi-level will further be used to optimize pin junction QD solar cells and to develop, for the first time, QD pn junction solar cells with precise control over the Fermi levels.
Summary
The aim of the work proposed here is to develop a completely new method to electronically dope assemblies of semiconductor nanocrystals (a.k.a quantum dots, QDs), and porous semiconductors in general. External dopants are added on demand in the form of electrolyte ions in the voids between QDs. These ions will be introduced via electrochemical charge injection, and will subsequently be immobilized by (1) freezing the electrolyte solvent at room temperature or (2) chemically linking the ions to ligands on the QD surface, or by a combination of both. Encapsulating doped QD films using atomic layer deposition will provide further stability. This will result in stable doped nanocrystal assemblies with a constant Fermi level that is controlled by the potential set during electrochemical charging.
QDs are small semiconductor crystals with size-tunable electronic properties that are considered promising materials for a range of opto-electronic applications. Electronic doping of QDs remains a big challenge even after two decades of research into this area. At the same time it is highly desired to dope QDs in a controlled way for applications such as LEDs, FETs and solar cells. This research project will provide unprecedented control over the doping level in QD films and will provided a major step in the optimization of optoelectronic devices based on QDs. The “Doping-on-Demand” approach will be exploited to develop degenerately doped, low-threshold QD lasers that can be operated under continuous wave excitation, and QD laser diodes that use electrical injection of charge carriers. The precise control of the Fermi-level will further be used to optimize pin junction QD solar cells and to develop, for the first time, QD pn junction solar cells with precise control over the Fermi levels.
Max ERC Funding
1 497 842 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym DYNAMICSS
Project Labour market dynamics and optimal policies
Researcher (PI) Camille Gregoire Alexis Landais
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), SH1, ERC-2015-STG
Summary From pension reforms to UI extensions, the optimal tax and program design literature is often ill-equipped to provide clear guidance in policy debates on the reform of social insurance and tax-and-benefit systems. The reason is that this literature is mostly focused on static settings, while these programs are inherently dynamic: they specify a schedule of tax and benefits that is time or state dependent and they affect individuals’ decisions throughout their lifetime.
DYNAMICSS will offer a simple and general approach to the analysis of optimal dynamic policies that connects to the data. The key idea of DYNAMICSS is to extend the sufficient statistics (SS) approach to dynamic settings and characterize the full time profile, rather than the average generosity, of social insurance and transfer policies. By expressing optimal policy as a function of a limited set of statistics, the SS approach has the advantage of making clear the trade-offs implied in optimal tax or benefit formulae and of tightly integrating the theory and the empirics of optimal policy analysis, to offer robust policy guidance.
DYNAMICSS will use unique administrative data and cutting-edge econometric techniques to exploit compelling variations in policy profiles and offer significant contributions to the empirical analysis of dynamic behavioural responses to policies. A central contribution will be to create a unique measure of consumption expenditures based on leveraging complete administrative information on income, transfers and wealth to offer ground-breaking evidence of the effect of social insurance on consumption dynamics.
Part I will use and extend the SS framework to analyse the optimal time profile of UI benefits. Part II will develop this approach for analysing the optimal design of retirement pension systems. Part III will address optimal family policies with a focus on understanding the different dynamics of men and women in the labour market, and exploring the role of cultural norm
Summary
From pension reforms to UI extensions, the optimal tax and program design literature is often ill-equipped to provide clear guidance in policy debates on the reform of social insurance and tax-and-benefit systems. The reason is that this literature is mostly focused on static settings, while these programs are inherently dynamic: they specify a schedule of tax and benefits that is time or state dependent and they affect individuals’ decisions throughout their lifetime.
DYNAMICSS will offer a simple and general approach to the analysis of optimal dynamic policies that connects to the data. The key idea of DYNAMICSS is to extend the sufficient statistics (SS) approach to dynamic settings and characterize the full time profile, rather than the average generosity, of social insurance and transfer policies. By expressing optimal policy as a function of a limited set of statistics, the SS approach has the advantage of making clear the trade-offs implied in optimal tax or benefit formulae and of tightly integrating the theory and the empirics of optimal policy analysis, to offer robust policy guidance.
DYNAMICSS will use unique administrative data and cutting-edge econometric techniques to exploit compelling variations in policy profiles and offer significant contributions to the empirical analysis of dynamic behavioural responses to policies. A central contribution will be to create a unique measure of consumption expenditures based on leveraging complete administrative information on income, transfers and wealth to offer ground-breaking evidence of the effect of social insurance on consumption dynamics.
Part I will use and extend the SS framework to analyse the optimal time profile of UI benefits. Part II will develop this approach for analysing the optimal design of retirement pension systems. Part III will address optimal family policies with a focus on understanding the different dynamics of men and women in the labour market, and exploring the role of cultural norm
Max ERC Funding
1 049 855 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym EVODIS
Project Exploiting vortices to suppress dispersion and reach new separation power boundaries
Researcher (PI) Wim De Malsche
Host Institution (HI) VRIJE UNIVERSITEIT BRUSSEL
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary The 21st century is expected to develop towards a society depending ever and ever more on (bio-)chemical measurements of fluids and matrices that are so complex they are well beyond the current analytical capabilities. Incremental improvements can no longer satisfy the current needs of e.g. the proteomics field, requiring the separation of tens of thousands of components. The pace of progress in these fields is therefore predominantly determined by that of analytical tools, whereby liquid chromatography is the most prominent technique to separate small molecules as well as macromolecules, based on differential interaction of each analyte with support structures giving it a unique migration velocity. To improve its performance, a faster transport between these structures needs to be generated. Unfortunately the commonly pursued strategy, relying on diffusion and reducing the structure size, has come to its limits due to practical limitations related to packing and fabrication of sub-micron support structures, pressure tolerance and viscous heating.
A ground-breaking step to advance chromatographic performance to another level would be to accelerate mass transport in the lateral direction, beyond the rate of diffusion only. To meet this requirement, an array of microstructures and local electrodes can be defined to create lateral electroosmotic vortices in a pressure-driven column, aiming to accelerate the local mass transfer in an anisotropic fashion. The achievement of ordered arrays of vortices is intimately linked to this requirement, which is also of broader importance for mixing, anti-fouling of membrane and reactor surfaces, enhanced mass transfer in reactor channels, emulsification, etc. Understanding and implementing anisotropic vortex flows will therefore not only revolutionize analytical and preparative separation procedures, but will also be highly relevant in all flow systems that benefit from enhanced mass transfer.
Summary
The 21st century is expected to develop towards a society depending ever and ever more on (bio-)chemical measurements of fluids and matrices that are so complex they are well beyond the current analytical capabilities. Incremental improvements can no longer satisfy the current needs of e.g. the proteomics field, requiring the separation of tens of thousands of components. The pace of progress in these fields is therefore predominantly determined by that of analytical tools, whereby liquid chromatography is the most prominent technique to separate small molecules as well as macromolecules, based on differential interaction of each analyte with support structures giving it a unique migration velocity. To improve its performance, a faster transport between these structures needs to be generated. Unfortunately the commonly pursued strategy, relying on diffusion and reducing the structure size, has come to its limits due to practical limitations related to packing and fabrication of sub-micron support structures, pressure tolerance and viscous heating.
A ground-breaking step to advance chromatographic performance to another level would be to accelerate mass transport in the lateral direction, beyond the rate of diffusion only. To meet this requirement, an array of microstructures and local electrodes can be defined to create lateral electroosmotic vortices in a pressure-driven column, aiming to accelerate the local mass transfer in an anisotropic fashion. The achievement of ordered arrays of vortices is intimately linked to this requirement, which is also of broader importance for mixing, anti-fouling of membrane and reactor surfaces, enhanced mass transfer in reactor channels, emulsification, etc. Understanding and implementing anisotropic vortex flows will therefore not only revolutionize analytical and preparative separation procedures, but will also be highly relevant in all flow systems that benefit from enhanced mass transfer.
Max ERC Funding
1 460 688 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym HBMAP
Project Decoding, Mapping and Designing the Structural Complexity of Hydrogen-Bond Networks: from Water to Proteins to Polymers
Researcher (PI) Michele Ceriotti
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary Hydrogen bonds are ubiquitous and fundamental in nature, underpinning the behavior of systems as different as water, proteins and polymers. Much of this flexibility derives from their propensity to form complex topological networks, which can be strong enough to hold Kevlar together, or sufficiently labile to enable reversible structural transitions in allosteric proteins.
Simulations must treat the quantum nature of both electrons and protons to describe accurately the microscopic structure of H-bonded materials, but this wealth of data does not necessarily translate into deep physical understanding. Even the structure of a compound as essential as water is still the subject of intense debate, despite extensive investigations. Identifying recurring bonding patterns is essential to comprehend and manipulate the structural and dynamical properties of H-bonded systems.
Our objective is to develop and apply machine-learning techniques to atomistic simulations, and identify the design principles that govern the structure and properties of H-bonded compounds. Our strategy rests on three efforts: (1) recognition of recurring structural motifs with probabilistic data analysis; (2) coarse-grained mapping of the energetically accessible structural landscape by non-linear dimensionality reduction techniques; (3) acceleration of configuration sampling using these data-driven collective variables.
Identifying motifs and order parameters will be crucial to interpret simulations and experiments of growing complexity, and will enable computational design of H-bond networks. We will focus first on two objectives. (1) Rationalizing the structure of crystalline, amorphous and liquid water across its phase diagram, from ambient to astrophysical conditions, and its response to solutes, interfaces or confinement. (2) Enabling efficient simulation and structural design of polymers and proteins in non-biological contexts, targeting biomimetic materials and organic/inorganic interfaces.
Summary
Hydrogen bonds are ubiquitous and fundamental in nature, underpinning the behavior of systems as different as water, proteins and polymers. Much of this flexibility derives from their propensity to form complex topological networks, which can be strong enough to hold Kevlar together, or sufficiently labile to enable reversible structural transitions in allosteric proteins.
Simulations must treat the quantum nature of both electrons and protons to describe accurately the microscopic structure of H-bonded materials, but this wealth of data does not necessarily translate into deep physical understanding. Even the structure of a compound as essential as water is still the subject of intense debate, despite extensive investigations. Identifying recurring bonding patterns is essential to comprehend and manipulate the structural and dynamical properties of H-bonded systems.
Our objective is to develop and apply machine-learning techniques to atomistic simulations, and identify the design principles that govern the structure and properties of H-bonded compounds. Our strategy rests on three efforts: (1) recognition of recurring structural motifs with probabilistic data analysis; (2) coarse-grained mapping of the energetically accessible structural landscape by non-linear dimensionality reduction techniques; (3) acceleration of configuration sampling using these data-driven collective variables.
Identifying motifs and order parameters will be crucial to interpret simulations and experiments of growing complexity, and will enable computational design of H-bond networks. We will focus first on two objectives. (1) Rationalizing the structure of crystalline, amorphous and liquid water across its phase diagram, from ambient to astrophysical conditions, and its response to solutes, interfaces or confinement. (2) Enabling efficient simulation and structural design of polymers and proteins in non-biological contexts, targeting biomimetic materials and organic/inorganic interfaces.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym INATTENTION
Project Behavioral and Policy Implications of Rational Inattention
Researcher (PI) Filip Matejka
Host Institution (HI) NARODOHOSPODARSKY USTAV AKADEMIE VED CESKE REPUBLIKY VEREJNA VYZKUMNA INSTITUCE
Call Details Starting Grant (StG), SH1, ERC-2015-STG
Summary This proposal outlines agenda which aims to improve our understanding of policies in environments with cognitively limited agents. It seeks to extend and apply the theory of rational inattention developed in macroeconomics. Citizens are inattentive to details of tax codes, government bureaucrats cannot inspect all data about people in need, and voters are highly uninformed about politicians’ campaign platforms. The agenda is specifically targeted at applications where human inability to digest all available information has strong implications for public policy formation. It falls into three broad parts.
First (macroeconomics), the proposed research will develop a new model of risk-sharing in a typical modern-macro setting with heterogeneous agents. Instead of incentive constraints, the imperfections will be driven by the government’s or citizens’ inability to process all available information. What are the properties of the resulting system of redistribution? Why do taxes often take a simple form? Can minorities be left behind because they attract less of the government’s attention?
Second (behavioral economics), it will extend the rational inattention theory to model how agents simplify multidimensional features of the environment. Among many applications, the theory is likely to provide an alternative explanation for mental accounting, when people have separate budgets for different types of expenditures (critical to consumption decisions, especially of the poor), and for salience of different elements of the tax code.
Third (political economy), it will develop a unified framework to study implications of voters’ rational inattention (selective ignorance) for the outcomes of political processes, such as for popular demand for misguided policies, public good provision, and the complexity of announced platforms. Voters’ information acquisition and fragmented information processing will be studied in a field experiment.
Summary
This proposal outlines agenda which aims to improve our understanding of policies in environments with cognitively limited agents. It seeks to extend and apply the theory of rational inattention developed in macroeconomics. Citizens are inattentive to details of tax codes, government bureaucrats cannot inspect all data about people in need, and voters are highly uninformed about politicians’ campaign platforms. The agenda is specifically targeted at applications where human inability to digest all available information has strong implications for public policy formation. It falls into three broad parts.
First (macroeconomics), the proposed research will develop a new model of risk-sharing in a typical modern-macro setting with heterogeneous agents. Instead of incentive constraints, the imperfections will be driven by the government’s or citizens’ inability to process all available information. What are the properties of the resulting system of redistribution? Why do taxes often take a simple form? Can minorities be left behind because they attract less of the government’s attention?
Second (behavioral economics), it will extend the rational inattention theory to model how agents simplify multidimensional features of the environment. Among many applications, the theory is likely to provide an alternative explanation for mental accounting, when people have separate budgets for different types of expenditures (critical to consumption decisions, especially of the poor), and for salience of different elements of the tax code.
Third (political economy), it will develop a unified framework to study implications of voters’ rational inattention (selective ignorance) for the outcomes of political processes, such as for popular demand for misguided policies, public good provision, and the complexity of announced platforms. Voters’ information acquisition and fragmented information processing will be studied in a field experiment.
Max ERC Funding
950 424 €
Duration
Start date: 2016-04-01, End date: 2021-03-31