Project acronym 2G-CSAFE
Project Combustion of Sustainable Alternative Fuels for Engines used in aeronautics and automotives
Researcher (PI) Philippe Dagaut
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Advanced Grant (AdG), PE8, ERC-2011-ADG_20110209
Summary This project aims at promoting sustainable combustion technologies for transport via validation of advanced combustion kinetic models obtained using sophisticated new laboratory experiments, engines, and theoretical computations, breaking through the current frontier of knowledge. It will focus on the unexplored kinetics of ignition and combustion of 2nd generation (2G) biofuels and blends with conventional fuels, which should provide energy safety and sustainability to Europe. The motivation is that no accurate kinetic models are available for the ignition, oxidation and combustion of 2G-biofuels, and improved ignition control is needed for new compression ignition engines. Crucial information is missing: data from well characterised experiments on combustion-generated pollutants and data on key-intermediates for fuels ignition in new engines.
To provide that knowledge new well-instrumented complementary experiments and kinetic modelling will be used. Measurements of key-intermediates, stables species, and pollutants will be performed. New ignition control strategies will be designed, opening new technological horizons. Kinetic modelling will be used for rationalising the results. Due to the complexity of 2G-biofuels and their unusual composition, innovative surrogates will be designed. Kinetic models for surrogate fuels will be generalised for extension to other compounds. The experimental results, together with ab-initio and detailed modelling, will serve to characterise the kinetics of ignition, combustion, and pollutants formation of fuels including 2G biofuels, and provide relevant data and models.
This research is risky because this is (i) the 1st effort to measure radicals by reactor/CRDS coupling, (ii) the 1st effort to use a μ-channel reactor to build ignition databases for conventional and bio-fuels, (iii) the 1st effort to design and use controlled generation and injection of reactive species to control ignition/combustion in compression ignition engines
Summary
This project aims at promoting sustainable combustion technologies for transport via validation of advanced combustion kinetic models obtained using sophisticated new laboratory experiments, engines, and theoretical computations, breaking through the current frontier of knowledge. It will focus on the unexplored kinetics of ignition and combustion of 2nd generation (2G) biofuels and blends with conventional fuels, which should provide energy safety and sustainability to Europe. The motivation is that no accurate kinetic models are available for the ignition, oxidation and combustion of 2G-biofuels, and improved ignition control is needed for new compression ignition engines. Crucial information is missing: data from well characterised experiments on combustion-generated pollutants and data on key-intermediates for fuels ignition in new engines.
To provide that knowledge new well-instrumented complementary experiments and kinetic modelling will be used. Measurements of key-intermediates, stables species, and pollutants will be performed. New ignition control strategies will be designed, opening new technological horizons. Kinetic modelling will be used for rationalising the results. Due to the complexity of 2G-biofuels and their unusual composition, innovative surrogates will be designed. Kinetic models for surrogate fuels will be generalised for extension to other compounds. The experimental results, together with ab-initio and detailed modelling, will serve to characterise the kinetics of ignition, combustion, and pollutants formation of fuels including 2G biofuels, and provide relevant data and models.
This research is risky because this is (i) the 1st effort to measure radicals by reactor/CRDS coupling, (ii) the 1st effort to use a μ-channel reactor to build ignition databases for conventional and bio-fuels, (iii) the 1st effort to design and use controlled generation and injection of reactive species to control ignition/combustion in compression ignition engines
Max ERC Funding
2 498 450 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym 3DIMAGE
Project 3D Imaging Across Lengthscales: From Atoms to Grains
Researcher (PI) Paul Anthony Midgley
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary "Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Summary
"Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Max ERC Funding
2 337 330 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym 4D-EEG
Project 4D-EEG: A new tool to investigate the spatial and temporal activity patterns in the brain
Researcher (PI) Franciscus C.T. Van Der Helm
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Country Netherlands
Call Details Advanced Grant (AdG), PE7, ERC-2011-ADG_20110209
Summary Our first goal is to develop a new tool to determine brain activity with a high temporal (< 1 msec) and spatial (about 2 mm) resolution with the focus on motor control. High density EEG (up to 256 electrodes) will be used for EEG source localization. Advanced force-controlled robot manipulators will be used to impose continuous force perturbations to the joints. Advanced closed-loop system identification algorithms will identify the dynamic EEG response of multiple brain areas to the perturbation, leading to a functional interpretation of EEG. The propagation of the signal in time and 3D space through the cortex can be monitored: 4D-EEG. Preliminary experiments with EEG localization have shown that the continuous force perturbations resulted in a better signal-to-noise ratio and coherence than the current method using transient perturbations..
4D-EEG will be a direct measure of the neural activity in the brain with an excellent temporal response and easy to use in combination with motor control tasks. The new 4D-EEG method is expected to provide a breakthrough in comparison to functional MRI (fMRI) when elucidating the meaning of cortical map plasticity in motor learning.
Our second goal is to generate and validate new hypotheses about the longitudinal relationship between motor learning and cortical map plasticity by clinically using 4D-EEG in an intensive, repeated measurement design in patients suffering from a stroke. The application of 4D-EEG combined with haptic robots will allow us to discover how dynamics in cortical map plasticity are related with upper limb recovery after stroke in terms of neural repair and using behavioral compensation strategies while performing a meaningful motor tasks.. The non-invasive 4D-EEG technique combined with haptic robots will open the window about what and how patients (re)learn when showing motor recovery after stroke in order to allow us to develop more effective patient-tailored therapies in neuro-rehabilitation.
Summary
Our first goal is to develop a new tool to determine brain activity with a high temporal (< 1 msec) and spatial (about 2 mm) resolution with the focus on motor control. High density EEG (up to 256 electrodes) will be used for EEG source localization. Advanced force-controlled robot manipulators will be used to impose continuous force perturbations to the joints. Advanced closed-loop system identification algorithms will identify the dynamic EEG response of multiple brain areas to the perturbation, leading to a functional interpretation of EEG. The propagation of the signal in time and 3D space through the cortex can be monitored: 4D-EEG. Preliminary experiments with EEG localization have shown that the continuous force perturbations resulted in a better signal-to-noise ratio and coherence than the current method using transient perturbations..
4D-EEG will be a direct measure of the neural activity in the brain with an excellent temporal response and easy to use in combination with motor control tasks. The new 4D-EEG method is expected to provide a breakthrough in comparison to functional MRI (fMRI) when elucidating the meaning of cortical map plasticity in motor learning.
Our second goal is to generate and validate new hypotheses about the longitudinal relationship between motor learning and cortical map plasticity by clinically using 4D-EEG in an intensive, repeated measurement design in patients suffering from a stroke. The application of 4D-EEG combined with haptic robots will allow us to discover how dynamics in cortical map plasticity are related with upper limb recovery after stroke in terms of neural repair and using behavioral compensation strategies while performing a meaningful motor tasks.. The non-invasive 4D-EEG technique combined with haptic robots will open the window about what and how patients (re)learn when showing motor recovery after stroke in order to allow us to develop more effective patient-tailored therapies in neuro-rehabilitation.
Max ERC Funding
3 477 202 €
Duration
Start date: 2012-06-01, End date: 2017-05-31
Project acronym A-DATADRIVE-B
Project Advanced Data-Driven Black-box modelling
Researcher (PI) Johan Adelia K Suykens
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Advanced Grant (AdG), PE7, ERC-2011-ADG_20110209
Summary Making accurate predictions is a crucial factor in many systems (such as in modelling energy consumption, power load forecasting, traffic networks, process industry, environmental modelling, biomedicine, brain-machine interfaces) for cost savings, efficiency, health, safety and organizational purposes. In this proposal we aim at realizing a new generation of more advanced black-box modelling techniques for estimating predictive models from measured data. We will study different optimization modelling frameworks in order to obtain improved black-box modelling approaches. This will be done by specifying models through constrained optimization problems by studying different candidate core models (parametric models, support vector machines and kernel methods) together with additional sets of constraints and regularization mechanisms. Different candidate mathematical frameworks will be considered with models that possess primal and (Lagrange) dual model representations, functional analysis in reproducing kernel Hilbert spaces, operator splitting and optimization in Banach spaces. Several aspects that are relevant to black-box models will be studied including incorporation of prior knowledge, structured dynamical systems, tensorial data representations, interpretability and sparsity, and general purpose optimization algorithms. The methods should be suitable for handling larger data sets and high dimensional input spaces. The final goal is also to realize a next generation software tool (including symbolic generation of models and handling different supervised and unsupervised learning tasks, static and dynamic systems) that can be generically applied to data from different application areas. The proposal A-DATADRIVE-B aims at getting end-users connected to the more advanced methods through a user-friendly data-driven black-box modelling tool. The methods and tool will be tested in connection to several real-life applications.
Summary
Making accurate predictions is a crucial factor in many systems (such as in modelling energy consumption, power load forecasting, traffic networks, process industry, environmental modelling, biomedicine, brain-machine interfaces) for cost savings, efficiency, health, safety and organizational purposes. In this proposal we aim at realizing a new generation of more advanced black-box modelling techniques for estimating predictive models from measured data. We will study different optimization modelling frameworks in order to obtain improved black-box modelling approaches. This will be done by specifying models through constrained optimization problems by studying different candidate core models (parametric models, support vector machines and kernel methods) together with additional sets of constraints and regularization mechanisms. Different candidate mathematical frameworks will be considered with models that possess primal and (Lagrange) dual model representations, functional analysis in reproducing kernel Hilbert spaces, operator splitting and optimization in Banach spaces. Several aspects that are relevant to black-box models will be studied including incorporation of prior knowledge, structured dynamical systems, tensorial data representations, interpretability and sparsity, and general purpose optimization algorithms. The methods should be suitable for handling larger data sets and high dimensional input spaces. The final goal is also to realize a next generation software tool (including symbolic generation of models and handling different supervised and unsupervised learning tasks, static and dynamic systems) that can be generically applied to data from different application areas. The proposal A-DATADRIVE-B aims at getting end-users connected to the more advanced methods through a user-friendly data-driven black-box modelling tool. The methods and tool will be tested in connection to several real-life applications.
Max ERC Funding
2 485 800 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym AAMOT
Project Arithmetic of automorphic motives
Researcher (PI) Michael Harris
Host Institution (HI) INSTITUT DES HAUTES ETUDES SCIENTIFIQUES
Country France
Call Details Advanced Grant (AdG), PE1, ERC-2011-ADG_20110209
Summary The primary purpose of this project is to build on recent spectacular progress in the Langlands program to study the arithmetic properties of automorphic motives constructed in the cohomology of Shimura varieties. Because automorphic methods are available to study the L-functions of these motives, which include elliptic curves and certain families of Calabi-Yau varieties over totally real fields (possibly after base change), they represent the most accessible class of varieties for which one can hope to verify fundamental conjectures on special values of L-functions, including Deligne's conjecture and the Main Conjecture of Iwasawa theory. Immediate goals include the proof of irreducibility of automorphic Galois representations; the establishment of period relations for automorphic and potentially automorphic realizations of motives in the cohomology of distinct Shimura varieties; the construction of p-adic L-functions for these and related motives, notably adjoint and tensor product L-functions in p-adic families; and the geometrization of the p-adic and mod p Langlands program. All four goals, as well as the others mentioned in the body of the proposal, are interconnected; the final goal provides a bridge to related work in geometric representation theory, algebraic geometry, and mathematical physics.
Summary
The primary purpose of this project is to build on recent spectacular progress in the Langlands program to study the arithmetic properties of automorphic motives constructed in the cohomology of Shimura varieties. Because automorphic methods are available to study the L-functions of these motives, which include elliptic curves and certain families of Calabi-Yau varieties over totally real fields (possibly after base change), they represent the most accessible class of varieties for which one can hope to verify fundamental conjectures on special values of L-functions, including Deligne's conjecture and the Main Conjecture of Iwasawa theory. Immediate goals include the proof of irreducibility of automorphic Galois representations; the establishment of period relations for automorphic and potentially automorphic realizations of motives in the cohomology of distinct Shimura varieties; the construction of p-adic L-functions for these and related motives, notably adjoint and tensor product L-functions in p-adic families; and the geometrization of the p-adic and mod p Langlands program. All four goals, as well as the others mentioned in the body of the proposal, are interconnected; the final goal provides a bridge to related work in geometric representation theory, algebraic geometry, and mathematical physics.
Max ERC Funding
1 491 348 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym ABYSS
Project ABYSS - Assessment of bacterial life and matter cycling in deep-sea surface sediments
Researcher (PI) Antje Boetius
Host Institution (HI) ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FUR POLAR- UND MEERESFORSCHUNG
Country Germany
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.
Summary
The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.
Max ERC Funding
3 375 693 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym ACCOMPLI
Project Assembly and maintenance of a co-regulated chromosomal compartment
Researcher (PI) Peter Burkhard Becker
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Advanced Grant (AdG), LS2, ERC-2011-ADG_20110310
Summary "Eukaryotic nuclei are organised into functional compartments, – local microenvironments that are enriched in certain molecules or biochemical activities and therefore specify localised functional outputs. Our study seeks to unveil fundamental principles of co-regulation of genes in a chromo¬somal compartment and the preconditions for homeostasis of such a compartment in the dynamic nuclear environment.
The dosage-compensated X chromosome of male Drosophila flies satisfies the criteria for a functional com¬partment. It is rendered structurally distinct from all other chromosomes by association of a regulatory ribonucleoprotein ‘Dosage Compensation Complex’ (DCC), enrichment of histone modifications and global decondensation. As a result, most genes on the X chromosome are co-ordinately activated. Autosomal genes inserted into the X acquire X-chromosomal features and are subject to the X-specific regulation.
We seek to uncover the molecular principles that initiate, establish and maintain the dosage-compensated chromosome. We will follow the kinetics of DCC assembly and the timing of association with different types of chromosomal targets in nuclei with high spatial resolution afforded by sub-wavelength microscopy and deep sequencing of DNA binding sites. We will characterise DCC sub-complexes with respect to their roles as kinetic assembly intermediates or as representations of local, functional heterogeneity. We will evaluate the roles of a DCC- novel ubiquitin ligase activity for homeostasis.
Crucial to the recruitment of the DCC and its distribution to target genes are non-coding roX RNAs that are transcribed from the X. We will determine the secondary structure ‘signatures’ of roX RNAs in vitro and determine the binding sites of the protein subunits in vivo. By biochemical and cellular reconstitution will test the hypothesis that roX-encoded RNA aptamers orchestrate the assembly of the DCC and contribute to the exquisite targeting of the complex."
Summary
"Eukaryotic nuclei are organised into functional compartments, – local microenvironments that are enriched in certain molecules or biochemical activities and therefore specify localised functional outputs. Our study seeks to unveil fundamental principles of co-regulation of genes in a chromo¬somal compartment and the preconditions for homeostasis of such a compartment in the dynamic nuclear environment.
The dosage-compensated X chromosome of male Drosophila flies satisfies the criteria for a functional com¬partment. It is rendered structurally distinct from all other chromosomes by association of a regulatory ribonucleoprotein ‘Dosage Compensation Complex’ (DCC), enrichment of histone modifications and global decondensation. As a result, most genes on the X chromosome are co-ordinately activated. Autosomal genes inserted into the X acquire X-chromosomal features and are subject to the X-specific regulation.
We seek to uncover the molecular principles that initiate, establish and maintain the dosage-compensated chromosome. We will follow the kinetics of DCC assembly and the timing of association with different types of chromosomal targets in nuclei with high spatial resolution afforded by sub-wavelength microscopy and deep sequencing of DNA binding sites. We will characterise DCC sub-complexes with respect to their roles as kinetic assembly intermediates or as representations of local, functional heterogeneity. We will evaluate the roles of a DCC- novel ubiquitin ligase activity for homeostasis.
Crucial to the recruitment of the DCC and its distribution to target genes are non-coding roX RNAs that are transcribed from the X. We will determine the secondary structure ‘signatures’ of roX RNAs in vitro and determine the binding sites of the protein subunits in vivo. By biochemical and cellular reconstitution will test the hypothesis that roX-encoded RNA aptamers orchestrate the assembly of the DCC and contribute to the exquisite targeting of the complex."
Max ERC Funding
2 482 770 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ACCRETE
Project Accretion and Early Differentiation of the Earth and Terrestrial Planets
Researcher (PI) David Crowhurst Rubie
Host Institution (HI) UNIVERSITAT BAYREUTH
Country Germany
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary Formation of the Earth and the other terrestrial planets of our Solar System (Mercury, Venus and Mars) commenced 4.568 billion years ago and occurred on a time scale of about 100 million years. These planets grew by the process of accretion, which involved numerous collisions with smaller (Moon- to Mars-size) bodies. Impacts with such bodies released sufficient energy to cause large-scale melting and the formation of deep “magma oceans”. Such magma oceans enabled liquid metal to separate from liquid silicate, sink and accumulate to form the metallic cores of the planets. Thus core formation in terrestrial planets was a multistage process, intimately related to the major impacts during accretion, that determined the chemistry of planetary mantles. However, until now, accretion, as modelled by astrophysicists, and core formation, as modelled by geochemists, have been treated as completely independent processes. The fundamental and crucial aim of this ambitious interdisciplinary proposal is to integrate astrophysical models of planetary accretion with geochemical models of planetary differentiation together with cosmochemical constraints obtained from meteorites. The research will involve integrating new models of planetary accretion with core formation models based on the partitioning of a large number of elements between liquid metal and liquid silicate that we will determine experimentally at pressures up to about 100 gigapascals (equivalent to 2400 km deep in the Earth). By comparing our results with the known physical and chemical characteristics of the terrestrial planets, we will obtain a comprehensive understanding of how these planets formed, grew and evolved, both physically and chemically, with time. The integration of chemistry and planetary differentiation with accretion models is a new ground-breaking concept that will lead, through synergies and feedback, to major new advances in the Earth and planetary sciences.
Summary
Formation of the Earth and the other terrestrial planets of our Solar System (Mercury, Venus and Mars) commenced 4.568 billion years ago and occurred on a time scale of about 100 million years. These planets grew by the process of accretion, which involved numerous collisions with smaller (Moon- to Mars-size) bodies. Impacts with such bodies released sufficient energy to cause large-scale melting and the formation of deep “magma oceans”. Such magma oceans enabled liquid metal to separate from liquid silicate, sink and accumulate to form the metallic cores of the planets. Thus core formation in terrestrial planets was a multistage process, intimately related to the major impacts during accretion, that determined the chemistry of planetary mantles. However, until now, accretion, as modelled by astrophysicists, and core formation, as modelled by geochemists, have been treated as completely independent processes. The fundamental and crucial aim of this ambitious interdisciplinary proposal is to integrate astrophysical models of planetary accretion with geochemical models of planetary differentiation together with cosmochemical constraints obtained from meteorites. The research will involve integrating new models of planetary accretion with core formation models based on the partitioning of a large number of elements between liquid metal and liquid silicate that we will determine experimentally at pressures up to about 100 gigapascals (equivalent to 2400 km deep in the Earth). By comparing our results with the known physical and chemical characteristics of the terrestrial planets, we will obtain a comprehensive understanding of how these planets formed, grew and evolved, both physically and chemically, with time. The integration of chemistry and planetary differentiation with accretion models is a new ground-breaking concept that will lead, through synergies and feedback, to major new advances in the Earth and planetary sciences.
Max ERC Funding
1 826 200 €
Duration
Start date: 2012-05-01, End date: 2018-04-30
Project acronym AFTERTHEGOLDRUSH
Project Addressing global sustainability challenges by changing perceptions in catalyst design
Researcher (PI) Graham John Hutchings
Host Institution (HI) CARDIFF UNIVERSITY
Country United Kingdom
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary One of the greatest challenges facing society is the sustainability of resources. At present, a step change in the sustainable use of resources is needed and catalysis lies at the heart of the solution by providing new routes to carbon dioxide mitigation, energy security and water conservation. It is clear that new high efficiency game-changing catalysts are required to meet the challenge. This proposal will focus on excellence in catalyst design by learning from recent step change advances in gold catalysis by challenging perceptions. Intense interest in gold catalysts over the past two decades has accelerated our understanding of gold particle-size effects, gold-support and gold-metal interactions, the interchange between atomic and ionic gold species, and the role of the gold-support interface in creating and maintaining catalytic activity. The field has also driven the development of cutting-edge techniques, particularly in microscopy and transient kinetics, providing detailed structural characterisation on the nano-scale and probing the short-range and often short-lived interactions. By comparison, our understanding of other metal catalysts has remained relatively static.
The proposed programme will engender a step change in the design of supported-metal catalysts, by exploiting the learning and the techniques emerging from gold catalysis. The research will be set out in two themes. In Theme 1 two established key grand challenges will be attacked; namely, energy vectors and greenhouse gas control. Theme 2 will address two new and emerging grand challenges in catalysis namely the effective low temperature activation of primary carbon hydrogen bonds and CO2 utilisation where instead of treating CO2 as a thermodynamic endpoint, the aim will be to re-use it as a feedstock for bulk chemical and fuel production. The legacy of the research will be the development of a new catalyst design approach that will provide a tool box for future catalyst development.
Summary
One of the greatest challenges facing society is the sustainability of resources. At present, a step change in the sustainable use of resources is needed and catalysis lies at the heart of the solution by providing new routes to carbon dioxide mitigation, energy security and water conservation. It is clear that new high efficiency game-changing catalysts are required to meet the challenge. This proposal will focus on excellence in catalyst design by learning from recent step change advances in gold catalysis by challenging perceptions. Intense interest in gold catalysts over the past two decades has accelerated our understanding of gold particle-size effects, gold-support and gold-metal interactions, the interchange between atomic and ionic gold species, and the role of the gold-support interface in creating and maintaining catalytic activity. The field has also driven the development of cutting-edge techniques, particularly in microscopy and transient kinetics, providing detailed structural characterisation on the nano-scale and probing the short-range and often short-lived interactions. By comparison, our understanding of other metal catalysts has remained relatively static.
The proposed programme will engender a step change in the design of supported-metal catalysts, by exploiting the learning and the techniques emerging from gold catalysis. The research will be set out in two themes. In Theme 1 two established key grand challenges will be attacked; namely, energy vectors and greenhouse gas control. Theme 2 will address two new and emerging grand challenges in catalysis namely the effective low temperature activation of primary carbon hydrogen bonds and CO2 utilisation where instead of treating CO2 as a thermodynamic endpoint, the aim will be to re-use it as a feedstock for bulk chemical and fuel production. The legacy of the research will be the development of a new catalyst design approach that will provide a tool box for future catalyst development.
Max ERC Funding
2 279 785 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym AIRSEA
Project Air-Sea Exchanges driven by Light
Researcher (PI) Christian George
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary The scientific motivation of this project is the significant presence of organic compounds at the surface of the ocean. They form the link between ocean biogeochemistry through the physico-chemical processes near the water-air interface with primary and secondary aerosol formation and evolution in the air aloft and finally to the climate impact of marine boundary layer aerosols. However, their photochemistry and photosensitizer properties have only been suggested and discussed but never fully addressed because they were beyond reach. This project suggests going significantly beyond this matter of fact by a combination of innovative tools and the development of new ideas.
This project is therefore devoted to new laboratory investigations of processes occurring at the air sea interface to predict emission, formation and evolution of halogenated radicals and aerosols from this vast interface between oceans and atmosphere. It progresses from fundamental laboratory measurements, marine science, surface chemistry, photochemistry … and is therefore interdisciplinary in nature.
It will lead to the development of innovative techniques for characterising chemical processing at the air sea interface (e.g., a multiphase atmospheric simulation chamber, a time-resolved fluorescence technique for characterising chemical processing at the air-sea interface). It will allow the assessment of new emerging ideas such as a quantitative description of the importance of photosensitized reactions in the visible at the air/sea interface as a major source of halogenated radicals and aerosols in the marine environment.
This new understanding will impact on our ability to describe atmospheric chemistry in the marine environment which has strong impact on the urban air quality of coastal regions (which by the way represent highly populated regions ) but also on climate change by providing new input for global climate models.
Summary
The scientific motivation of this project is the significant presence of organic compounds at the surface of the ocean. They form the link between ocean biogeochemistry through the physico-chemical processes near the water-air interface with primary and secondary aerosol formation and evolution in the air aloft and finally to the climate impact of marine boundary layer aerosols. However, their photochemistry and photosensitizer properties have only been suggested and discussed but never fully addressed because they were beyond reach. This project suggests going significantly beyond this matter of fact by a combination of innovative tools and the development of new ideas.
This project is therefore devoted to new laboratory investigations of processes occurring at the air sea interface to predict emission, formation and evolution of halogenated radicals and aerosols from this vast interface between oceans and atmosphere. It progresses from fundamental laboratory measurements, marine science, surface chemistry, photochemistry … and is therefore interdisciplinary in nature.
It will lead to the development of innovative techniques for characterising chemical processing at the air sea interface (e.g., a multiphase atmospheric simulation chamber, a time-resolved fluorescence technique for characterising chemical processing at the air-sea interface). It will allow the assessment of new emerging ideas such as a quantitative description of the importance of photosensitized reactions in the visible at the air/sea interface as a major source of halogenated radicals and aerosols in the marine environment.
This new understanding will impact on our ability to describe atmospheric chemistry in the marine environment which has strong impact on the urban air quality of coastal regions (which by the way represent highly populated regions ) but also on climate change by providing new input for global climate models.
Max ERC Funding
2 366 276 €
Duration
Start date: 2012-04-01, End date: 2017-03-31