Project acronym 2SEXES_1GENOME
Project Sex-specific genetic effects on fitness and human disease
Researcher (PI) Edward Hugh Morrow
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Country United Kingdom
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Summary
Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym AAATSI
Project Advanced Antenna Architecture for THZ Sensing Instruments
Researcher (PI) Andrea Neto
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Country Netherlands
Call Details Starting Grant (StG), PE7, ERC-2011-StG_20101014
Summary The Tera-Hertz portion of the spectrum presents unique potentials for advanced applications. Currently the THz spectrum is revealing the mechanisms at the origin of our universe and provides the means to monitor the health of our planet via satellite based sensing of critical gases. Potentially time domain sensing of the THz spectrum will be the ideal tool for a vast variety of medical and security applications.
Presently, systems in the THz regime are extremely expensive and consequently the THz spectrum is still the domain of only niche (expensive) scientific applications. The main problems are the lack of power and sensitivity. The wide unused THz spectral bandwidth is, herself, the only widely available resource that in the future can compensate for these problems. But, so far, when scientists try to really use the bandwidth, they run into an insurmountable physical limit: antenna dispersion. Antenna dispersion modifies the signal’s spectrum in a wavelength dependent manner in all types of radiation, but is particularly deleterious to THz signals because the spectrum is too wide and with foreseeable technology it cannot be digitized.
The goal of this proposal is to introduce break-through antenna technology that will eliminate the dispersion bottle neck and revolutionize Time Domain sensing and Spectroscopic Space Science. Achieving these goals the project will pole vault THz imaging technology into the 21-th century and develop critically important enabling technologies which will satisfy the electrical engineering needs of the next 30 years and in the long run will enable multi Tera-bit wireless communications.
In order to achieve these goals, I will first build upon two major breakthrough radiation mechanisms that I pioneered: Leaky Lenses and Connected Arrays. Eventually, ultra wide band imaging arrays constituted by thousands of components will be designed on the bases of the new theoretical findings and demonstrated.
Summary
The Tera-Hertz portion of the spectrum presents unique potentials for advanced applications. Currently the THz spectrum is revealing the mechanisms at the origin of our universe and provides the means to monitor the health of our planet via satellite based sensing of critical gases. Potentially time domain sensing of the THz spectrum will be the ideal tool for a vast variety of medical and security applications.
Presently, systems in the THz regime are extremely expensive and consequently the THz spectrum is still the domain of only niche (expensive) scientific applications. The main problems are the lack of power and sensitivity. The wide unused THz spectral bandwidth is, herself, the only widely available resource that in the future can compensate for these problems. But, so far, when scientists try to really use the bandwidth, they run into an insurmountable physical limit: antenna dispersion. Antenna dispersion modifies the signal’s spectrum in a wavelength dependent manner in all types of radiation, but is particularly deleterious to THz signals because the spectrum is too wide and with foreseeable technology it cannot be digitized.
The goal of this proposal is to introduce break-through antenna technology that will eliminate the dispersion bottle neck and revolutionize Time Domain sensing and Spectroscopic Space Science. Achieving these goals the project will pole vault THz imaging technology into the 21-th century and develop critically important enabling technologies which will satisfy the electrical engineering needs of the next 30 years and in the long run will enable multi Tera-bit wireless communications.
In order to achieve these goals, I will first build upon two major breakthrough radiation mechanisms that I pioneered: Leaky Lenses and Connected Arrays. Eventually, ultra wide band imaging arrays constituted by thousands of components will be designed on the bases of the new theoretical findings and demonstrated.
Max ERC Funding
1 499 487 €
Duration
Start date: 2011-11-01, End date: 2017-10-31
Project acronym AAS
Project Approximate algebraic structure and applications
Researcher (PI) Ben Green
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Starting Grant (StG), PE1, ERC-2011-StG_20101014
Summary This project studies several mathematical topics with a related theme, all of them part of the relatively new discipline known as additive combinatorics.
We look at approximate, or rough, variants of familiar mathematical notions such as group, polynomial or homomorphism. In each case we seek to describe the structure of these approximate objects, and then to give applications of the resulting theorems. This endeavour has already lead to groundbreaking results in the theory of prime numbers, group theory and combinatorial number theory.
Summary
This project studies several mathematical topics with a related theme, all of them part of the relatively new discipline known as additive combinatorics.
We look at approximate, or rough, variants of familiar mathematical notions such as group, polynomial or homomorphism. In each case we seek to describe the structure of these approximate objects, and then to give applications of the resulting theorems. This endeavour has already lead to groundbreaking results in the theory of prime numbers, group theory and combinatorial number theory.
Max ERC Funding
1 000 000 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym ABATSYNAPSE
Project Evolution of Alzheimer’s Disease: From dynamics of single synapses to memory loss
Researcher (PI) Inna Slutsky
Host Institution (HI) TEL AVIV UNIVERSITY
Country Israel
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Summary
A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Max ERC Funding
2 000 000 €
Duration
Start date: 2011-12-01, End date: 2017-09-30
Project acronym ABCTRANSPORT
Project Minimalist multipurpose ATP-binding cassette transporters
Researcher (PI) Dirk Jan Slotboom
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Country Netherlands
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary Many Gram-positive (pathogenic) bacteria are dependent on the uptake of vitamins from the environment or from the infected host. We have recently discovered the long-elusive family of membrane protein complexes catalyzing such transport. The vitamin transporters have an unprecedented modular architecture consisting of a single multipurpose energizing module (the Energy Coupling Factor, ECF) and multiple exchangeable membrane proteins responsible for substrate recognition (S-components). The S-components have characteristics of ion-gradient driven transporters (secondary active transporters), whereas the energizing modules are related to ATP-binding cassette (ABC) transporters (primary active transporters).
The aim of the proposal is threefold: First, we will address the question how properties of primary and secondary transporters are combined in ECF transporters to obtain a novel transport mechanism. Second, we will study the fundamental and unresolved question how protein-protein recognition takes place in the hydrophobic environment of the lipid bilayer. The modular nature of the ECF proteins offers a natural system to study the driving forces used for membrane protein interaction. Third, we will assess whether the ECF transport systems could become targets for antibacterial drugs. ECF transporters are found exclusively in prokaryotes, and their activity is often essential for viability of Gram-positive pathogens. Thus they could turn out to be an Achilles’ heel for the organisms.
Structural and mechanistic studies (X-ray crystallography, microscopy, spectroscopy and biochemistry) will reveal how the different transport modes are combined in a single protein complex, how transport is energized and catalyzed, and how protein-protein recognition takes place. Microbiological screens will be developed to search for compounds that inhibit prokaryote-specific steps of the mechanism of ECF transporters.
Summary
Many Gram-positive (pathogenic) bacteria are dependent on the uptake of vitamins from the environment or from the infected host. We have recently discovered the long-elusive family of membrane protein complexes catalyzing such transport. The vitamin transporters have an unprecedented modular architecture consisting of a single multipurpose energizing module (the Energy Coupling Factor, ECF) and multiple exchangeable membrane proteins responsible for substrate recognition (S-components). The S-components have characteristics of ion-gradient driven transporters (secondary active transporters), whereas the energizing modules are related to ATP-binding cassette (ABC) transporters (primary active transporters).
The aim of the proposal is threefold: First, we will address the question how properties of primary and secondary transporters are combined in ECF transporters to obtain a novel transport mechanism. Second, we will study the fundamental and unresolved question how protein-protein recognition takes place in the hydrophobic environment of the lipid bilayer. The modular nature of the ECF proteins offers a natural system to study the driving forces used for membrane protein interaction. Third, we will assess whether the ECF transport systems could become targets for antibacterial drugs. ECF transporters are found exclusively in prokaryotes, and their activity is often essential for viability of Gram-positive pathogens. Thus they could turn out to be an Achilles’ heel for the organisms.
Structural and mechanistic studies (X-ray crystallography, microscopy, spectroscopy and biochemistry) will reveal how the different transport modes are combined in a single protein complex, how transport is energized and catalyzed, and how protein-protein recognition takes place. Microbiological screens will be developed to search for compounds that inhibit prokaryote-specific steps of the mechanism of ECF transporters.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym ACTMECH
Project Emergent Active Mechanical Behaviour of the Actomyosin Cell Cortex
Researcher (PI) Stephan Wolfgang Grill
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Country Germany
Call Details Starting Grant (StG), LS3, ERC-2011-StG_20101109
Summary The cell cortex is a highly dynamic layer of crosslinked actin filaments and myosin molecular motors beneath the cell membrane. It plays a central role in large scale rearrangements that occur inside cells. Many molecular mechanisms contribute to cortex structure and dynamics. However, cell scale physical properties of the cortex are difficult to grasp. This is problematic because for large scale rearrangements inside a cell, such as coherent flow of the cell cortex, it is the cell scale emergent properties that are important for the realization of such events. I will investigate how the actomyosin cytoskeleton behaves at a coarse grained and cellular scale, and will study how this emergent active behaviour is influenced by molecular mechanisms. We will study the cell cortex in the one cell stage C. elegans embryo, which undergoes large scale cortical flow during polarization and cytokinesis. We will combine theory and experiment. We will characterize cortex structure and dynamics with biophysical techniques such as cortical laser ablation and quantitative photobleaching experiments. We will develop and employ novel theoretical approaches to describe the cell scale mechanical behaviour in terms of an active complex fluid. We will utilize genetic approaches to understand how these emergent mechanical properties are influenced by molecular activities. A central goal is to arrive at a coarse grained description of the cortex that can predict future dynamic behaviour from the past structure, which is conceptually similar to how weather forecasting is accomplished. To date, systematic approaches to link molecular scale physical mechanisms to those on cellular scales are missing. This work will open new opportunities for cell biological and cell biophysical research, by providing a methodological approach for bridging scales, for studying emergent and large-scale active mechanical behaviours and linking them to molecular mechanisms.
Summary
The cell cortex is a highly dynamic layer of crosslinked actin filaments and myosin molecular motors beneath the cell membrane. It plays a central role in large scale rearrangements that occur inside cells. Many molecular mechanisms contribute to cortex structure and dynamics. However, cell scale physical properties of the cortex are difficult to grasp. This is problematic because for large scale rearrangements inside a cell, such as coherent flow of the cell cortex, it is the cell scale emergent properties that are important for the realization of such events. I will investigate how the actomyosin cytoskeleton behaves at a coarse grained and cellular scale, and will study how this emergent active behaviour is influenced by molecular mechanisms. We will study the cell cortex in the one cell stage C. elegans embryo, which undergoes large scale cortical flow during polarization and cytokinesis. We will combine theory and experiment. We will characterize cortex structure and dynamics with biophysical techniques such as cortical laser ablation and quantitative photobleaching experiments. We will develop and employ novel theoretical approaches to describe the cell scale mechanical behaviour in terms of an active complex fluid. We will utilize genetic approaches to understand how these emergent mechanical properties are influenced by molecular activities. A central goal is to arrive at a coarse grained description of the cortex that can predict future dynamic behaviour from the past structure, which is conceptually similar to how weather forecasting is accomplished. To date, systematic approaches to link molecular scale physical mechanisms to those on cellular scales are missing. This work will open new opportunities for cell biological and cell biophysical research, by providing a methodological approach for bridging scales, for studying emergent and large-scale active mechanical behaviours and linking them to molecular mechanisms.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-12-01, End date: 2017-08-31
Project acronym ADULT
Project Analysis of the Dark Universe through Lensing Tomography
Researcher (PI) Hendrik Hoekstra
Host Institution (HI) UNIVERSITEIT LEIDEN
Country Netherlands
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary The discoveries that the expansion of the universe is accelerating due to an unknown “dark energy”
and that most of the matter is invisible, highlight our lack of understanding of the major constituents
of the universe. These surprising findings set the stage for research in cosmology at the start of the
21st century. The objective of this proposal is to advance observational constraints to a level where we can distinguish between physical mechanisms that aim to explain the properties of dark energy and the observed distribution of dark matter throughout the universe. We use a relatively new technique called weak gravitational lensing: the accurate measurement of correlations in the orientations of distant galaxies enables us to map the dark matter distribution directly and to extract the cosmological information that is encoded by the large-scale structure.
To study the dark universe we will analyse data from a new state-of-the-art imaging survey: the Kilo-
Degree Survey (KiDS) will cover 1500 square degrees in 9 filters. The combination of its large survey
area and the availability of exquisite photometric redshifts for the sources makes KiDS the first
project that can place interesting constraints on the dark energy equation-of-state using lensing data
alone. Combined with complementary results from Planck, our measurements will provide one of the
best views of the dark side of the universe before much larger space-based projects commence.
To reach the desired accuracy we need to carefully measure the shapes of distant background galaxies. We also need to account for any intrinsic alignments that arise due to tidal interactions, rather than through lensing. Reducing these observational and physical biases to negligible levels is a necessarystep to ensure the success of KiDS and an important part of our preparation for more challenging projects such as the European-led space mission Euclid.
Summary
The discoveries that the expansion of the universe is accelerating due to an unknown “dark energy”
and that most of the matter is invisible, highlight our lack of understanding of the major constituents
of the universe. These surprising findings set the stage for research in cosmology at the start of the
21st century. The objective of this proposal is to advance observational constraints to a level where we can distinguish between physical mechanisms that aim to explain the properties of dark energy and the observed distribution of dark matter throughout the universe. We use a relatively new technique called weak gravitational lensing: the accurate measurement of correlations in the orientations of distant galaxies enables us to map the dark matter distribution directly and to extract the cosmological information that is encoded by the large-scale structure.
To study the dark universe we will analyse data from a new state-of-the-art imaging survey: the Kilo-
Degree Survey (KiDS) will cover 1500 square degrees in 9 filters. The combination of its large survey
area and the availability of exquisite photometric redshifts for the sources makes KiDS the first
project that can place interesting constraints on the dark energy equation-of-state using lensing data
alone. Combined with complementary results from Planck, our measurements will provide one of the
best views of the dark side of the universe before much larger space-based projects commence.
To reach the desired accuracy we need to carefully measure the shapes of distant background galaxies. We also need to account for any intrinsic alignments that arise due to tidal interactions, rather than through lensing. Reducing these observational and physical biases to negligible levels is a necessarystep to ensure the success of KiDS and an important part of our preparation for more challenging projects such as the European-led space mission Euclid.
Max ERC Funding
1 316 880 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym ANPROB
Project Analytic-probabilistic methods for borderline singular integrals
Researcher (PI) Tuomas Pentinpoika Hytoenen
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), PE1, ERC-2011-StG_20101014
Summary The proposal consists of an extensive research program to advance the understanding of singular integral operators of Harmonic Analysis in various situations on the borderline of the existing theory. This is to be achieved by a creative combination of techniques from Analysis and Probability. On top of the standard arsenal of modern Harmonic Analysis, the main probabilistic tools are the martingale transform inequalities of Burkholder, and random geometric constructions in the spirit of the random dyadic cubes introduced to Nonhomogeneous Analysis by Nazarov, Treil and Volberg.
The problems to be addressed fall under the following subtitles, with many interconnections and overlap: (i) sharp weighted inequalities; (ii) nonhomogeneous singular integrals on metric spaces; (iii) local Tb theorems with borderline assumptions; (iv) functional calculus of rough differential operators; and (v) vector-valued singular integrals.
Topic (i) is a part of Classical Analysis, where new methods have led to substantial recent progress, culminating in my solution in July 2010 of a celebrated problem on the linear dependence of the weighted operator norm on the Muckenhoupt norm of the weight. The proof should be extendible to several related questions, and the aim is to also address some outstanding open problems in the area.
Topics (ii) and (v) deal with extensions of the theory of singular integrals to functions with more general domain and range spaces, allowing them to be abstract metric and Banach spaces, respectively. In case (ii), I have recently been able to relax the requirements on the space compared to the established theories, opening a new research direction here. Topics (iii) and (iv) are concerned with weakening the assumptions on singular integrals in the usual Euclidean space, to allow certain applications in the theory of Partial Differential Equations. The goal is to maintain a close contact and exchange of ideas between such abstract and concrete questions.
Summary
The proposal consists of an extensive research program to advance the understanding of singular integral operators of Harmonic Analysis in various situations on the borderline of the existing theory. This is to be achieved by a creative combination of techniques from Analysis and Probability. On top of the standard arsenal of modern Harmonic Analysis, the main probabilistic tools are the martingale transform inequalities of Burkholder, and random geometric constructions in the spirit of the random dyadic cubes introduced to Nonhomogeneous Analysis by Nazarov, Treil and Volberg.
The problems to be addressed fall under the following subtitles, with many interconnections and overlap: (i) sharp weighted inequalities; (ii) nonhomogeneous singular integrals on metric spaces; (iii) local Tb theorems with borderline assumptions; (iv) functional calculus of rough differential operators; and (v) vector-valued singular integrals.
Topic (i) is a part of Classical Analysis, where new methods have led to substantial recent progress, culminating in my solution in July 2010 of a celebrated problem on the linear dependence of the weighted operator norm on the Muckenhoupt norm of the weight. The proof should be extendible to several related questions, and the aim is to also address some outstanding open problems in the area.
Topics (ii) and (v) deal with extensions of the theory of singular integrals to functions with more general domain and range spaces, allowing them to be abstract metric and Banach spaces, respectively. In case (ii), I have recently been able to relax the requirements on the space compared to the established theories, opening a new research direction here. Topics (iii) and (iv) are concerned with weakening the assumptions on singular integrals in the usual Euclidean space, to allow certain applications in the theory of Partial Differential Equations. The goal is to maintain a close contact and exchange of ideas between such abstract and concrete questions.
Max ERC Funding
1 100 000 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym ARISE
Project The Ecology of Antibiotic Resistance
Researcher (PI) Roy Kishony
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Country Israel
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Main goal. We aim to understand the puzzling coexistence of antibiotic-resistant and antibiotic-sensitive species in natural soil environments, using novel quantitative experimental techniques and mathematical analysis. The ecological insights gained will be translated into novel treatment strategies for combating antibiotic resistance.
Background. Microbial soil ecosystems comprise communities of species interacting through copious secretion of antibiotics and other chemicals. Defence mechanisms, i.e. resistance to antibiotics, are ubiquitous in these wild communities. However, in sharp contrast to clinical settings, resistance does not take over the population. Our hypothesis is that the ecological setting provides natural mechanisms that keep antibiotic resistance in check. We are motivated by our recent finding that specific antibiotic combinations can generate selection against resistance and that soil microbial strains produce compounds that directly target antibiotic resistant mechanisms.
Approaches. We will: (1) Isolate natural bacterial species from individual grains of soil, characterize their ability to produce and resist antibiotics and identify the spatial scale for correlations between resistance and production. (2) Systematically measure interactions between species and identify interaction patterns enriched in co-existing communities derived from the same grain of soil. (3) Introducing fluorescently-labelled resistant and sensitive strains into natural soil, we will measure the fitness cost and benefit of antibiotic resistance in situ and identify natural compounds that select against resistance. (4) Test whether such “selection-inverting” compounds can slow evolution of resistance to antibiotics in continuous culture experiments.
Conclusions. These findings will provide insights into the ecological processes that keep antibiotic resistance in check, and will suggest novel antimicrobial treatment strategies.
Summary
Main goal. We aim to understand the puzzling coexistence of antibiotic-resistant and antibiotic-sensitive species in natural soil environments, using novel quantitative experimental techniques and mathematical analysis. The ecological insights gained will be translated into novel treatment strategies for combating antibiotic resistance.
Background. Microbial soil ecosystems comprise communities of species interacting through copious secretion of antibiotics and other chemicals. Defence mechanisms, i.e. resistance to antibiotics, are ubiquitous in these wild communities. However, in sharp contrast to clinical settings, resistance does not take over the population. Our hypothesis is that the ecological setting provides natural mechanisms that keep antibiotic resistance in check. We are motivated by our recent finding that specific antibiotic combinations can generate selection against resistance and that soil microbial strains produce compounds that directly target antibiotic resistant mechanisms.
Approaches. We will: (1) Isolate natural bacterial species from individual grains of soil, characterize their ability to produce and resist antibiotics and identify the spatial scale for correlations between resistance and production. (2) Systematically measure interactions between species and identify interaction patterns enriched in co-existing communities derived from the same grain of soil. (3) Introducing fluorescently-labelled resistant and sensitive strains into natural soil, we will measure the fitness cost and benefit of antibiotic resistance in situ and identify natural compounds that select against resistance. (4) Test whether such “selection-inverting” compounds can slow evolution of resistance to antibiotics in continuous culture experiments.
Conclusions. These findings will provide insights into the ecological processes that keep antibiotic resistance in check, and will suggest novel antimicrobial treatment strategies.
Max ERC Funding
1 900 000 €
Duration
Start date: 2012-09-01, End date: 2018-08-31
Project acronym ASAP
Project Thylakoid membrane in action: acclimation strategies in algae and plants
Researcher (PI) Roberta Croce
Host Institution (HI) STICHTING VU
Country Netherlands
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary Life on earth is sustained by the process that converts sunlight energy into chemical energy: photosynthesis. This process is operating near the boundary between life and death: if the absorbed energy exceeds the capacity of the metabolic reactions, it can result in photo-oxidation events that can cause the death of the organism. Over-excitation is happening quite often: oxygenic organisms are exposed to (drastic) changes in environmental conditions (light intensity, light quality and temperature), which influence the physical (light-harvesting) and chemical (enzymatic reactions) parts of the photosynthetic process to a different extent, leading to severe imbalances. However, daily experience tells us that plants are able to deal with most of these situations, surviving and happily growing. How do they manage? The photosynthetic membrane is highly flexible and it is able to change its supramolecular organization and composition and even the function of some of its components on a time scale as fast as a few seconds, thereby regulating the light-harvesting capacity. However, the structural/functional changes in the membrane are far from being fully characterized and the molecular mechanisms of their regulation are far from being understood. This is due to the fact that all these mechanisms require the simultaneous presence of various factors and thus the system should be analyzed at a high level of complexity; however, to obtain molecular details of a very complex system as the thylakoid membrane in action has not been possible so far. Over the last years we have developed and optimized a range of methods that now allow us to take up this challenge. This involves a high level of integration of biological and physical approaches, ranging from plant transformation and in vivo knock out of individual pigments to ultrafast-spectroscopy in a mix that is rather unique for my laboratory and will allow us to unravel the photoprotective mechanisms in algae and plants.
Summary
Life on earth is sustained by the process that converts sunlight energy into chemical energy: photosynthesis. This process is operating near the boundary between life and death: if the absorbed energy exceeds the capacity of the metabolic reactions, it can result in photo-oxidation events that can cause the death of the organism. Over-excitation is happening quite often: oxygenic organisms are exposed to (drastic) changes in environmental conditions (light intensity, light quality and temperature), which influence the physical (light-harvesting) and chemical (enzymatic reactions) parts of the photosynthetic process to a different extent, leading to severe imbalances. However, daily experience tells us that plants are able to deal with most of these situations, surviving and happily growing. How do they manage? The photosynthetic membrane is highly flexible and it is able to change its supramolecular organization and composition and even the function of some of its components on a time scale as fast as a few seconds, thereby regulating the light-harvesting capacity. However, the structural/functional changes in the membrane are far from being fully characterized and the molecular mechanisms of their regulation are far from being understood. This is due to the fact that all these mechanisms require the simultaneous presence of various factors and thus the system should be analyzed at a high level of complexity; however, to obtain molecular details of a very complex system as the thylakoid membrane in action has not been possible so far. Over the last years we have developed and optimized a range of methods that now allow us to take up this challenge. This involves a high level of integration of biological and physical approaches, ranging from plant transformation and in vivo knock out of individual pigments to ultrafast-spectroscopy in a mix that is rather unique for my laboratory and will allow us to unravel the photoprotective mechanisms in algae and plants.
Max ERC Funding
1 696 961 €
Duration
Start date: 2011-12-01, End date: 2017-11-30