Project acronym ABYSS
Project ABYSS - Assessment of bacterial life and matter cycling in deep-sea surface sediments
Researcher (PI) Antje Boetius
Host Institution (HI) ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FUR POLAR- UND MEERESFORSCHUNG
Country Germany
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.
Summary
The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.
Max ERC Funding
3 375 693 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym ACCOMPLI
Project Assembly and maintenance of a co-regulated chromosomal compartment
Researcher (PI) Peter Burkhard Becker
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Advanced Grant (AdG), LS2, ERC-2011-ADG_20110310
Summary "Eukaryotic nuclei are organised into functional compartments, – local microenvironments that are enriched in certain molecules or biochemical activities and therefore specify localised functional outputs. Our study seeks to unveil fundamental principles of co-regulation of genes in a chromo¬somal compartment and the preconditions for homeostasis of such a compartment in the dynamic nuclear environment.
The dosage-compensated X chromosome of male Drosophila flies satisfies the criteria for a functional com¬partment. It is rendered structurally distinct from all other chromosomes by association of a regulatory ribonucleoprotein ‘Dosage Compensation Complex’ (DCC), enrichment of histone modifications and global decondensation. As a result, most genes on the X chromosome are co-ordinately activated. Autosomal genes inserted into the X acquire X-chromosomal features and are subject to the X-specific regulation.
We seek to uncover the molecular principles that initiate, establish and maintain the dosage-compensated chromosome. We will follow the kinetics of DCC assembly and the timing of association with different types of chromosomal targets in nuclei with high spatial resolution afforded by sub-wavelength microscopy and deep sequencing of DNA binding sites. We will characterise DCC sub-complexes with respect to their roles as kinetic assembly intermediates or as representations of local, functional heterogeneity. We will evaluate the roles of a DCC- novel ubiquitin ligase activity for homeostasis.
Crucial to the recruitment of the DCC and its distribution to target genes are non-coding roX RNAs that are transcribed from the X. We will determine the secondary structure ‘signatures’ of roX RNAs in vitro and determine the binding sites of the protein subunits in vivo. By biochemical and cellular reconstitution will test the hypothesis that roX-encoded RNA aptamers orchestrate the assembly of the DCC and contribute to the exquisite targeting of the complex."
Summary
"Eukaryotic nuclei are organised into functional compartments, – local microenvironments that are enriched in certain molecules or biochemical activities and therefore specify localised functional outputs. Our study seeks to unveil fundamental principles of co-regulation of genes in a chromo¬somal compartment and the preconditions for homeostasis of such a compartment in the dynamic nuclear environment.
The dosage-compensated X chromosome of male Drosophila flies satisfies the criteria for a functional com¬partment. It is rendered structurally distinct from all other chromosomes by association of a regulatory ribonucleoprotein ‘Dosage Compensation Complex’ (DCC), enrichment of histone modifications and global decondensation. As a result, most genes on the X chromosome are co-ordinately activated. Autosomal genes inserted into the X acquire X-chromosomal features and are subject to the X-specific regulation.
We seek to uncover the molecular principles that initiate, establish and maintain the dosage-compensated chromosome. We will follow the kinetics of DCC assembly and the timing of association with different types of chromosomal targets in nuclei with high spatial resolution afforded by sub-wavelength microscopy and deep sequencing of DNA binding sites. We will characterise DCC sub-complexes with respect to their roles as kinetic assembly intermediates or as representations of local, functional heterogeneity. We will evaluate the roles of a DCC- novel ubiquitin ligase activity for homeostasis.
Crucial to the recruitment of the DCC and its distribution to target genes are non-coding roX RNAs that are transcribed from the X. We will determine the secondary structure ‘signatures’ of roX RNAs in vitro and determine the binding sites of the protein subunits in vivo. By biochemical and cellular reconstitution will test the hypothesis that roX-encoded RNA aptamers orchestrate the assembly of the DCC and contribute to the exquisite targeting of the complex."
Max ERC Funding
2 482 770 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ACTMECH
Project Emergent Active Mechanical Behaviour of the Actomyosin Cell Cortex
Researcher (PI) Stephan Wolfgang Grill
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Country Germany
Call Details Starting Grant (StG), LS3, ERC-2011-StG_20101109
Summary The cell cortex is a highly dynamic layer of crosslinked actin filaments and myosin molecular motors beneath the cell membrane. It plays a central role in large scale rearrangements that occur inside cells. Many molecular mechanisms contribute to cortex structure and dynamics. However, cell scale physical properties of the cortex are difficult to grasp. This is problematic because for large scale rearrangements inside a cell, such as coherent flow of the cell cortex, it is the cell scale emergent properties that are important for the realization of such events. I will investigate how the actomyosin cytoskeleton behaves at a coarse grained and cellular scale, and will study how this emergent active behaviour is influenced by molecular mechanisms. We will study the cell cortex in the one cell stage C. elegans embryo, which undergoes large scale cortical flow during polarization and cytokinesis. We will combine theory and experiment. We will characterize cortex structure and dynamics with biophysical techniques such as cortical laser ablation and quantitative photobleaching experiments. We will develop and employ novel theoretical approaches to describe the cell scale mechanical behaviour in terms of an active complex fluid. We will utilize genetic approaches to understand how these emergent mechanical properties are influenced by molecular activities. A central goal is to arrive at a coarse grained description of the cortex that can predict future dynamic behaviour from the past structure, which is conceptually similar to how weather forecasting is accomplished. To date, systematic approaches to link molecular scale physical mechanisms to those on cellular scales are missing. This work will open new opportunities for cell biological and cell biophysical research, by providing a methodological approach for bridging scales, for studying emergent and large-scale active mechanical behaviours and linking them to molecular mechanisms.
Summary
The cell cortex is a highly dynamic layer of crosslinked actin filaments and myosin molecular motors beneath the cell membrane. It plays a central role in large scale rearrangements that occur inside cells. Many molecular mechanisms contribute to cortex structure and dynamics. However, cell scale physical properties of the cortex are difficult to grasp. This is problematic because for large scale rearrangements inside a cell, such as coherent flow of the cell cortex, it is the cell scale emergent properties that are important for the realization of such events. I will investigate how the actomyosin cytoskeleton behaves at a coarse grained and cellular scale, and will study how this emergent active behaviour is influenced by molecular mechanisms. We will study the cell cortex in the one cell stage C. elegans embryo, which undergoes large scale cortical flow during polarization and cytokinesis. We will combine theory and experiment. We will characterize cortex structure and dynamics with biophysical techniques such as cortical laser ablation and quantitative photobleaching experiments. We will develop and employ novel theoretical approaches to describe the cell scale mechanical behaviour in terms of an active complex fluid. We will utilize genetic approaches to understand how these emergent mechanical properties are influenced by molecular activities. A central goal is to arrive at a coarse grained description of the cortex that can predict future dynamic behaviour from the past structure, which is conceptually similar to how weather forecasting is accomplished. To date, systematic approaches to link molecular scale physical mechanisms to those on cellular scales are missing. This work will open new opportunities for cell biological and cell biophysical research, by providing a methodological approach for bridging scales, for studying emergent and large-scale active mechanical behaviours and linking them to molecular mechanisms.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-12-01, End date: 2017-08-31
Project acronym ASMIDIAS
Project Asymmetric microenvironments by directed assembly: Control of geometry, topography, surface biochemistry and mechanical properties via a microscale modular design principle
Researcher (PI) Holger Dr. Schoenherr
Host Institution (HI) UNIVERSITAET SIEGEN
Country Germany
Call Details Starting Grant (StG), PE5, ERC-2011-StG_20101014
Summary The interaction of cells with the extracellular matrix or neighboring cells plays a crucial role in many cellular functions, such as motility, differentiation and controlled cell death. Expanding on pioneering studies on defined 2-D model systems, the role of the currently known determinants (geometry, topography, biochemical functionality and mechanical properties) is currently addressed in more relevant 3-D matrices. However, there is a clear lack in currently available approaches to fabricate well defined microenvironments, which are asymmetric or in which these factors can be varied independently. The central objective of ASMIDIAS is the development of a novel route to asymmetric microenvironments for cell-matrix interaction studies. Inspired by molecular self-assembly on the one hand and guided macroscale assembly on the other hand, directed assembly of highly defined microfabricated building blocks will be exploited to this end. In this modular design approach different building blocks position themselves during assembly on pre-structured surfaces to afford enclosed volumes that are restricted by the walls of the blocks. The project relies on two central elements. For the guided assembly, the balance of attractive and repulsive interactions between the building blocks (and its dependence on the object dimensions) and the structured surface shall be controlled by appropriate surface chemistry and suitable guiding structures. To afford the required functionality, new approaches to (i) topographically structure, (ii) biochemically functionalize and pattern selected sides of the microscale building blocks and (iii) to control their surface elastic properties via surface-attached polymers and hydrogels, will be developed.The resulting unique asymmetric environments will facilitate novel insight into cell-matrix interactions, which possess considerable relevance in the areas of tissue engineering, cell (de)differentiation, bacteria-surface interactions and beyond.
Summary
The interaction of cells with the extracellular matrix or neighboring cells plays a crucial role in many cellular functions, such as motility, differentiation and controlled cell death. Expanding on pioneering studies on defined 2-D model systems, the role of the currently known determinants (geometry, topography, biochemical functionality and mechanical properties) is currently addressed in more relevant 3-D matrices. However, there is a clear lack in currently available approaches to fabricate well defined microenvironments, which are asymmetric or in which these factors can be varied independently. The central objective of ASMIDIAS is the development of a novel route to asymmetric microenvironments for cell-matrix interaction studies. Inspired by molecular self-assembly on the one hand and guided macroscale assembly on the other hand, directed assembly of highly defined microfabricated building blocks will be exploited to this end. In this modular design approach different building blocks position themselves during assembly on pre-structured surfaces to afford enclosed volumes that are restricted by the walls of the blocks. The project relies on two central elements. For the guided assembly, the balance of attractive and repulsive interactions between the building blocks (and its dependence on the object dimensions) and the structured surface shall be controlled by appropriate surface chemistry and suitable guiding structures. To afford the required functionality, new approaches to (i) topographically structure, (ii) biochemically functionalize and pattern selected sides of the microscale building blocks and (iii) to control their surface elastic properties via surface-attached polymers and hydrogels, will be developed.The resulting unique asymmetric environments will facilitate novel insight into cell-matrix interactions, which possess considerable relevance in the areas of tissue engineering, cell (de)differentiation, bacteria-surface interactions and beyond.
Max ERC Funding
1 484 100 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym BRAINEVODEVO
Project A Neuron Type Atlas of the Annelid Brain: Development and Evolution of Chemosensory-Motor Circuits
Researcher (PI) Detlev Arendt
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Country Germany
Call Details Advanced Grant (AdG), LS3, ERC-2011-ADG_20110310
Summary Neural circuits, composed of interconnected neurons, represent the basic unit of the nervous system. One way to understand the highly complex arrangement of cross-talking, serial and parallel circuits is to resolve its developmental and evolutionary emergence. The rationale of the research proposal presented here is to elucidate the complex circuitry of the vertebrate and insect forebrain by comparison to the much simpler and evolutionary ancient “connectome” of the marine annelid Platynereis dumerilii. We will build a unique resource, the Platynereis Neuron Type Atlas, combining, for the first time, neuronal morphologies, axonal projections, cellular expression profiling and developmental lineage for an entire bilaterian brain. We will focus on five days old larvae when most adult neuron types are already present in small number and large part of the axonal scaffold in place.
Building on the Neuron Type Atlas, the second part of the proposal envisages the functional dissection of the Platynereis chemosensory-motor forebrain circuits. A newly developed microfluidics behavioural assay system, together with a cell-based GPCR screening will identify partaking neurons. Zinc finger nuclease-mediated knockout of circuit-specific transcription factors as identified from the Atlas will reveal circuit-specific gene regulatory networks, downstream effector genes and functional characteristics. Laser ablation of GFP-labeled single neurons and axonal connections will yield further insight into the function of circuit components and subcircuits. Given the ancient nature of the Platynereis brain, this research is expected to reveal a simple, developmental and evolutionary “blueprint” for the olfactory circuits in mice and flies and to shed new light on the evolution of information processing in glomeruli and higher-level integration in sensory-associative brain centres.
Summary
Neural circuits, composed of interconnected neurons, represent the basic unit of the nervous system. One way to understand the highly complex arrangement of cross-talking, serial and parallel circuits is to resolve its developmental and evolutionary emergence. The rationale of the research proposal presented here is to elucidate the complex circuitry of the vertebrate and insect forebrain by comparison to the much simpler and evolutionary ancient “connectome” of the marine annelid Platynereis dumerilii. We will build a unique resource, the Platynereis Neuron Type Atlas, combining, for the first time, neuronal morphologies, axonal projections, cellular expression profiling and developmental lineage for an entire bilaterian brain. We will focus on five days old larvae when most adult neuron types are already present in small number and large part of the axonal scaffold in place.
Building on the Neuron Type Atlas, the second part of the proposal envisages the functional dissection of the Platynereis chemosensory-motor forebrain circuits. A newly developed microfluidics behavioural assay system, together with a cell-based GPCR screening will identify partaking neurons. Zinc finger nuclease-mediated knockout of circuit-specific transcription factors as identified from the Atlas will reveal circuit-specific gene regulatory networks, downstream effector genes and functional characteristics. Laser ablation of GFP-labeled single neurons and axonal connections will yield further insight into the function of circuit components and subcircuits. Given the ancient nature of the Platynereis brain, this research is expected to reveal a simple, developmental and evolutionary “blueprint” for the olfactory circuits in mice and flies and to shed new light on the evolution of information processing in glomeruli and higher-level integration in sensory-associative brain centres.
Max ERC Funding
2 489 048 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym CARDIOSPLICE
Project A systems and targeted approach to alternative splicing in the developing and diseased heart: Translating basic cell biology to improved cardiac function
Researcher (PI) Michael Gotthardt
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Country Germany
Call Details Starting Grant (StG), LS4, ERC-2011-StG_20101109
Summary Cardiovascular disease keeps the top spot in mortality statistics in Europe with 2 million deaths annually and although prevention and therapy have continuously been improved, the prevalence of heart failure continues to rise. While contractile (systolic) dysfunction is readily accessible to pharmacological treatment, there is a lack of therapeutic options for reduced ventricular filling (diastolic dysfunction). The diastolic properties of the heart are largely determined by the giant sarcomeric protein titin, which is alternatively spliced to adjust the elastic properties of the cardiomyocyte. We have recently identified a titin splice factor that plays a parallel role in cardiac disease and postnatal development. It targets a subset of genes that concertedly affect biomechanics, electrical activity, and signal transduction and suggests alternative splicing as a novel therapeutic target in heart disease. Here we will build on the titin splice factor to identify regulatory principles and cofactors that adjust cardiac isoform expression. In a complementary approach we will investigate titin mRNA binding proteins to provide a comprehensive analysis of factors governing titin’s differential splicing in cardiac development, health, and disease. Based on its distinctive role in ventricular filling we will evaluate titin splicing as a therapeutic target in diastolic heart failure and use a titin based reporter assay to identify small molecules to interfere with titin isoform expression. Finally, we will evaluate the effects of altered alternative splicing on diastolic dysfunction in vivo utilizing the splice deficient mutant and our available animal models for diastolic dysfunction.
The overall scientific goal of the proposed work is to investigate the regulation of cardiac alternative splicing in development and disease and to evaluate if splice directed therapy can be used to improve diastolic function and specifically the elastic properties of the heart.
Summary
Cardiovascular disease keeps the top spot in mortality statistics in Europe with 2 million deaths annually and although prevention and therapy have continuously been improved, the prevalence of heart failure continues to rise. While contractile (systolic) dysfunction is readily accessible to pharmacological treatment, there is a lack of therapeutic options for reduced ventricular filling (diastolic dysfunction). The diastolic properties of the heart are largely determined by the giant sarcomeric protein titin, which is alternatively spliced to adjust the elastic properties of the cardiomyocyte. We have recently identified a titin splice factor that plays a parallel role in cardiac disease and postnatal development. It targets a subset of genes that concertedly affect biomechanics, electrical activity, and signal transduction and suggests alternative splicing as a novel therapeutic target in heart disease. Here we will build on the titin splice factor to identify regulatory principles and cofactors that adjust cardiac isoform expression. In a complementary approach we will investigate titin mRNA binding proteins to provide a comprehensive analysis of factors governing titin’s differential splicing in cardiac development, health, and disease. Based on its distinctive role in ventricular filling we will evaluate titin splicing as a therapeutic target in diastolic heart failure and use a titin based reporter assay to identify small molecules to interfere with titin isoform expression. Finally, we will evaluate the effects of altered alternative splicing on diastolic dysfunction in vivo utilizing the splice deficient mutant and our available animal models for diastolic dysfunction.
The overall scientific goal of the proposed work is to investigate the regulation of cardiac alternative splicing in development and disease and to evaluate if splice directed therapy can be used to improve diastolic function and specifically the elastic properties of the heart.
Max ERC Funding
1 499 191 €
Duration
Start date: 2012-01-01, End date: 2017-06-30
Project acronym CelluFuel
Project Designer Cellulosomes by Single Molecule Cut & Paste
Researcher (PI) Hermann Eduard Gaub
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Advanced Grant (AdG), LS1, ERC-2011-ADG_20110310
Summary Biofuel from wood and waste will be a substantial share of our future energy mix. The conversion of lignocellulose to fermentable polysaccharides is the current bottleneck. We propose to use single molecule cut and paste technology to assemble designer cellulosoms and combine enzymes from different species with nanocatalysts.
Summary
Biofuel from wood and waste will be a substantial share of our future energy mix. The conversion of lignocellulose to fermentable polysaccharides is the current bottleneck. We propose to use single molecule cut and paste technology to assemble designer cellulosoms and combine enzymes from different species with nanocatalysts.
Max ERC Funding
2 351 450 €
Duration
Start date: 2012-03-01, End date: 2018-02-28
Project acronym CLOCKWORKGREEN
Project Ecological performance of arrhythmic plants in nature
Researcher (PI) Ian Thomas Baldwin
Host Institution (HI) Klinik Max Planck Institut für Psychiatrie
Country Germany
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary Timing is everything in ecology, and because plants provide the foundation for most land-based food webs, the timing of their activities profoundly orchestrates the majority of ecological interactions. Most photosynthetic and growth processes are under circadian control, but many additional processes--approximately 30-40% of all genes—are under circadian control, and yet the Darwinian fitness impact of being “in synch” with the environment has not been systematically studied for any organism.
We have developed a toolbox for a native tobacco plant, Nicotiana attenuata, that allows us to “ask the plant” which genes, proteins or metabolites are regulated in particular plant-mediated ecological interactions; identify “the genes that matter” for a given interaction; silence or ectopically express these genes, and conduct field releases with the transformed plants at a nature preserve in the Great Basin Desert to rigorously test hypotheses of gene function. By taking advantage of both our understanding of what it takes for this plant to survive in nature, and the procedures established to disentangle the skein of subtle interactions that determine its performance, we will systematically examine the importance of synchronous entrained endogenous rhythms at all life stages: longevity in the seed bank, germination, rosette growth, elongation, flowering and senescence. Specifically, we propose to silence a key components (starting with NaTOC1) of the plant’s endogenous clock to shorten the plant’s circadian rhythm, both constitutively and with strong dexamethasone-inducible promoters, at all life stages. With a combination of real-time phenotype imaging, metabolite and transcriptome analysis, and ecological know-how, the research will reveal how plants adjust their physiologies to the ever-changing panoply of environmental stresses with which they must cope; by creating arrhythmic plants, we will understand why so many processes are under circadian control.
Summary
Timing is everything in ecology, and because plants provide the foundation for most land-based food webs, the timing of their activities profoundly orchestrates the majority of ecological interactions. Most photosynthetic and growth processes are under circadian control, but many additional processes--approximately 30-40% of all genes—are under circadian control, and yet the Darwinian fitness impact of being “in synch” with the environment has not been systematically studied for any organism.
We have developed a toolbox for a native tobacco plant, Nicotiana attenuata, that allows us to “ask the plant” which genes, proteins or metabolites are regulated in particular plant-mediated ecological interactions; identify “the genes that matter” for a given interaction; silence or ectopically express these genes, and conduct field releases with the transformed plants at a nature preserve in the Great Basin Desert to rigorously test hypotheses of gene function. By taking advantage of both our understanding of what it takes for this plant to survive in nature, and the procedures established to disentangle the skein of subtle interactions that determine its performance, we will systematically examine the importance of synchronous entrained endogenous rhythms at all life stages: longevity in the seed bank, germination, rosette growth, elongation, flowering and senescence. Specifically, we propose to silence a key components (starting with NaTOC1) of the plant’s endogenous clock to shorten the plant’s circadian rhythm, both constitutively and with strong dexamethasone-inducible promoters, at all life stages. With a combination of real-time phenotype imaging, metabolite and transcriptome analysis, and ecological know-how, the research will reveal how plants adjust their physiologies to the ever-changing panoply of environmental stresses with which they must cope; by creating arrhythmic plants, we will understand why so many processes are under circadian control.
Max ERC Funding
2 496 002 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym COMBIPATTERNING
Project Combinatorial Patterning of Particles for High Density Peptide Arrays
Researcher (PI) Alexander Nesterov-Mueller
Host Institution (HI) KARLSRUHER INSTITUT FUER TECHNOLOGIE
Country Germany
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary We want to use selective laser melting to pattern a substrate with different solid micro particles at a density of 1 million spots per cm2. First, a homogeneous particle layer is deposited on a substrate and a pattern of micro spots of melted matrix is generated by laser radiation. Then, non-melted particles are blown away. Embedded within the particles are different chemically reactive amino acid derivatives that will start coupling to very small synthesis sites upon melting the particle pattern in an oven. This is done once all of the 20 different amino acid particles have been glued by laser patterning to the surface. Washing away uncoupled material, removing Fmoc protecting group, and repeating the patterning steps according to standard Merrifield synthesis, leads to the combinatorial synthesis of very high-density peptide arrays. The main objective of this proposal is to develop this method up to the level of a semi-automated synthesis machine. In addition, we will use the manufactured very high-density peptide arrays to readout the information that is deposited in the immune system, i.e. find a peptide binder for every one of the 200-500 antibody species that patrol the serum of an individual in elevated levels. These experiments might lead to novel tools to find out the causes of hitherto enigmatic diseases because then we might be able to correlate antibody patterns with disease status without knowing in advance the disease-specific antibodies. Beyond the life sciences, we want to embed 10.000 peptides per cm2 within an insulating layer of alkane thiols, each on a different gold pad of a specially designed screening chip. Then, we could readout I/V characteristics of individual peptide species, and eventually find peptide-based diodes. These could be modified in their sequence and screened again for better performance. This evolution-inspired screening approach might lead to novel materials that could be used in fuel cells.
Summary
We want to use selective laser melting to pattern a substrate with different solid micro particles at a density of 1 million spots per cm2. First, a homogeneous particle layer is deposited on a substrate and a pattern of micro spots of melted matrix is generated by laser radiation. Then, non-melted particles are blown away. Embedded within the particles are different chemically reactive amino acid derivatives that will start coupling to very small synthesis sites upon melting the particle pattern in an oven. This is done once all of the 20 different amino acid particles have been glued by laser patterning to the surface. Washing away uncoupled material, removing Fmoc protecting group, and repeating the patterning steps according to standard Merrifield synthesis, leads to the combinatorial synthesis of very high-density peptide arrays. The main objective of this proposal is to develop this method up to the level of a semi-automated synthesis machine. In addition, we will use the manufactured very high-density peptide arrays to readout the information that is deposited in the immune system, i.e. find a peptide binder for every one of the 200-500 antibody species that patrol the serum of an individual in elevated levels. These experiments might lead to novel tools to find out the causes of hitherto enigmatic diseases because then we might be able to correlate antibody patterns with disease status without knowing in advance the disease-specific antibodies. Beyond the life sciences, we want to embed 10.000 peptides per cm2 within an insulating layer of alkane thiols, each on a different gold pad of a specially designed screening chip. Then, we could readout I/V characteristics of individual peptide species, and eventually find peptide-based diodes. These could be modified in their sequence and screened again for better performance. This evolution-inspired screening approach might lead to novel materials that could be used in fuel cells.
Max ERC Funding
1 494 600 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym COMPLEX_TRAITS
Project High-throughput dissection of the genetics underlying complex traits
Researcher (PI) Lars Steinmetz
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Country Germany
Call Details Advanced Grant (AdG), LS2, ERC-2011-ADG_20110310
Summary The vast majority of genetic diseases are complex traits, conditioned by multiple genetic and environmental factors. Yet our understanding of the genetics underlying such traits in humans remains extremely limited, due largely to the statistical complexity of inferring the effects of allelic variants in a genetically diverse population. Novel tools for the dissection of the genetic architecture of complex traits, therefore, can be most effectively developed in model organisms, where the contribution of individual alleles can be quantitatively determined in controlled genetic backgrounds. We have previously established the yeast Saccharomyces cerevisiae as a model for complex traits by unravelling complex genetic architectures that govern quantitative phenotypes in this organism. We achieved this by pioneering approaches that have revealed crucial information about the complexity of the underlying genetics. Here we propose to advance to the next level of complex trait dissection by developing systematic, genome-wide technologies that aim to identify all of the variants underlying a complex trait in a single step. In particular, we will investigate traits involved in mitochondrial function, which are both clinically relevant and highly conserved in yeast. Our combination of genomic technologies will allow us to: 1) systematically detect, with maximal sensitivity, the majority of genetic variants (coding and non-coding) that condition these traits; 2) quantify the contributions of these variants and their interactions; and 3) evaluate the strengths and limitations of current methods for dissecting complex traits. Taken together, our research will yield fundamental insights into the genetic complexity of multifactorial traits, providing valuable lessons and establishing novel genomic tools that will facilitate the investigation of complex diseases.
Summary
The vast majority of genetic diseases are complex traits, conditioned by multiple genetic and environmental factors. Yet our understanding of the genetics underlying such traits in humans remains extremely limited, due largely to the statistical complexity of inferring the effects of allelic variants in a genetically diverse population. Novel tools for the dissection of the genetic architecture of complex traits, therefore, can be most effectively developed in model organisms, where the contribution of individual alleles can be quantitatively determined in controlled genetic backgrounds. We have previously established the yeast Saccharomyces cerevisiae as a model for complex traits by unravelling complex genetic architectures that govern quantitative phenotypes in this organism. We achieved this by pioneering approaches that have revealed crucial information about the complexity of the underlying genetics. Here we propose to advance to the next level of complex trait dissection by developing systematic, genome-wide technologies that aim to identify all of the variants underlying a complex trait in a single step. In particular, we will investigate traits involved in mitochondrial function, which are both clinically relevant and highly conserved in yeast. Our combination of genomic technologies will allow us to: 1) systematically detect, with maximal sensitivity, the majority of genetic variants (coding and non-coding) that condition these traits; 2) quantify the contributions of these variants and their interactions; and 3) evaluate the strengths and limitations of current methods for dissecting complex traits. Taken together, our research will yield fundamental insights into the genetic complexity of multifactorial traits, providing valuable lessons and establishing novel genomic tools that will facilitate the investigation of complex diseases.
Max ERC Funding
2 499 821 €
Duration
Start date: 2012-11-01, End date: 2017-10-31