Project acronym 100 Archaic Genomes
Project Genome sequences from extinct hominins
Researcher (PI) Svante PaeaeBO
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Country Germany
Call Details Advanced Grant (AdG), LS2, ERC-2015-AdG
Summary Neandertals and Denisovans, an Asian group distantly related to Neandertals, are the closest evolutionary relatives of present-day humans. They are thus of direct relevance for understanding the origin of modern humans and how modern humans differ from their closest relatives. We will generate genome-wide data from a large number of Neandertal and Denisovan individuals from across their geographical and temporal range as well as from other extinct hominin groups which we may discover. This will be possible by automating highly sensitive approaches to ancient DNA extraction and DNA libraries construction that we have developed so that they can be applied to many specimens from many sites in order to identify those that contain retrievable DNA. Whenever possible we will sequence whole genomes and in other cases use DNA capture methods to generate high-quality data from representative parts of the genome. This will allow us to study the population history of Neandertals and Denisovans, elucidate how many times and where these extinct hominins contributed genes to present-day people, and the extent to which modern humans and archaic groups contributed genetically to Neandertals and Denisovans. By retrieving DNA from specimens that go back to the Middle Pleistocene we will furthermore shed light on the early history and origins of Neandertals and Denisovans.
Summary
Neandertals and Denisovans, an Asian group distantly related to Neandertals, are the closest evolutionary relatives of present-day humans. They are thus of direct relevance for understanding the origin of modern humans and how modern humans differ from their closest relatives. We will generate genome-wide data from a large number of Neandertal and Denisovan individuals from across their geographical and temporal range as well as from other extinct hominin groups which we may discover. This will be possible by automating highly sensitive approaches to ancient DNA extraction and DNA libraries construction that we have developed so that they can be applied to many specimens from many sites in order to identify those that contain retrievable DNA. Whenever possible we will sequence whole genomes and in other cases use DNA capture methods to generate high-quality data from representative parts of the genome. This will allow us to study the population history of Neandertals and Denisovans, elucidate how many times and where these extinct hominins contributed genes to present-day people, and the extent to which modern humans and archaic groups contributed genetically to Neandertals and Denisovans. By retrieving DNA from specimens that go back to the Middle Pleistocene we will furthermore shed light on the early history and origins of Neandertals and Denisovans.
Max ERC Funding
2 350 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym ACoolTouch
Project Neural mechanisms of multisensory perceptual binding
Researcher (PI) James Francis Alexander Poulet
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Country Germany
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Sensory perception involves the discrimination and binding of multiple modalities of sensory input. This is especially evident in the somatosensory system where different modalities of sensory input, including thermal and mechanosensory, are combined to generate a unified percept. The neural mechanisms of multisensory binding are unknown, in part because sensory perception is typically studied within a single modality in a single brain region. I propose a multi-level approach to investigate thermo-tactile processing in the mouse forepaw system from the primary sensory afferent neurons to thalamo-cortical circuits and behaviour.
The mouse forepaw system is the ideal system to investigate multisensory binding as the sensory afferent neurons are well investigated, cell type-specific lines are available, in vivo optogenetic manipulation is possible both in sensory afferent neurons and central circuits and we have developed high-resolution somatosensory perception behaviours. We have previously shown that mouse primary somatosensory forepaw cortical neurons respond to both tactile and thermal stimuli and are required for non-noxious cooling perception. With multimodal neurons how, then, is it possible to both discriminate and bind thermal and tactile stimuli?
I propose 3 objectives to address this question. We will first, perform functional mapping of the thermal and tactile pathways to cortex; second, investigate the neural mechanisms of thermo-tactile discrimination in behaving mice; and third, compare neural processing during two thermo-tactile binding tasks, the first using passively applied stimuli, and the second, active manipulation of thermal objects.
At each stage we will perform cell type-specific neural recordings and causal optogenetic manipulations in awake and behaving mice. Our multi-level approach will provide a comprehensive investigation into how the brain performs multisensory perceptual binding: a fundamental yet unsolved problem in neuroscience.
Summary
Sensory perception involves the discrimination and binding of multiple modalities of sensory input. This is especially evident in the somatosensory system where different modalities of sensory input, including thermal and mechanosensory, are combined to generate a unified percept. The neural mechanisms of multisensory binding are unknown, in part because sensory perception is typically studied within a single modality in a single brain region. I propose a multi-level approach to investigate thermo-tactile processing in the mouse forepaw system from the primary sensory afferent neurons to thalamo-cortical circuits and behaviour.
The mouse forepaw system is the ideal system to investigate multisensory binding as the sensory afferent neurons are well investigated, cell type-specific lines are available, in vivo optogenetic manipulation is possible both in sensory afferent neurons and central circuits and we have developed high-resolution somatosensory perception behaviours. We have previously shown that mouse primary somatosensory forepaw cortical neurons respond to both tactile and thermal stimuli and are required for non-noxious cooling perception. With multimodal neurons how, then, is it possible to both discriminate and bind thermal and tactile stimuli?
I propose 3 objectives to address this question. We will first, perform functional mapping of the thermal and tactile pathways to cortex; second, investigate the neural mechanisms of thermo-tactile discrimination in behaving mice; and third, compare neural processing during two thermo-tactile binding tasks, the first using passively applied stimuli, and the second, active manipulation of thermal objects.
At each stage we will perform cell type-specific neural recordings and causal optogenetic manipulations in awake and behaving mice. Our multi-level approach will provide a comprehensive investigation into how the brain performs multisensory perceptual binding: a fundamental yet unsolved problem in neuroscience.
Max ERC Funding
1 999 877 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym Autonomous CLL-BCRs
Project Role of autonomous B cell receptor signalling and external antigen in the pathogenesis of chronic lymphocytic leukaemia (CLL)
Researcher (PI) Hassan JUMAA-WEINACHT
Host Institution (HI) UNIVERSITAET ULM
Country Germany
Call Details Advanced Grant (AdG), LS6, ERC-2015-AdG
Summary The proposed project aims at investigating the molecular mechanisms that activate B cell antigen receptor (BCR) signalling in chronic lymphocytic leukaemia (CLL). While it is widely accepted that the unbroken BCR expression in CLL cells is indicative for a key role in disease development, the mechanisms that induce BCR activation and survival of malignant cells are still elusive. Using a unique reconstitution system, we have recently shown that CLL-derived BCRs possess the exceptional capacity for cell-autonomous signalling independent of external antigen. Crystallographic analyses confirmed our model that CLL-BCRs bind to intrinsic motifs in nearby BCRs on the very same cell. In addition to the BCR, several pathogenic factors influence the biological behaviour of CLL cells, but the functional hierarchy and the effect on BCR signalling are insufficiently understood. Here, we aim at investigating the structural cause of autonomous signalling as well as the characterization of important signalling pathways and their mechanistic action in CLL pathogenesis.
By combining crystallography with the measurement of autonomous signalling of wild type and mutated receptors in our unique reconstitution system, we will generate a structure-function relationship for CLL-BCRs. By generating new animal models and by employing classical as well as cutting-edge approaches of biochemistry and molecular/cellular immunology, we will comprehensively characterize the signalling pathways that are activated by autonomous signalling and might be important for CLL pathogenesis.
These systematic efforts are necessary to understand how various biological mechanisms operate and ultimately activate downstream pathways that result in a lymphoproliferative disease. In addition, a cohesive model of CLL pathogenesis, which elucidates the hierarchical order of pathogenic factors and their interaction with BCR signalling, may well lead to novel disease-specific preventive or therapeutic intervention.
Summary
The proposed project aims at investigating the molecular mechanisms that activate B cell antigen receptor (BCR) signalling in chronic lymphocytic leukaemia (CLL). While it is widely accepted that the unbroken BCR expression in CLL cells is indicative for a key role in disease development, the mechanisms that induce BCR activation and survival of malignant cells are still elusive. Using a unique reconstitution system, we have recently shown that CLL-derived BCRs possess the exceptional capacity for cell-autonomous signalling independent of external antigen. Crystallographic analyses confirmed our model that CLL-BCRs bind to intrinsic motifs in nearby BCRs on the very same cell. In addition to the BCR, several pathogenic factors influence the biological behaviour of CLL cells, but the functional hierarchy and the effect on BCR signalling are insufficiently understood. Here, we aim at investigating the structural cause of autonomous signalling as well as the characterization of important signalling pathways and their mechanistic action in CLL pathogenesis.
By combining crystallography with the measurement of autonomous signalling of wild type and mutated receptors in our unique reconstitution system, we will generate a structure-function relationship for CLL-BCRs. By generating new animal models and by employing classical as well as cutting-edge approaches of biochemistry and molecular/cellular immunology, we will comprehensively characterize the signalling pathways that are activated by autonomous signalling and might be important for CLL pathogenesis.
These systematic efforts are necessary to understand how various biological mechanisms operate and ultimately activate downstream pathways that result in a lymphoproliferative disease. In addition, a cohesive model of CLL pathogenesis, which elucidates the hierarchical order of pathogenic factors and their interaction with BCR signalling, may well lead to novel disease-specific preventive or therapeutic intervention.
Max ERC Funding
2 256 250 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym BCM-UPS
Project Dissecting the role of the ubiquitin proteasome system in the pathogenesis and therapy of B-cell malignancies
Researcher (PI) Florian Christoph Bassermann
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Country Germany
Call Details Consolidator Grant (CoG), LS4, ERC-2015-CoG
Summary B-cell malignancies are characterized by high levels of genomic instability, which critically contribute to their pathogenesis and evolution. Recently, the fundamental role of the ubiquitin proteasome system (UPS) in maintaining genome integrity has been appreciated. Two major new therapeutic modalities in B-cell malignancies, proteasome inhibitors and imunomodulatory drugs (IMiDs), target the UPS and demonstrate particular efficacy in multiple myeloma (MM) and mantle cell lymphoma (MCL), two incurable entities with poor prognosis. This suggests the presence of aberrant ubiquitylation events, whose identities have however remained mostly elusive.
Our recent studies identify fundamental roles of orphan ubiquitin ligases of the Cullin Ring ligase family (CRLs) and their counterparts, the deubiquitylating enzymes (DUBs) in the cellular DNA damage response machinery, and characterize these candidates as novel oncogenes or tumour suppressors in MM and MCL. These findings provide the foundation for our hypothesis that deregulated ubiquitylation events involving CRLs and DUBs have a far reaching impact on the pathogenesis of B-cell malignancies and can serve as new therapeutic targets and biomarkers.
We therefore propose a multistep strategy in which we will (1) characterize previously orphan CRLs and DUBs, which we have distinguished as candidate oncogenes and tumour suppressors in MM (FBXO3, USP24), MCL (FBXO25), or MM and MCL (CRBN), respectively; (2) decipher the global role of CRLs and DUBs in MM and MCL using defined genetic screens; (3) identify relevant substrates of CRLs/DUBs discovered in (2) using mass spectrometry; and (4) validate CRL/DUB candidates in preclinical mouse models and defined patient cohorts as to their disease relevance.
We expect that our interdisciplinary approach will unravel the overall role of the UPS in the pathophysiology, evolution and treatment of B-cell malignancies.
Summary
B-cell malignancies are characterized by high levels of genomic instability, which critically contribute to their pathogenesis and evolution. Recently, the fundamental role of the ubiquitin proteasome system (UPS) in maintaining genome integrity has been appreciated. Two major new therapeutic modalities in B-cell malignancies, proteasome inhibitors and imunomodulatory drugs (IMiDs), target the UPS and demonstrate particular efficacy in multiple myeloma (MM) and mantle cell lymphoma (MCL), two incurable entities with poor prognosis. This suggests the presence of aberrant ubiquitylation events, whose identities have however remained mostly elusive.
Our recent studies identify fundamental roles of orphan ubiquitin ligases of the Cullin Ring ligase family (CRLs) and their counterparts, the deubiquitylating enzymes (DUBs) in the cellular DNA damage response machinery, and characterize these candidates as novel oncogenes or tumour suppressors in MM and MCL. These findings provide the foundation for our hypothesis that deregulated ubiquitylation events involving CRLs and DUBs have a far reaching impact on the pathogenesis of B-cell malignancies and can serve as new therapeutic targets and biomarkers.
We therefore propose a multistep strategy in which we will (1) characterize previously orphan CRLs and DUBs, which we have distinguished as candidate oncogenes and tumour suppressors in MM (FBXO3, USP24), MCL (FBXO25), or MM and MCL (CRBN), respectively; (2) decipher the global role of CRLs and DUBs in MM and MCL using defined genetic screens; (3) identify relevant substrates of CRLs/DUBs discovered in (2) using mass spectrometry; and (4) validate CRL/DUB candidates in preclinical mouse models and defined patient cohorts as to their disease relevance.
We expect that our interdisciplinary approach will unravel the overall role of the UPS in the pathophysiology, evolution and treatment of B-cell malignancies.
Max ERC Funding
1 973 255 €
Duration
Start date: 2016-09-01, End date: 2022-02-28
Project acronym BrainModes
Project Personalized whole brain simulations: linking connectomics and dynamics in the human brain
Researcher (PI) Petra Ritter
Host Institution (HI) CHARITE - UNIVERSITAETSMEDIZIN BERLIN
Country Germany
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Background. We have detailed maps of brain structure and function, yet are lacking understanding of how the highly connected units interact and give rise to mental processes. The Virtual Brain (TVB), a whole brain simulation framework, aims to bridge that gap. Yet it is still developing. We are proposing here breakthrough advances that reveal mechanisms of brain function and foster collaboration between research groups. Vision. Clinical applications that simulate individual patient brains and predict trajectories of recovery or decline or test therapies to select the best one for that person. Goal. Using biologically realistic brain models and multimodal functional and structural imaging data to elucidate control mechanisms of the human brain in aging. A database collects key data and allows identifying most generic models and mechanisms below the spatial and temporal resolution of non-invasive imaging techniques taking into account the complex interaction in the brain that without a model would be impossible to keep track of. Objectives. 1) Parameter optimization for large parameter space search and a library of dynamical regimes linking dynamical regimes and underlying mechanisms to biological (cognitive) age. 2) Identifying the role of intrinsic plasticity for network reconfigurations in the resting state and its age dependency. 3) Model based identification of task related plasticity mechanisms and their functional consequences for network reconfigurations in coordination learning in aging. 4) An interactive tool that provides access to the dynamical regimes library and makes pre-computed simulations easily accessible allowing researchers to benefit and learn from existing work. Impact. Understanding development, aging and brain disorders from the perspective of disruption of information processing architectures provides an opportunity for new interventions that re-establish control in brain pathology hence posing a breakthrough in the health and biotech sector.
Summary
Background. We have detailed maps of brain structure and function, yet are lacking understanding of how the highly connected units interact and give rise to mental processes. The Virtual Brain (TVB), a whole brain simulation framework, aims to bridge that gap. Yet it is still developing. We are proposing here breakthrough advances that reveal mechanisms of brain function and foster collaboration between research groups. Vision. Clinical applications that simulate individual patient brains and predict trajectories of recovery or decline or test therapies to select the best one for that person. Goal. Using biologically realistic brain models and multimodal functional and structural imaging data to elucidate control mechanisms of the human brain in aging. A database collects key data and allows identifying most generic models and mechanisms below the spatial and temporal resolution of non-invasive imaging techniques taking into account the complex interaction in the brain that without a model would be impossible to keep track of. Objectives. 1) Parameter optimization for large parameter space search and a library of dynamical regimes linking dynamical regimes and underlying mechanisms to biological (cognitive) age. 2) Identifying the role of intrinsic plasticity for network reconfigurations in the resting state and its age dependency. 3) Model based identification of task related plasticity mechanisms and their functional consequences for network reconfigurations in coordination learning in aging. 4) An interactive tool that provides access to the dynamical regimes library and makes pre-computed simulations easily accessible allowing researchers to benefit and learn from existing work. Impact. Understanding development, aging and brain disorders from the perspective of disruption of information processing architectures provides an opportunity for new interventions that re-establish control in brain pathology hence posing a breakthrough in the health and biotech sector.
Max ERC Funding
1 870 588 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym BYPASSWITHOUTSURGERY
Project Reaching the effects of gastric bypass on diabetes and obesity without surgery
Researcher (PI) Jens Juul Holst
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS4, ERC-2015-AdG
Summary Gastric bypass surgery results in massive weight loss and diabetes remission. The effect is superior to intensive medical treatment, showing that there are mechanisms within the body that can cure diabetes and obesity. Revealing the nature of these mechanisms could lead to new, cost-efficient, similarly effective, non-invasive treatments of these conditions. The hypothesis is that hyper-secretion of a number of gut hormones mediates the effect of surgery, as indicated by a series of our recent studies, demonstrating that hypersecretion of GLP-1, a hormone discovered in my laboratory and basis for the antidiabetic medication of millions of patients, is essential for the improved insulin secretion and glucose tolerance. But what are the mechanisms behind the up to 30-fold elevations in secretion of these hormones following surgery? Constantly with a translational scope, all elements involved in these responses will be addressed in this project, from detailed analysis of food items responsible for hormone secretion, to identification of the responsible regions of the gut, and to the molecular mechanisms leading to hypersecretion. Novel approaches for studies of human gut hormone secreting cells, including specific expression analysis, are combined with our advanced and unique isolated perfused gut preparations, the only tool that can provide physiologically relevant results with a translational potential regarding regulation of hormone secretion in the gut. This will lead to further groundbreaking experimental attempts to mimic and engage the identified mechanisms, creating similar hypersecretion and obtaining similar improvements as the operations in patients with obesity and diabetes. Based on our profound knowledge of gut hormone biology accumulated through decades of intensive and successful research and our successful elucidation of the antidiabetic actions of gastric bypass surgery, we are in a unique position to reach this ambitious goal.
Summary
Gastric bypass surgery results in massive weight loss and diabetes remission. The effect is superior to intensive medical treatment, showing that there are mechanisms within the body that can cure diabetes and obesity. Revealing the nature of these mechanisms could lead to new, cost-efficient, similarly effective, non-invasive treatments of these conditions. The hypothesis is that hyper-secretion of a number of gut hormones mediates the effect of surgery, as indicated by a series of our recent studies, demonstrating that hypersecretion of GLP-1, a hormone discovered in my laboratory and basis for the antidiabetic medication of millions of patients, is essential for the improved insulin secretion and glucose tolerance. But what are the mechanisms behind the up to 30-fold elevations in secretion of these hormones following surgery? Constantly with a translational scope, all elements involved in these responses will be addressed in this project, from detailed analysis of food items responsible for hormone secretion, to identification of the responsible regions of the gut, and to the molecular mechanisms leading to hypersecretion. Novel approaches for studies of human gut hormone secreting cells, including specific expression analysis, are combined with our advanced and unique isolated perfused gut preparations, the only tool that can provide physiologically relevant results with a translational potential regarding regulation of hormone secretion in the gut. This will lead to further groundbreaking experimental attempts to mimic and engage the identified mechanisms, creating similar hypersecretion and obtaining similar improvements as the operations in patients with obesity and diabetes. Based on our profound knowledge of gut hormone biology accumulated through decades of intensive and successful research and our successful elucidation of the antidiabetic actions of gastric bypass surgery, we are in a unique position to reach this ambitious goal.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CHRiSHarMa
Project Commutators, Hilbert and Riesz transforms, Shifts, Harmonic extensions and Martingales
Researcher (PI) Stefanie Petermichl
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Country Germany
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary This project aims to develop two arrays of questions at the heart of harmonic
analysis, probability and operator theory:
Multi-parameter harmonic analysis.
Through the use of wavelet methods in harmonic analysis, we plan to shed new
light on characterizations for boundedness of multi-parameter versions of
classical Hankel operators in a variety of settings. The classical Nehari's theorem on
the disk (1957) has found an important generalization to Hilbert space
valued functions, known as Page's theorem. A relevant extension of Nehari's
theorem to the bi-disk had been a long standing problem, finally solved in
2000, through novel harmonic analysis methods. It's operator analog remains
unknown and constitutes part of this proposal.
Sharp estimates for Calderon-Zygmund operators and martingale
inequalities.
We make use of the interplay between objects central to
Harmonic analysis, such as the Hilbert transform, and objects central to
probability theory, martingales. This connection has seen many faces, such as
in the UMD space classification by Bourgain and Burkholder or in the formula
of Gundy-Varapoulos, that uses orthogonal martingales to model the behavior of
the Hilbert transform. Martingale methods in combination with optimal control
have advanced an array of questions in harmonic analysis in recent years. In
this proposal we wish to continue this direction as well as exploit advances
in dyadic harmonic analysis for use in questions central to probability. There
is some focus on weighted estimates in a non-commutative and scalar setting, in the understanding of discretizations
of classical operators, such as the Hilbert transform and their role played
when acting on functions defined on discrete groups. From a martingale
standpoint, jump processes come into play. Another direction is the use of
numerical methods in combination with harmonic analysis achievements for martingale estimates.
Summary
This project aims to develop two arrays of questions at the heart of harmonic
analysis, probability and operator theory:
Multi-parameter harmonic analysis.
Through the use of wavelet methods in harmonic analysis, we plan to shed new
light on characterizations for boundedness of multi-parameter versions of
classical Hankel operators in a variety of settings. The classical Nehari's theorem on
the disk (1957) has found an important generalization to Hilbert space
valued functions, known as Page's theorem. A relevant extension of Nehari's
theorem to the bi-disk had been a long standing problem, finally solved in
2000, through novel harmonic analysis methods. It's operator analog remains
unknown and constitutes part of this proposal.
Sharp estimates for Calderon-Zygmund operators and martingale
inequalities.
We make use of the interplay between objects central to
Harmonic analysis, such as the Hilbert transform, and objects central to
probability theory, martingales. This connection has seen many faces, such as
in the UMD space classification by Bourgain and Burkholder or in the formula
of Gundy-Varapoulos, that uses orthogonal martingales to model the behavior of
the Hilbert transform. Martingale methods in combination with optimal control
have advanced an array of questions in harmonic analysis in recent years. In
this proposal we wish to continue this direction as well as exploit advances
in dyadic harmonic analysis for use in questions central to probability. There
is some focus on weighted estimates in a non-commutative and scalar setting, in the understanding of discretizations
of classical operators, such as the Hilbert transform and their role played
when acting on functions defined on discrete groups. From a martingale
standpoint, jump processes come into play. Another direction is the use of
numerical methods in combination with harmonic analysis achievements for martingale estimates.
Max ERC Funding
1 523 963 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CureCKDHeart
Project Targeting perivascular myofibroblast progenitors to treat cardiac fibrosis and heart failure in chronic kidney disease
Researcher (PI) Rafael Johannes Thomas Kramann
Host Institution (HI) UNIVERSITAETSKLINIKUM AACHEN
Country Germany
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary Chronic kidney disease (CKD) is a growing public health problem with a massively increased cardiovascular mortality. Patients with advanced CKD mostly die from sudden cardiac death and recurrent heart failure due to premature cardiac aging with hypertrophy, fibrosis, and capillary rarefaction. I have recently identified the long sought key cardiac myofibroblast progenitor population, an emerging breakthrough that carries the potential to develop novel targeted therapeutics. Genetic ablation of these Gli1+ perivascular progenitors ameliorates fibrosis, cardiac hypertrophy and rescues left-ventricular function. I propose that Gli1+ cells are critically involved in all major pathophysiologic changes in cardiac aging and uremic cardiomyopathy including fibrosis, hypertrophy and capillary rarefaction. I will perform state of the art genetic fate tracing, ablation and in vivo CRISPR/Cas9 genome editing experiments to untangle their complex mechanism of activation and communication with endothelial cells and cardiomyocytes promoting fibrosis, capillary rarefaction, cardiac hypertrophy and heart failure. To identify novel druggable targets I will utilize new mouse models that allow comparative transcript and proteasome profiling assays of these critical myofibroblast precusors in homeostasis, aging and premature aging in CKD. Novel assays with immortalized cardiac Gli1+ cells will allow high throughput screens to identify uremia associated factors of cell activation and inhibitory compounds to facilitate the development of novel therapeutics.
This ambitious interdisciplinary project requires the expertise of chemists, physiologists, biomedical researchers and physician scientists to develop novel targeted therapies in cardiac remodeling during aging and CKD. The passion that drives this project results from a simple emerging hypothesis: It is possible to treat heart failure and sudden cardiac death in aging and CKD by targeting perivascular myofibroblast progenitors.
Summary
Chronic kidney disease (CKD) is a growing public health problem with a massively increased cardiovascular mortality. Patients with advanced CKD mostly die from sudden cardiac death and recurrent heart failure due to premature cardiac aging with hypertrophy, fibrosis, and capillary rarefaction. I have recently identified the long sought key cardiac myofibroblast progenitor population, an emerging breakthrough that carries the potential to develop novel targeted therapeutics. Genetic ablation of these Gli1+ perivascular progenitors ameliorates fibrosis, cardiac hypertrophy and rescues left-ventricular function. I propose that Gli1+ cells are critically involved in all major pathophysiologic changes in cardiac aging and uremic cardiomyopathy including fibrosis, hypertrophy and capillary rarefaction. I will perform state of the art genetic fate tracing, ablation and in vivo CRISPR/Cas9 genome editing experiments to untangle their complex mechanism of activation and communication with endothelial cells and cardiomyocytes promoting fibrosis, capillary rarefaction, cardiac hypertrophy and heart failure. To identify novel druggable targets I will utilize new mouse models that allow comparative transcript and proteasome profiling assays of these critical myofibroblast precusors in homeostasis, aging and premature aging in CKD. Novel assays with immortalized cardiac Gli1+ cells will allow high throughput screens to identify uremia associated factors of cell activation and inhibitory compounds to facilitate the development of novel therapeutics.
This ambitious interdisciplinary project requires the expertise of chemists, physiologists, biomedical researchers and physician scientists to develop novel targeted therapies in cardiac remodeling during aging and CKD. The passion that drives this project results from a simple emerging hypothesis: It is possible to treat heart failure and sudden cardiac death in aging and CKD by targeting perivascular myofibroblast progenitors.
Max ERC Funding
1 497 888 €
Duration
Start date: 2016-05-01, End date: 2022-04-30
Project acronym DEMETINL
Project Decisions in metabolic inflammation of the liver: Adhesive interactions involved in leukocyte retention and resolution of inflammation in metabolic-inflammatory liver disease
Researcher (PI) Triantafyllos Chavakis
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Country Germany
Call Details Consolidator Grant (CoG), LS4, ERC-2015-CoG
Summary Resolution of acute inflammation, involving limiting further leukocyte recruitment, apoptosis and clearance
of inflammatory cells via macrophages as well as egress of the inflammatory cells, is operative in acute
inflammation but dysfunctional in chronic inflammatory disease. In the latter scenario, the retention and
activation of leukocytes in the inflamed tissue linked with failure to resolve inflammation contributes to
perpetuation of organ damage and loss of homeostasis. Interestingly, persistent inflammation in insulintarget
organs, such as the adipose tissue and the liver in the context of obesity significantly contributes to
development of insulin resistance (IR), diabetes and non-alcoholic fatty liver disease (NAFLD). So far,
investigations have mainly addressed obesity-related inflammatory mechanisms in the AT and rather less in
other metabolic organs, e.g. the liver. Therefore, the aims of this proposal are: (i) To characterize in the
context of obesity-related metabolic disease novel processes mediating inflammatory cell retention,
especially in the liver. In this context, we will also address the novel hypothesis that adhesive interactions of
inflammatory cells (with e.g. parenchymal cells) in the metabolically challenged environment of obese
organs may activate them via alterations in their cellular metabolism, thereby contributing to perpetuation of
inflammation. (ii) To understand resolution of inflammation including inflammatory cell egress from
metabolic organs, especially from the liver in metabolic-inflammatory disease. To this end, we will also
utilize models of acute inflammation, which is capable to resolve, in order to understand resolution principles
and apply them to non-resolving metabolic-inflammatory disease. In this regard, we will also assess the
therapeutic potential of novel inflammation-modulating factors identified by our lab.
Summary
Resolution of acute inflammation, involving limiting further leukocyte recruitment, apoptosis and clearance
of inflammatory cells via macrophages as well as egress of the inflammatory cells, is operative in acute
inflammation but dysfunctional in chronic inflammatory disease. In the latter scenario, the retention and
activation of leukocytes in the inflamed tissue linked with failure to resolve inflammation contributes to
perpetuation of organ damage and loss of homeostasis. Interestingly, persistent inflammation in insulintarget
organs, such as the adipose tissue and the liver in the context of obesity significantly contributes to
development of insulin resistance (IR), diabetes and non-alcoholic fatty liver disease (NAFLD). So far,
investigations have mainly addressed obesity-related inflammatory mechanisms in the AT and rather less in
other metabolic organs, e.g. the liver. Therefore, the aims of this proposal are: (i) To characterize in the
context of obesity-related metabolic disease novel processes mediating inflammatory cell retention,
especially in the liver. In this context, we will also address the novel hypothesis that adhesive interactions of
inflammatory cells (with e.g. parenchymal cells) in the metabolically challenged environment of obese
organs may activate them via alterations in their cellular metabolism, thereby contributing to perpetuation of
inflammation. (ii) To understand resolution of inflammation including inflammatory cell egress from
metabolic organs, especially from the liver in metabolic-inflammatory disease. To this end, we will also
utilize models of acute inflammation, which is capable to resolve, in order to understand resolution principles
and apply them to non-resolving metabolic-inflammatory disease. In this regard, we will also assess the
therapeutic potential of novel inflammation-modulating factors identified by our lab.
Max ERC Funding
1 953 250 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym DismantlingNoise
Project Dissecting the (epi)genetic origins of phenotypic variation and metabolic disease susceptibility
Researcher (PI) John Andrew Pospisilik
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Country Germany
Call Details Consolidator Grant (CoG), LS4, ERC-2015-CoG
Summary Current estimates place the prevalence of obesity beyond 1 billion by the year 2030. As a critical risk factor for heart disease, diabetes and stroke, obesity represents one of the chief socio-economic challenges of our day. While studies have mapped a genetic framework for understanding obesity, the etiological contribution of several regulatory layers, and in particular epigenetic regulation, remain poorly understood. A perfect example, we know that isogenic C57Bl6/J mice can vary by as much as 100% in body weight upon high fat feeding; currently, we have no mechanistic explanation for the emergence of such phenotypic variation. Here, I propose three aims dedicated towards understanding the (epi)genetic control of phenotypic variation and disease susceptibility. First, we will catalogue epigenome and phenome variation to an unprecedented depth and resolution in the isogenic context. Next, we will examine two completely novel models of epigenetically sensitized bi-stable obesity and thus begin a mechanistic dissection of phenotypic variation. Finally, we will map a series of gene-gene and gene-environment epistasis interactions including eight models of developmental plasticity and approximately a dozen chromatin regulator mutants. The latter epistasis matrix will identify the molecular mechanisms that trigger, amplify and buffer phenotypic variation and stochastic obesity in mice. The functional (epi)phenomics approach is unique. It builds the first unbiased framework against which to understand developmental plasticity and phenotypic variation, and at the same time generates powerful resources for disease researchers worldwide.
Summary
Current estimates place the prevalence of obesity beyond 1 billion by the year 2030. As a critical risk factor for heart disease, diabetes and stroke, obesity represents one of the chief socio-economic challenges of our day. While studies have mapped a genetic framework for understanding obesity, the etiological contribution of several regulatory layers, and in particular epigenetic regulation, remain poorly understood. A perfect example, we know that isogenic C57Bl6/J mice can vary by as much as 100% in body weight upon high fat feeding; currently, we have no mechanistic explanation for the emergence of such phenotypic variation. Here, I propose three aims dedicated towards understanding the (epi)genetic control of phenotypic variation and disease susceptibility. First, we will catalogue epigenome and phenome variation to an unprecedented depth and resolution in the isogenic context. Next, we will examine two completely novel models of epigenetically sensitized bi-stable obesity and thus begin a mechanistic dissection of phenotypic variation. Finally, we will map a series of gene-gene and gene-environment epistasis interactions including eight models of developmental plasticity and approximately a dozen chromatin regulator mutants. The latter epistasis matrix will identify the molecular mechanisms that trigger, amplify and buffer phenotypic variation and stochastic obesity in mice. The functional (epi)phenomics approach is unique. It builds the first unbiased framework against which to understand developmental plasticity and phenotypic variation, and at the same time generates powerful resources for disease researchers worldwide.
Max ERC Funding
1 997 853 €
Duration
Start date: 2017-01-01, End date: 2021-12-31