Project acronym ANTS
Project Attine ANT SymbiomeS
Researcher (PI) Jacobus Jan Boomsma
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS8, ERC-2012-ADG_20120314
Summary "The attine fungus-growing ants are prime models for understanding phenotypic adaptations in social evolution and symbiosis. The mutualism has many hallmarks of advanced cooperation in its mating system commitments and functional complementarity between multiple symbiont partners, but potential conflicts between sexes and castes over reproductive priorities, and between hosts and symbionts over symbiont mixing have also been documented. With collaborators at BGI-Shenzhen and the Smithsonian Institution my group has obtained six reference genomes representing all genus-level branches of the higher attine ants and a lower attine outgroup. With collaborators in Denmark and Australia we have pioneered proteomic approaches to understand the preservation of sperm viability in spite of sperm competition and the enzymatic decomposition of plant substrates that the ants use to make their fungus gardens grow.
Here, I propose an integrated study focusing on four major areas of attine ant biology that are particularly inviting for in depth molecular approaches: 1. The protein-level networks that secure life-time (up to 20 years) sperm storage in specialized ant-queen organs and the genetic mechanisms that shape and adjust these “sexual symbiome” networks. 2. The ant-fungal symbiome, i.e. the dynamics of fungal enzyme production for plant substrate degradation and the redistribution of these enzymes in fungus gardens through fecal deposition after they are ingested but not digested by the ants. 3. The microbial symbiome of ant guts and other tissues with obligate bacterial mutualists, of which we have identified some and will characterize a wider collection across the different branches of the attine ant phylogeny. 4. The genome-wide frequency of genomic imprinting and the significance of these imprints for the expression of caste phenotypes and the regulation of potential reproductive conflicts."
Summary
"The attine fungus-growing ants are prime models for understanding phenotypic adaptations in social evolution and symbiosis. The mutualism has many hallmarks of advanced cooperation in its mating system commitments and functional complementarity between multiple symbiont partners, but potential conflicts between sexes and castes over reproductive priorities, and between hosts and symbionts over symbiont mixing have also been documented. With collaborators at BGI-Shenzhen and the Smithsonian Institution my group has obtained six reference genomes representing all genus-level branches of the higher attine ants and a lower attine outgroup. With collaborators in Denmark and Australia we have pioneered proteomic approaches to understand the preservation of sperm viability in spite of sperm competition and the enzymatic decomposition of plant substrates that the ants use to make their fungus gardens grow.
Here, I propose an integrated study focusing on four major areas of attine ant biology that are particularly inviting for in depth molecular approaches: 1. The protein-level networks that secure life-time (up to 20 years) sperm storage in specialized ant-queen organs and the genetic mechanisms that shape and adjust these “sexual symbiome” networks. 2. The ant-fungal symbiome, i.e. the dynamics of fungal enzyme production for plant substrate degradation and the redistribution of these enzymes in fungus gardens through fecal deposition after they are ingested but not digested by the ants. 3. The microbial symbiome of ant guts and other tissues with obligate bacterial mutualists, of which we have identified some and will characterize a wider collection across the different branches of the attine ant phylogeny. 4. The genome-wide frequency of genomic imprinting and the significance of these imprints for the expression of caste phenotypes and the regulation of potential reproductive conflicts."
Max ERC Funding
2 290 102 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym BIOMEMOS
Project Higher order structure and function of biomembranes
Researcher (PI) Poul Nissen
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary The biomembrane is a prerequisite of life. It enables the cell to maintain a controlled environment and to establish electrochemical gradients as rapidly accessible energy stores. Biomembranes also provide scaffold for organisation and spatial definition of signal transmission in the cell. Crystal structures of membrane proteins are determined with an increasing pace. Along with functional studies integral studies of individual membrane proteins are now widely implemented. The BIOMEMOS proposal goes a step further and approaches the function of the biomembrane at the higher level of membrane protein complexes. Through a combination of X-ray crystallography, electrophysiology, general biochemistry, biophysics and bioinformatics and including also the application of single-particle cryo-EM and small-angle X-ray scattering, the structure and function of membrane protein complexes of key importance in life will be investigated. The specific targets for investigation in this proposal include: 1) higher-order complexes of P-type ATPase pumps such as signalling complexes of Na+,K+-ATPase, and 2) development of methods for structural studies of membrane protein complexes Based on my unique track record in structural studies of large, difficult structures (ribosomes and membrane proteins) in the setting of a thriving research community in structural biology and biomembrane research in Aarhus provides a critical momentum for a long-term activity. The activity will take advantage of the new possibilities offered by synchrotron sources in Europe. Furthermore, a single-particle cryo-EM research group formed on my initiative in Aarhus, and a well-established small-angle X-ray scattering community provides for an optimal setting through multiple cues in structural biology and functional studies
Summary
The biomembrane is a prerequisite of life. It enables the cell to maintain a controlled environment and to establish electrochemical gradients as rapidly accessible energy stores. Biomembranes also provide scaffold for organisation and spatial definition of signal transmission in the cell. Crystal structures of membrane proteins are determined with an increasing pace. Along with functional studies integral studies of individual membrane proteins are now widely implemented. The BIOMEMOS proposal goes a step further and approaches the function of the biomembrane at the higher level of membrane protein complexes. Through a combination of X-ray crystallography, electrophysiology, general biochemistry, biophysics and bioinformatics and including also the application of single-particle cryo-EM and small-angle X-ray scattering, the structure and function of membrane protein complexes of key importance in life will be investigated. The specific targets for investigation in this proposal include: 1) higher-order complexes of P-type ATPase pumps such as signalling complexes of Na+,K+-ATPase, and 2) development of methods for structural studies of membrane protein complexes Based on my unique track record in structural studies of large, difficult structures (ribosomes and membrane proteins) in the setting of a thriving research community in structural biology and biomembrane research in Aarhus provides a critical momentum for a long-term activity. The activity will take advantage of the new possibilities offered by synchrotron sources in Europe. Furthermore, a single-particle cryo-EM research group formed on my initiative in Aarhus, and a well-established small-angle X-ray scattering community provides for an optimal setting through multiple cues in structural biology and functional studies
Max ERC Funding
2 444 180 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym BYPASSWITHOUTSURGERY
Project Reaching the effects of gastric bypass on diabetes and obesity without surgery
Researcher (PI) Jens Juul Holst
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS4, ERC-2015-AdG
Summary Gastric bypass surgery results in massive weight loss and diabetes remission. The effect is superior to intensive medical treatment, showing that there are mechanisms within the body that can cure diabetes and obesity. Revealing the nature of these mechanisms could lead to new, cost-efficient, similarly effective, non-invasive treatments of these conditions. The hypothesis is that hyper-secretion of a number of gut hormones mediates the effect of surgery, as indicated by a series of our recent studies, demonstrating that hypersecretion of GLP-1, a hormone discovered in my laboratory and basis for the antidiabetic medication of millions of patients, is essential for the improved insulin secretion and glucose tolerance. But what are the mechanisms behind the up to 30-fold elevations in secretion of these hormones following surgery? Constantly with a translational scope, all elements involved in these responses will be addressed in this project, from detailed analysis of food items responsible for hormone secretion, to identification of the responsible regions of the gut, and to the molecular mechanisms leading to hypersecretion. Novel approaches for studies of human gut hormone secreting cells, including specific expression analysis, are combined with our advanced and unique isolated perfused gut preparations, the only tool that can provide physiologically relevant results with a translational potential regarding regulation of hormone secretion in the gut. This will lead to further groundbreaking experimental attempts to mimic and engage the identified mechanisms, creating similar hypersecretion and obtaining similar improvements as the operations in patients with obesity and diabetes. Based on our profound knowledge of gut hormone biology accumulated through decades of intensive and successful research and our successful elucidation of the antidiabetic actions of gastric bypass surgery, we are in a unique position to reach this ambitious goal.
Summary
Gastric bypass surgery results in massive weight loss and diabetes remission. The effect is superior to intensive medical treatment, showing that there are mechanisms within the body that can cure diabetes and obesity. Revealing the nature of these mechanisms could lead to new, cost-efficient, similarly effective, non-invasive treatments of these conditions. The hypothesis is that hyper-secretion of a number of gut hormones mediates the effect of surgery, as indicated by a series of our recent studies, demonstrating that hypersecretion of GLP-1, a hormone discovered in my laboratory and basis for the antidiabetic medication of millions of patients, is essential for the improved insulin secretion and glucose tolerance. But what are the mechanisms behind the up to 30-fold elevations in secretion of these hormones following surgery? Constantly with a translational scope, all elements involved in these responses will be addressed in this project, from detailed analysis of food items responsible for hormone secretion, to identification of the responsible regions of the gut, and to the molecular mechanisms leading to hypersecretion. Novel approaches for studies of human gut hormone secreting cells, including specific expression analysis, are combined with our advanced and unique isolated perfused gut preparations, the only tool that can provide physiologically relevant results with a translational potential regarding regulation of hormone secretion in the gut. This will lead to further groundbreaking experimental attempts to mimic and engage the identified mechanisms, creating similar hypersecretion and obtaining similar improvements as the operations in patients with obesity and diabetes. Based on our profound knowledge of gut hormone biology accumulated through decades of intensive and successful research and our successful elucidation of the antidiabetic actions of gastric bypass surgery, we are in a unique position to reach this ambitious goal.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CASINO
Project Carbohydrate signals controlling nodulation
Researcher (PI) Jens Stougaard Jensen
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS3, ERC-2010-AdG_20100317
Summary Mechanisms governing interaction between multicellular organisms and microbes are central for understanding pathogenesis, symbiosis and the function of ecosystems. We propose to address these mechanisms by pioneering an interdisciplinary approach for understanding cellular signalling, response processes and organ development. The challenge is to determine factors synchronising three processes, organogenesis, infection thread formation and bacterial infection, running in parallel to build a root nodule hosting symbiotic bacteria. We aim to exploit the unique possibilities for analysing endocytosis of bacteria in model legumes and to develop genomic, genetic and biological chemistry tools to break new ground in our understanding of carbohydrates in plant development and plant-microbe interaction. Surface exposed rhizobial polysaccharides play a crucial but poorly understood role in infection thread formation and rhizobial invasion resulting in endocytosis. We will undertake an integrated functional characterisation of receptor-ligand mechanisms mediating recognition of secreted polysaccharides and subsequent signal amplification. So far progress in this field has been limited by the complex nature of carbohydrate polymers, lack of a suitable experimental model system where both partners in an interaction could be manipulated and lack of corresponding methods for carbohydrate synthesis, analysis and interaction studies. In this context our legume model system and the discovery that the legume Nod-factor receptors recognise bacterial lipochitin-oligosaccharide signals at their LysM domains provides a new opportunity. Combined with advanced bioorganic chemistry and nanobioscience approaches this proposal will engage the above mentioned limitations.
Summary
Mechanisms governing interaction between multicellular organisms and microbes are central for understanding pathogenesis, symbiosis and the function of ecosystems. We propose to address these mechanisms by pioneering an interdisciplinary approach for understanding cellular signalling, response processes and organ development. The challenge is to determine factors synchronising three processes, organogenesis, infection thread formation and bacterial infection, running in parallel to build a root nodule hosting symbiotic bacteria. We aim to exploit the unique possibilities for analysing endocytosis of bacteria in model legumes and to develop genomic, genetic and biological chemistry tools to break new ground in our understanding of carbohydrates in plant development and plant-microbe interaction. Surface exposed rhizobial polysaccharides play a crucial but poorly understood role in infection thread formation and rhizobial invasion resulting in endocytosis. We will undertake an integrated functional characterisation of receptor-ligand mechanisms mediating recognition of secreted polysaccharides and subsequent signal amplification. So far progress in this field has been limited by the complex nature of carbohydrate polymers, lack of a suitable experimental model system where both partners in an interaction could be manipulated and lack of corresponding methods for carbohydrate synthesis, analysis and interaction studies. In this context our legume model system and the discovery that the legume Nod-factor receptors recognise bacterial lipochitin-oligosaccharide signals at their LysM domains provides a new opportunity. Combined with advanced bioorganic chemistry and nanobioscience approaches this proposal will engage the above mentioned limitations.
Max ERC Funding
2 399 127 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym DISTRACT
Project The Political Economy of Distraction in Digitized Denmark
Researcher (PI) Morten Axel PEDERSEN
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), SH3, ERC-2018-ADG
Summary Bridging anthropology, sociology, economics, psychology, political science, and data science, DISTRACT combines advanced data science tools and established social science analysis to explore a pressing challenge: the ever more alluring distractions of human attention in the age of smartphones and other digitized technologies. DISTRACT departs from five linked hypotheses: 1) The attention is commonly (by scholars and laymen) seen as finite; ⇒ (2) As such, it is a scarce resource that is subject to competition and regulation; ⇒ 3) This is not new but it is acquiring unseen urgency in the current data economy; ⇒ 4) An interdisciplinary social data science approach allows for solid and novel investigation of this unmet scientific and societal need; and ⇒ 5) As the world’s most digitized country (and homogeneous population and state-of-the-art public databases), Denmark is an ideal site to study this political economy of distraction. Combining qualitative and quantitative data from four case studies, DISTRACT thus aims to trace and analyse the mental, social and material techniques by which attention is captured, retained and deflected in digitized Denmark. Analytically, we distinguish between three layers in which attention is managed and manipulated: a “mental”, “social” and “material” dimension. We also differentiate between three components of given attention/distraction sequence: the ‘”capturing”, “retention” and “deflection” phase. Empirically, case-studies shall be carried out of (a) national politics, (b) the tech business, (c) “off-the-grid” alternative communities, and (d) education and workplace environments. Data shall be collected, integrated and analysed via a combination of 1) qualitative methods, including ethnographic fieldwork and semi-structured interviews and discourse analysis; (2) quantitative methods, including natural experiments and predictive models; and (3) quali-quantitative methods including web scraping and supervised machine learning.
Summary
Bridging anthropology, sociology, economics, psychology, political science, and data science, DISTRACT combines advanced data science tools and established social science analysis to explore a pressing challenge: the ever more alluring distractions of human attention in the age of smartphones and other digitized technologies. DISTRACT departs from five linked hypotheses: 1) The attention is commonly (by scholars and laymen) seen as finite; ⇒ (2) As such, it is a scarce resource that is subject to competition and regulation; ⇒ 3) This is not new but it is acquiring unseen urgency in the current data economy; ⇒ 4) An interdisciplinary social data science approach allows for solid and novel investigation of this unmet scientific and societal need; and ⇒ 5) As the world’s most digitized country (and homogeneous population and state-of-the-art public databases), Denmark is an ideal site to study this political economy of distraction. Combining qualitative and quantitative data from four case studies, DISTRACT thus aims to trace and analyse the mental, social and material techniques by which attention is captured, retained and deflected in digitized Denmark. Analytically, we distinguish between three layers in which attention is managed and manipulated: a “mental”, “social” and “material” dimension. We also differentiate between three components of given attention/distraction sequence: the ‘”capturing”, “retention” and “deflection” phase. Empirically, case-studies shall be carried out of (a) national politics, (b) the tech business, (c) “off-the-grid” alternative communities, and (d) education and workplace environments. Data shall be collected, integrated and analysed via a combination of 1) qualitative methods, including ethnographic fieldwork and semi-structured interviews and discourse analysis; (2) quantitative methods, including natural experiments and predictive models; and (3) quali-quantitative methods including web scraping and supervised machine learning.
Max ERC Funding
2 499 315 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym DNAMET
Project "DNA methylation, hydroxymethylation and cancer"
Researcher (PI) Kristian Helin
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS4, ERC-2011-ADG_20110310
Summary "DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. In cancer increased aberrant DNA methylation is believed to work as a silencing mechanism for tumor suppressor genes such as INK4A, RB1 and MLH1. The high frequency of abnormal DNA methylation found in cancer might be due to the inactivation of a proofreading and/or fidelity system regulating the correct patterns of DNA methylation. Currently we have very limited knowledge about such mechanisms.
In this research proposal, we will focus on elucidating the biological function of a novel protein family, which catalyzes the conversion of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl cytosine (5-hmC). By catalyzing this reaction the TET proteins most likely work as DNA demethylases, and they might therefore have a role in regulating DNA methylation fidelity. Interestingly, accumulated data has in the last 2 years shown that TET2 is one of the most frequently mutated genes in various hematological cancers. We propose to investigate the molecular mechanisms by which TET2 regulates normal hematopoiesis, how its inactivation leads to hematopoietic malignancies and how the protein contributes to the regulation of DNA methylation patterns and transcription. Furthermore, we propose several experimental approaches for identifying proteins required for the recruitment of TET proteins to target genes and to analyze their role in the regulation of DNA methylation patterns and in cancer. Finally, we will investigate the potential functional role of 5-hmC and explore the potential mechanisms by which this modification could be erased.
We expect to provide new insights into the biology of DNA methylation, hydroxymethylation and contribute to unravel the roles of TET proteins in normal physiology and cancer."
Summary
"DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. In cancer increased aberrant DNA methylation is believed to work as a silencing mechanism for tumor suppressor genes such as INK4A, RB1 and MLH1. The high frequency of abnormal DNA methylation found in cancer might be due to the inactivation of a proofreading and/or fidelity system regulating the correct patterns of DNA methylation. Currently we have very limited knowledge about such mechanisms.
In this research proposal, we will focus on elucidating the biological function of a novel protein family, which catalyzes the conversion of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl cytosine (5-hmC). By catalyzing this reaction the TET proteins most likely work as DNA demethylases, and they might therefore have a role in regulating DNA methylation fidelity. Interestingly, accumulated data has in the last 2 years shown that TET2 is one of the most frequently mutated genes in various hematological cancers. We propose to investigate the molecular mechanisms by which TET2 regulates normal hematopoiesis, how its inactivation leads to hematopoietic malignancies and how the protein contributes to the regulation of DNA methylation patterns and transcription. Furthermore, we propose several experimental approaches for identifying proteins required for the recruitment of TET proteins to target genes and to analyze their role in the regulation of DNA methylation patterns and in cancer. Finally, we will investigate the potential functional role of 5-hmC and explore the potential mechanisms by which this modification could be erased.
We expect to provide new insights into the biology of DNA methylation, hydroxymethylation and contribute to unravel the roles of TET proteins in normal physiology and cancer."
Max ERC Funding
2 298 000 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym EIMS
Project "Early infectious, inflammatory and immune mechanisms in schizophrenia"
Researcher (PI) Preben Bo Mortensen
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS5, ERC-2011-ADG_20110310
Summary "The ambitious goal of this proposal is to identify causal mechanisms in schizophrenia, a devastating disease affecting about 1 percent of the population worldwide, and for which there is no current prevention or cure.
If my team and I are successful, we will discover etiological factors that can be targets for preventive interventions on the general population level and in high-risk groups, as well as inform the development of novel treatments.
I will use a truly unique population-based set of registers and biobanks, based upon a total national Danish birth cohort of more that 1.6 million individuals, and apply a novel combination of epidemiological design and methods and molecular biological techniques to the study of early risk factors for schizophrenia: I propose to combine cohort, nested case-control and case-sibling designs in studies of this total national birth cohort with detailed biological assessment of genetic and environmental risk factors operating during fetal life and around birth, in combination with detailed longitudinal information about the life course of cases, controls and their relatives.
Together with my team, I will for the first time in a human population empirically test a range of novel and specific hypotheses, tied together by a common theoretical framework of inflammatory and immune mechanisms interacting with individual genetic vulnerability during fetal life. Specifically the focus will be on infectious agents, markers of inflammation, effects of maternal auto-antibodies, and interactions with maternal vitamin D as well as genes involved in apoptosis and other relevant pathways. All findings will be tested in independent replication samples from the same population and further validated by comparison to healthy sibling controls. Because my studies are performed in a total population birth cohort, we will be able to make risk prediction suitable for the identification of targets for preventive strategies."
Summary
"The ambitious goal of this proposal is to identify causal mechanisms in schizophrenia, a devastating disease affecting about 1 percent of the population worldwide, and for which there is no current prevention or cure.
If my team and I are successful, we will discover etiological factors that can be targets for preventive interventions on the general population level and in high-risk groups, as well as inform the development of novel treatments.
I will use a truly unique population-based set of registers and biobanks, based upon a total national Danish birth cohort of more that 1.6 million individuals, and apply a novel combination of epidemiological design and methods and molecular biological techniques to the study of early risk factors for schizophrenia: I propose to combine cohort, nested case-control and case-sibling designs in studies of this total national birth cohort with detailed biological assessment of genetic and environmental risk factors operating during fetal life and around birth, in combination with detailed longitudinal information about the life course of cases, controls and their relatives.
Together with my team, I will for the first time in a human population empirically test a range of novel and specific hypotheses, tied together by a common theoretical framework of inflammatory and immune mechanisms interacting with individual genetic vulnerability during fetal life. Specifically the focus will be on infectious agents, markers of inflammation, effects of maternal auto-antibodies, and interactions with maternal vitamin D as well as genes involved in apoptosis and other relevant pathways. All findings will be tested in independent replication samples from the same population and further validated by comparison to healthy sibling controls. Because my studies are performed in a total population birth cohort, we will be able to make risk prediction suitable for the identification of targets for preventive strategies."
Max ERC Funding
2 471 736 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym ElectroThermo
Project New Paradigm in Electrolyte Thermodynamics
Researcher (PI) Georgios KONTOGEORGIS
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), PE8, ERC-2018-ADG
Summary The project’s overall target is to arrive at a fundamental understanding of electrolyte thermodynamics and thus enable the engineering of a new generation of useful, physically sound models for electrolyte solutions. These models should be general and applicable to a very wide range of conditions so that they can be potentially used for a wide range of applications.
Electrolyte solutions are present almost anywhere and find numerous applications in physical sciences including chemistry, geology, material science, medicine, biochemistry and physiology as well as in many engineering fields especially chemical & biochemical, electrical and petroleum engineering. In all these applications the thermodynamics plays a crucial role over wide ranges of temperature, pressure and composition. As the subject is important, a relatively large body of knowledge has been accumulated with lots of data and models. However, disappointingly the state-of-the art thermodynamic models used today in engineering practice are semi-empirical and require numerous experimental data. They lack generality and have not enhanced our understanding of electrolyte thermodynamics. Going beyond the current state of the art, we will create the scientific foundation for studying, at their extremes, both “primitive” and “non-primitive” approaches for electrolyte solutions and identify strengths and limitations. The project is based on the PI’s many years of experience in thermodynamics. The ambition is to make new advances to clarify major questions and misunderstandings in electrolyte thermodynamics, some remaining for over 100 years, which currently prevent real progress from being made, and create a new paradigm which will ultimately pave the way for the development of new engineering models for electrolyte solutions. This is a risky, ambitious and crucial task, but a successful completion will have significant benefits in many industrial sectors as well as in environmental studies and biotechnology.
Summary
The project’s overall target is to arrive at a fundamental understanding of electrolyte thermodynamics and thus enable the engineering of a new generation of useful, physically sound models for electrolyte solutions. These models should be general and applicable to a very wide range of conditions so that they can be potentially used for a wide range of applications.
Electrolyte solutions are present almost anywhere and find numerous applications in physical sciences including chemistry, geology, material science, medicine, biochemistry and physiology as well as in many engineering fields especially chemical & biochemical, electrical and petroleum engineering. In all these applications the thermodynamics plays a crucial role over wide ranges of temperature, pressure and composition. As the subject is important, a relatively large body of knowledge has been accumulated with lots of data and models. However, disappointingly the state-of-the art thermodynamic models used today in engineering practice are semi-empirical and require numerous experimental data. They lack generality and have not enhanced our understanding of electrolyte thermodynamics. Going beyond the current state of the art, we will create the scientific foundation for studying, at their extremes, both “primitive” and “non-primitive” approaches for electrolyte solutions and identify strengths and limitations. The project is based on the PI’s many years of experience in thermodynamics. The ambition is to make new advances to clarify major questions and misunderstandings in electrolyte thermodynamics, some remaining for over 100 years, which currently prevent real progress from being made, and create a new paradigm which will ultimately pave the way for the development of new engineering models for electrolyte solutions. This is a risky, ambitious and crucial task, but a successful completion will have significant benefits in many industrial sectors as well as in environmental studies and biotechnology.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym ENVISION
Project Novel mechanisms of early defense against virus infections
Researcher (PI) Soeren Riis PALUDAN
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS6, ERC-2017-ADG
Summary Virus-induced type I interferons (IFN) have classically been considered to constitute the first line of defense against virus infections However, recent work by us and others has identified early antiviral actions that occur independently of inducible type I and III IFN expression and sometimes even prior to IFN action (e.g. Iversen,...., Paludan. Nature Immunology, 2016; Paludan. Trends in Immunology, 2016). These discoveries challenge the current thinking in the field that IFNs constitute the first line of defense. Hence, there is an urgent need for more detailed understanding of the immediate antiviral defense mechanisms. Most importantly, we remain to identify key players in IFN-independent antiviral responses, we completely lack insight into the mechanisms that govern these responses, and we also lack information on the importance of this layer of defense in mice and humans. In accord with this, my proposal follows four aims: (i) Identification of mechanisms of virus detection at epithelial surfaces, (ii) elucidation of the role of tonic IFN signaling in antiviral defense, (iii) identification and characterization of novel restriction factors, and (iv) deciphering the mechanisms that govern induction of the first wave of IFNs at epithelial surfaces. In addition, I will also explore the interactions between the early antiviral actions. To achieve the goals, I will combine unbiased genome-wide screens with hypothesis-driven approaches, and will integrate molecular biology/genetics/biochemistry with advanced cell culture systems, animal science and analysis of patient material. Strong preliminary data have been generated for all four aims, and world-leading collaborations are in place, hence minimizing the risks, and allowing fast progress. Our findings will (i) change the thinking in innate immunology by uncovering a novel layer of antiviral defense and (ii) provide new avenues for therapeutic modulation of immune responses.
Summary
Virus-induced type I interferons (IFN) have classically been considered to constitute the first line of defense against virus infections However, recent work by us and others has identified early antiviral actions that occur independently of inducible type I and III IFN expression and sometimes even prior to IFN action (e.g. Iversen,...., Paludan. Nature Immunology, 2016; Paludan. Trends in Immunology, 2016). These discoveries challenge the current thinking in the field that IFNs constitute the first line of defense. Hence, there is an urgent need for more detailed understanding of the immediate antiviral defense mechanisms. Most importantly, we remain to identify key players in IFN-independent antiviral responses, we completely lack insight into the mechanisms that govern these responses, and we also lack information on the importance of this layer of defense in mice and humans. In accord with this, my proposal follows four aims: (i) Identification of mechanisms of virus detection at epithelial surfaces, (ii) elucidation of the role of tonic IFN signaling in antiviral defense, (iii) identification and characterization of novel restriction factors, and (iv) deciphering the mechanisms that govern induction of the first wave of IFNs at epithelial surfaces. In addition, I will also explore the interactions between the early antiviral actions. To achieve the goals, I will combine unbiased genome-wide screens with hypothesis-driven approaches, and will integrate molecular biology/genetics/biochemistry with advanced cell culture systems, animal science and analysis of patient material. Strong preliminary data have been generated for all four aims, and world-leading collaborations are in place, hence minimizing the risks, and allowing fast progress. Our findings will (i) change the thinking in innate immunology by uncovering a novel layer of antiviral defense and (ii) provide new avenues for therapeutic modulation of immune responses.
Max ERC Funding
2 480 338 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym EURECA
Project Eukaryotic Regulated RNA Catabolism
Researcher (PI) Torben Heick Jensen
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary "Regulation and fidelity of gene expression is fundamental to the differentiation and maintenance of all living organisms. While historically attention has been focused on the process of transcriptional activation, we predict that RNA turnover pathways are equally important for gene expression regulation. This has been implied for selected protein-coding RNAs (mRNAs) but is virtually unexplored for non-protein-coding RNAs (ncRNAs).
The intention of the EURECA proposal is to establish cutting-edge research to characterize mammalian nuclear RNA turnover; its factor utility, substrate specificity and regulatory capacity. We foresee that RNA turnover is at the core of gene expression regulation - forming intricate connection to RNA productive systems – thus, being centrally placed to determine RNA fate. EURECA seeks to dramatically improve our understanding of cellular decision processes impacting RNA levels and to establish models for how regulated RNA turnover helps control key biological processes.
The realization that the number of ncRNA producing genes was previously grossly underestimated foretells that ncRNA regulation will impact on most aspects of cell biology. Consistently, aberrant ncRNA levels correlate with human disease phenotypes and RNA turnover complexes are linked to disease biology. Still, solid models for how ncRNA turnover regulate biological processes in higher eukaryotes are not available. Moreover, which ncRNAs retain function and which are merely transcriptional by-products remain a major challenge to sort out. The circumstances and kinetics of ncRNA turnover are therefore important to delineate as these will ultimately relate to the likelihood of molecular function. A fundamental challenge here is to also discern which protein complements of non-coding ribonucleoprotein particles (ncRNPs) are (in)compatible with function. Balancing single transcript/factor analysis with high-throughput methodology, EURECA will address these questions."
Summary
"Regulation and fidelity of gene expression is fundamental to the differentiation and maintenance of all living organisms. While historically attention has been focused on the process of transcriptional activation, we predict that RNA turnover pathways are equally important for gene expression regulation. This has been implied for selected protein-coding RNAs (mRNAs) but is virtually unexplored for non-protein-coding RNAs (ncRNAs).
The intention of the EURECA proposal is to establish cutting-edge research to characterize mammalian nuclear RNA turnover; its factor utility, substrate specificity and regulatory capacity. We foresee that RNA turnover is at the core of gene expression regulation - forming intricate connection to RNA productive systems – thus, being centrally placed to determine RNA fate. EURECA seeks to dramatically improve our understanding of cellular decision processes impacting RNA levels and to establish models for how regulated RNA turnover helps control key biological processes.
The realization that the number of ncRNA producing genes was previously grossly underestimated foretells that ncRNA regulation will impact on most aspects of cell biology. Consistently, aberrant ncRNA levels correlate with human disease phenotypes and RNA turnover complexes are linked to disease biology. Still, solid models for how ncRNA turnover regulate biological processes in higher eukaryotes are not available. Moreover, which ncRNAs retain function and which are merely transcriptional by-products remain a major challenge to sort out. The circumstances and kinetics of ncRNA turnover are therefore important to delineate as these will ultimately relate to the likelihood of molecular function. A fundamental challenge here is to also discern which protein complements of non-coding ribonucleoprotein particles (ncRNPs) are (in)compatible with function. Balancing single transcript/factor analysis with high-throughput methodology, EURECA will address these questions."
Max ERC Funding
2 497 960 €
Duration
Start date: 2014-04-01, End date: 2019-03-31