Project acronym AQUAMS
Project Analysis of quantum many-body systems
Researcher (PI) Robert Seiringer
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Advanced Grant (AdG), PE1, ERC-2015-AdG
Summary The main focus of this project is the mathematical analysis of many-body quantum systems, in particular, interacting quantum gases at low temperature. The recent experimental advances in studying ultra-cold atomic gases have led to renewed interest in these systems. They display a rich variety of quantum phenomena, including, e.g., Bose–Einstein condensation and superfluidity, which makes them interesting both from a physical and a mathematical point of view.
The goal of this project is the development of new mathematical tools for dealing with complex problems in many-body quantum systems. New mathematical methods lead to different points of view and thus increase our understanding of physical systems. From the point of view of mathematical physics, there has been significant progress in the last few years in understanding the interesting phenomena occurring in quantum gases, and the goal of this project is to investigate some of the key issues that remain unsolved. Due to the complex nature of the problems, new mathematical ideas
and methods will have to be developed for this purpose. One of the main question addressed in this proposal is the validity of the Bogoliubov approximation for the excitation spectrum of many-body quantum systems. While its accuracy has been
successfully shown for the ground state energy of various models, its predictions concerning the excitation spectrum have so far only been verified in the Hartree limit, an extreme form of a mean-field limit where the interaction among the particles is very weak and ranges over the whole system. The central part of this project is concerned with the extension of these results to the case of short-range interactions. Apart from being mathematically much more challenging, the short-range case is the
one most relevant for the description of actual physical systems. Hence progress along these lines can be expected to yield valuable insight into the complex behavior of these many-body quantum systems.
Summary
The main focus of this project is the mathematical analysis of many-body quantum systems, in particular, interacting quantum gases at low temperature. The recent experimental advances in studying ultra-cold atomic gases have led to renewed interest in these systems. They display a rich variety of quantum phenomena, including, e.g., Bose–Einstein condensation and superfluidity, which makes them interesting both from a physical and a mathematical point of view.
The goal of this project is the development of new mathematical tools for dealing with complex problems in many-body quantum systems. New mathematical methods lead to different points of view and thus increase our understanding of physical systems. From the point of view of mathematical physics, there has been significant progress in the last few years in understanding the interesting phenomena occurring in quantum gases, and the goal of this project is to investigate some of the key issues that remain unsolved. Due to the complex nature of the problems, new mathematical ideas
and methods will have to be developed for this purpose. One of the main question addressed in this proposal is the validity of the Bogoliubov approximation for the excitation spectrum of many-body quantum systems. While its accuracy has been
successfully shown for the ground state energy of various models, its predictions concerning the excitation spectrum have so far only been verified in the Hartree limit, an extreme form of a mean-field limit where the interaction among the particles is very weak and ranges over the whole system. The central part of this project is concerned with the extension of these results to the case of short-range interactions. Apart from being mathematically much more challenging, the short-range case is the
one most relevant for the description of actual physical systems. Hence progress along these lines can be expected to yield valuable insight into the complex behavior of these many-body quantum systems.
Max ERC Funding
1 497 755 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym ARCHADAPT
Project The architecture of adaptation to novel environments
Researcher (PI) Christian Werner Schlötterer
Host Institution (HI) VETERINAERMEDIZINISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary One of the central goals in evolutionary biology is to understand adaptation. Experimental evolution represents a highly promising approach to study adaptation. In this proposal, a freshly collected D. simulans population will be allowed to adapt to laboratory conditions under two different temperature regimes: hot (27°C) and cold (18°C). The trajectories of adaptation to these novel environments will be monitored on three levels: 1) genomic, 2) transcriptomic, 3) phenotypic. Allele frequency changes during the experiment will be measured by next generation sequencing of DNA pools (Pool-Seq) to identify targets of selection. RNA-Seq will be used to trace adaptation on the transcriptomic level during three developmental stages. Eight different phenotypes will be scored to measure the phenotypic consequences of adaptation. Combining the adaptive trajectories on these three levels will provide a picture of adaptation for a multicellular, outcrossing organism that is far more detailed than any previous results.
Furthermore, the proposal addresses the question of how adaptation on these three levels is reversible if the environment reverts to ancestral conditions. The third aspect of adaptation covered in the proposal is the question of repeatability of adaptation. Again, this question will be addressed on the three levels: genomic, transcriptomic and phenotypic. Using replicates with different degrees of genetic similarity, as well as closely related species, we will test how similar the adaptive response is.
This large-scale study will provide new insights into the importance of standing variation for the adaptation to novel environments. Hence, apart from providing significant evolutionary insights on the trajectories of adaptation, the results we will obtain will have important implications for conservation genetics and commercial breeding.
Summary
One of the central goals in evolutionary biology is to understand adaptation. Experimental evolution represents a highly promising approach to study adaptation. In this proposal, a freshly collected D. simulans population will be allowed to adapt to laboratory conditions under two different temperature regimes: hot (27°C) and cold (18°C). The trajectories of adaptation to these novel environments will be monitored on three levels: 1) genomic, 2) transcriptomic, 3) phenotypic. Allele frequency changes during the experiment will be measured by next generation sequencing of DNA pools (Pool-Seq) to identify targets of selection. RNA-Seq will be used to trace adaptation on the transcriptomic level during three developmental stages. Eight different phenotypes will be scored to measure the phenotypic consequences of adaptation. Combining the adaptive trajectories on these three levels will provide a picture of adaptation for a multicellular, outcrossing organism that is far more detailed than any previous results.
Furthermore, the proposal addresses the question of how adaptation on these three levels is reversible if the environment reverts to ancestral conditions. The third aspect of adaptation covered in the proposal is the question of repeatability of adaptation. Again, this question will be addressed on the three levels: genomic, transcriptomic and phenotypic. Using replicates with different degrees of genetic similarity, as well as closely related species, we will test how similar the adaptive response is.
This large-scale study will provide new insights into the importance of standing variation for the adaptation to novel environments. Hence, apart from providing significant evolutionary insights on the trajectories of adaptation, the results we will obtain will have important implications for conservation genetics and commercial breeding.
Max ERC Funding
2 452 084 €
Duration
Start date: 2012-07-01, End date: 2018-06-30
Project acronym ArcheoDyn
Project Globular clusters as living fossils of the past of galaxies
Researcher (PI) Petrus VAN DE VEN
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary Globular clusters (GCs) are enigmatic objects that hide a wealth of information. They are the living fossils of the history of their native galaxies and the record keepers of the violent events that made them change their domicile. This proposal aims to mine GCs as living fossils of galaxy evolution to address fundamental questions in astrophysics: (1) Do satellite galaxies merge as predicted by the hierarchical build-up of galaxies? (2) Which are the seeds of supermassive black holes in the centres of galaxies? (3) How did star formation originate in the earliest phases of galaxy formation? To answer these questions, novel population-dependent dynamical modelling techniques are required, whose development the PI has led over the past years. This uniquely positions him to take full advantage of the emerging wealth of chemical and kinematical data on GCs.
Following the tidal disruption of satellite galaxies, their dense GCs, and maybe even their nuclei, are left as the most visible remnants in the main galaxy. The hierarchical build-up of their new host galaxy can thus be unearthed by recovering the GCs’ orbits. However, currently it is unclear which of the GCs are accretion survivors. Actually, the existence of a central intermediate mass black hole (IMBH) or of multiple stellar populations in GCs might tell which ones are accreted. At the same time, detection of IMBHs is important as they are predicted seeds for supermassive black holes in galaxies; while the multiple stellar populations in GCs are vital witnesses to the extreme modes of star formation in the early Universe. However, for every putative dynamical IMBH detection so far there is a corresponding non-detection; also the origin of multiple stellar populations in GCs still lacks any uncontrived explanation. The synergy of novel techniques and exquisite data proposed here promises a breakthrough in this emerging field of dynamical archeology with GCs as living fossils of the past of galaxies.
Summary
Globular clusters (GCs) are enigmatic objects that hide a wealth of information. They are the living fossils of the history of their native galaxies and the record keepers of the violent events that made them change their domicile. This proposal aims to mine GCs as living fossils of galaxy evolution to address fundamental questions in astrophysics: (1) Do satellite galaxies merge as predicted by the hierarchical build-up of galaxies? (2) Which are the seeds of supermassive black holes in the centres of galaxies? (3) How did star formation originate in the earliest phases of galaxy formation? To answer these questions, novel population-dependent dynamical modelling techniques are required, whose development the PI has led over the past years. This uniquely positions him to take full advantage of the emerging wealth of chemical and kinematical data on GCs.
Following the tidal disruption of satellite galaxies, their dense GCs, and maybe even their nuclei, are left as the most visible remnants in the main galaxy. The hierarchical build-up of their new host galaxy can thus be unearthed by recovering the GCs’ orbits. However, currently it is unclear which of the GCs are accretion survivors. Actually, the existence of a central intermediate mass black hole (IMBH) or of multiple stellar populations in GCs might tell which ones are accreted. At the same time, detection of IMBHs is important as they are predicted seeds for supermassive black holes in galaxies; while the multiple stellar populations in GCs are vital witnesses to the extreme modes of star formation in the early Universe. However, for every putative dynamical IMBH detection so far there is a corresponding non-detection; also the origin of multiple stellar populations in GCs still lacks any uncontrived explanation. The synergy of novel techniques and exquisite data proposed here promises a breakthrough in this emerging field of dynamical archeology with GCs as living fossils of the past of galaxies.
Max ERC Funding
1 999 250 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ARIPHYHIMO
Project Arithmetic and physics of Higgs moduli spaces
Researcher (PI) Tamas Hausel
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary The proposal studies problems concerning the geometry and topology of moduli spaces of Higgs bundles on a Riemann surface motivated by parallel considerations in number theory and mathematical physics. In this way the proposal bridges various duality theories in string theory with the Langlands program in number theory.
The heart of the proposal is a circle of precise conjectures relating to the topology of the moduli space of Higgs bundles. The formulation and motivations of the conjectures make direct contact with the Langlands program in number theory, various duality conjectures in string theory, algebraic combinatorics, knot theory and low dimensional topology and representation theory of quivers, finite groups and algebras of Lie type and Cherednik algebras.
Summary
The proposal studies problems concerning the geometry and topology of moduli spaces of Higgs bundles on a Riemann surface motivated by parallel considerations in number theory and mathematical physics. In this way the proposal bridges various duality theories in string theory with the Langlands program in number theory.
The heart of the proposal is a circle of precise conjectures relating to the topology of the moduli space of Higgs bundles. The formulation and motivations of the conjectures make direct contact with the Langlands program in number theory, various duality conjectures in string theory, algebraic combinatorics, knot theory and low dimensional topology and representation theory of quivers, finite groups and algebras of Lie type and Cherednik algebras.
Max ERC Funding
1 304 945 €
Duration
Start date: 2013-04-01, End date: 2018-08-31
Project acronym ArtHep
Project Hepatocytes-Like Microreactors for Liver Tissue Engineering
Researcher (PI) Brigitte STADLER
Host Institution (HI) AARHUS UNIVERSITET
Call Details Consolidator Grant (CoG), LS9, ERC-2018-COG
Summary The global epidemics of obesity and diabetes type 2 lead to higher abundancy of medical conditions like non-alcoholic fatty liver disease causing an increase in liver failure and demand for liver transplants. The shortage of donor organs and the insufficient success in tissue engineering to ex vivo grow complex organs like the liver is a global medical challenge.
ArtHep targets the assembly of hepatic-like tissue, consisting of biological and synthetic entities, mimicking the core structure elements and key functions of the liver. ArtHep comprises an entirely new concept in liver regeneration with multi-angled core impact: i) cell mimics are expected to reduce the pressure to obtain donor cells, ii) the integrated biocatalytic subunits are destined to take over tasks of the damaged liver slowing down the progress of liver damage, and iii) the matching micro-environment in the bioprinted tissue is anticipated to facilitate the connection between the transplant and the liver.
Success criteria of ArtHep include engineering enzyme-mimics, which can perform core biocatalytic conversions similar to the liver, the assembly of biocatalytic active subunits and their encapsulation in cell-like carriers (microreactors), which have mechanical properties that match the liver tissue and that have a camouflaging coating to mimic the surface cues of liver tissue-relevant cells. Finally, matured bioprinted liver-lobules consisting of microreactors and live cells need to connect to liver tissue when transplanted into rats.
I am convinced that the ground-breaking research in ArtHep will contribute to the excellence of science in Europe while providing the game-changing foundation to counteract the ever increasing donor liver shortage. Further, consolidating my scientific efforts and moving them forward into unexplored dimensions in biomimicry for medical purposes, is a unique opportunity to advance my career.
Summary
The global epidemics of obesity and diabetes type 2 lead to higher abundancy of medical conditions like non-alcoholic fatty liver disease causing an increase in liver failure and demand for liver transplants. The shortage of donor organs and the insufficient success in tissue engineering to ex vivo grow complex organs like the liver is a global medical challenge.
ArtHep targets the assembly of hepatic-like tissue, consisting of biological and synthetic entities, mimicking the core structure elements and key functions of the liver. ArtHep comprises an entirely new concept in liver regeneration with multi-angled core impact: i) cell mimics are expected to reduce the pressure to obtain donor cells, ii) the integrated biocatalytic subunits are destined to take over tasks of the damaged liver slowing down the progress of liver damage, and iii) the matching micro-environment in the bioprinted tissue is anticipated to facilitate the connection between the transplant and the liver.
Success criteria of ArtHep include engineering enzyme-mimics, which can perform core biocatalytic conversions similar to the liver, the assembly of biocatalytic active subunits and their encapsulation in cell-like carriers (microreactors), which have mechanical properties that match the liver tissue and that have a camouflaging coating to mimic the surface cues of liver tissue-relevant cells. Finally, matured bioprinted liver-lobules consisting of microreactors and live cells need to connect to liver tissue when transplanted into rats.
I am convinced that the ground-breaking research in ArtHep will contribute to the excellence of science in Europe while providing the game-changing foundation to counteract the ever increasing donor liver shortage. Further, consolidating my scientific efforts and moving them forward into unexplored dimensions in biomimicry for medical purposes, is a unique opportunity to advance my career.
Max ERC Funding
1 992 289 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym ASTERISK
Project ASTERoseismic Investigations with SONG and Kepler
Researcher (PI) Jørgen Christensen-Dalsgaard
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), PE9, ERC-2010-AdG_20100224
Summary The project aims at a breakthrough in our understanding of stellar evolution, by combining advanced observations of stellar oscillations with state-of-the-art modelling of stars. This will largely be based on very extensive and precise data on stellar oscillations from the NASA Kepler mission launched in March 2009, but additional high-quality data will also be included. In particular, my group is developing the global SONG network for observations of stellar oscillations. These observational efforts will be supplemented by sophisticated modelling of stellar evolution, and by the development of asteroseismic tools to use the observations to probe stellar interiors. This will lead to a far more reliable determination of stellar ages, and hence ages of other astrophysical objects; it will compare the properties of the Sun with other stars and hence provide an understanding of the life history of the Sun; it will investigate the physical processes that control stellar properties, both at the level of the thermodynamical properties of stellar plasmas and the hydrodynamical instabilities that play a central role in stellar evolution; and it will characterize central stars in extra-solar planetary systems, determining the size and age of the star and hence constrain the evolution of the planetary systems. The Kepler data will be analysed in a large international collaboration coordinated by our group. The SONG network, which will become partially operational during the present project, will yield even detailed information about the conditions in the interior of stars, allowing tests of subtle but central aspects of the physics of stellar interiors. The projects involve the organization of a central data archive for asteroseismic data, at the Royal Library, Copenhagen.
Summary
The project aims at a breakthrough in our understanding of stellar evolution, by combining advanced observations of stellar oscillations with state-of-the-art modelling of stars. This will largely be based on very extensive and precise data on stellar oscillations from the NASA Kepler mission launched in March 2009, but additional high-quality data will also be included. In particular, my group is developing the global SONG network for observations of stellar oscillations. These observational efforts will be supplemented by sophisticated modelling of stellar evolution, and by the development of asteroseismic tools to use the observations to probe stellar interiors. This will lead to a far more reliable determination of stellar ages, and hence ages of other astrophysical objects; it will compare the properties of the Sun with other stars and hence provide an understanding of the life history of the Sun; it will investigate the physical processes that control stellar properties, both at the level of the thermodynamical properties of stellar plasmas and the hydrodynamical instabilities that play a central role in stellar evolution; and it will characterize central stars in extra-solar planetary systems, determining the size and age of the star and hence constrain the evolution of the planetary systems. The Kepler data will be analysed in a large international collaboration coordinated by our group. The SONG network, which will become partially operational during the present project, will yield even detailed information about the conditions in the interior of stars, allowing tests of subtle but central aspects of the physics of stellar interiors. The projects involve the organization of a central data archive for asteroseismic data, at the Royal Library, Copenhagen.
Max ERC Funding
2 498 149 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym ATMEN
Project Atomic precision materials engineering
Researcher (PI) Toma SUSI
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), PE5, ERC-2017-STG
Summary Despite more than fifty years of scientific progress since Richard Feynman's 1959 vision for nanotechnology, there is only one way to manipulate individual atoms in materials: scanning tunneling microscopy. Since the late 1980s, its atomically sharp tip has been used to move atoms over clean metal surfaces held at cryogenic temperatures. Scanning transmission electron microscopy, on the other hand, has been able to resolve atoms only more recently by focusing the electron beam with sub-atomic precision. This is especially useful in the two-dimensional form of hexagonally bonded carbon called graphene, which has superb electronic and mechanical properties. Several ways to further engineer those have been proposed, including by doping the structure with substitutional heteroatoms such as boron, nitrogen, phosphorus and silicon. My recent discovery that the scattering of the energetic imaging electrons can cause a silicon impurity to move through the graphene lattice has revealed a potential for atomically precise manipulation using the Ångström-sized electron probe. To develop this into a practical technique, improvements in the description of beam-induced displacements, advances in heteroatom implantation, and a concerted effort towards the automation of manipulations are required. My project tackles these in a multidisciplinary effort combining innovative computational techniques with pioneering experiments in an instrument where a low-energy ion implantation chamber is directly connected to an advanced electron microscope. To demonstrate the power of the method, I will prototype an atomic memory with an unprecedented memory density, and create heteroatom quantum corrals optimized for their plasmonic properties. The capability for atom-scale engineering of covalent materials opens a new vista for nanotechnology, pushing back the boundaries of the possible and allowing a plethora of materials science questions to be studied at the ultimate level of control.
Summary
Despite more than fifty years of scientific progress since Richard Feynman's 1959 vision for nanotechnology, there is only one way to manipulate individual atoms in materials: scanning tunneling microscopy. Since the late 1980s, its atomically sharp tip has been used to move atoms over clean metal surfaces held at cryogenic temperatures. Scanning transmission electron microscopy, on the other hand, has been able to resolve atoms only more recently by focusing the electron beam with sub-atomic precision. This is especially useful in the two-dimensional form of hexagonally bonded carbon called graphene, which has superb electronic and mechanical properties. Several ways to further engineer those have been proposed, including by doping the structure with substitutional heteroatoms such as boron, nitrogen, phosphorus and silicon. My recent discovery that the scattering of the energetic imaging electrons can cause a silicon impurity to move through the graphene lattice has revealed a potential for atomically precise manipulation using the Ångström-sized electron probe. To develop this into a practical technique, improvements in the description of beam-induced displacements, advances in heteroatom implantation, and a concerted effort towards the automation of manipulations are required. My project tackles these in a multidisciplinary effort combining innovative computational techniques with pioneering experiments in an instrument where a low-energy ion implantation chamber is directly connected to an advanced electron microscope. To demonstrate the power of the method, I will prototype an atomic memory with an unprecedented memory density, and create heteroatom quantum corrals optimized for their plasmonic properties. The capability for atom-scale engineering of covalent materials opens a new vista for nanotechnology, pushing back the boundaries of the possible and allowing a plethora of materials science questions to be studied at the ultimate level of control.
Max ERC Funding
1 497 202 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym ATOMICAR
Project ATOMic Insight Cavity Array Reactor
Researcher (PI) Peter Christian Kjærgaard VESBORG
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis:
Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Summary
The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis:
Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Max ERC Funding
1 496 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym AUTOMOLD
Project Automatized Design of Injection Molds
Researcher (PI) Bernd Bickel
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary The goal of this project is to develop the proof of concept for a novel injection-molding design workflow, making mold design accessible to a new, semi-professional user base of designers, engineers, and artists. It will provide a more more cost-efficient way of bringing lower-volume and customized products to the market. Recently, the related Materializable ERC Starting Grant has lead to the invention of novel computational tools for mold design, where the decomposition of a general 3D shape into moldable parts - together with the generation of the corresponding mold geometry - is performed fully automatically. The three main advantages of our method are (i) a drastic reduction of the time requirements of mold design (from hours/days down to minutes) and (ii) the discovery of highly efficient shape decompositions with curved part boundaries, which are very hard to design manually due to their counterintuitive nature. Furthermore, our method allows (iii) a non-expert to refine the aesthetics of the decomposition without being aware of the specifics of molding; these are enforced in the background. In order to evaluate the industrial and commercial potential of this invention, we propose the development of a software prototype for automatized mold design.
Summary
The goal of this project is to develop the proof of concept for a novel injection-molding design workflow, making mold design accessible to a new, semi-professional user base of designers, engineers, and artists. It will provide a more more cost-efficient way of bringing lower-volume and customized products to the market. Recently, the related Materializable ERC Starting Grant has lead to the invention of novel computational tools for mold design, where the decomposition of a general 3D shape into moldable parts - together with the generation of the corresponding mold geometry - is performed fully automatically. The three main advantages of our method are (i) a drastic reduction of the time requirements of mold design (from hours/days down to minutes) and (ii) the discovery of highly efficient shape decompositions with curved part boundaries, which are very hard to design manually due to their counterintuitive nature. Furthermore, our method allows (iii) a non-expert to refine the aesthetics of the decomposition without being aware of the specifics of molding; these are enforced in the background. In order to evaluate the industrial and commercial potential of this invention, we propose the development of a software prototype for automatized mold design.
Max ERC Funding
149 829 €
Duration
Start date: 2019-06-01, End date: 2020-11-30
Project acronym AutoRecon
Project Molecular mechanisms of autophagosome formation during selective autophagy
Researcher (PI) Sascha Martens
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), LS3, ERC-2014-CoG
Summary I propose to study how eukaryotic cells generate autophagosomes, organelles bounded by a double membrane. These are formed during autophagy and mediate the degradation of cytoplasmic substances within the lysosomal compartment. Autophagy thereby protects the organism from pathological conditions such as neurodegeneration, cancer and infections. Many core factors required for autophagosome formation have been identified but the order in which they act and their mode of action is still unclear. We will use a combination of biochemical and cell biological approaches to elucidate the choreography and mechanism of these core factors. In particular, we will focus on selective autophagy and determine how the autophagic machinery generates an autophagosome that selectively contains the cargo.
To this end we will focus on the cytoplasm-to-vacuole-targeting pathway in S. cerevisiae that mediates the constitutive delivery of the prApe1 enzyme into the vacuole. We will use cargo mimetics or prApe1 complexes in combination with purified autophagy proteins and vesicles to reconstitute the process and so determine which factors are both necessary and sufficient for autophagosome formation, as well as elucidating their mechanism of action.
In parallel we will study selective autophagosome formation in human cells. This will reveal common principles and special adaptations. In particular, we will use cell lysates from genome-edited cells in combination with purified autophagy proteins to reconstitute selective autophagosome formation around ubiquitin-positive cargo material. The insights and hypotheses obtained from these reconstituted systems will be validated using cell biological approaches.
Taken together, our experiments will allow us to delineate the major steps of autophagosome formation during selective autophagy. Our results will yield detailed insights into how cells form and shape organelles in a de novo manner, which is major question in cell- and developmental biology.
Summary
I propose to study how eukaryotic cells generate autophagosomes, organelles bounded by a double membrane. These are formed during autophagy and mediate the degradation of cytoplasmic substances within the lysosomal compartment. Autophagy thereby protects the organism from pathological conditions such as neurodegeneration, cancer and infections. Many core factors required for autophagosome formation have been identified but the order in which they act and their mode of action is still unclear. We will use a combination of biochemical and cell biological approaches to elucidate the choreography and mechanism of these core factors. In particular, we will focus on selective autophagy and determine how the autophagic machinery generates an autophagosome that selectively contains the cargo.
To this end we will focus on the cytoplasm-to-vacuole-targeting pathway in S. cerevisiae that mediates the constitutive delivery of the prApe1 enzyme into the vacuole. We will use cargo mimetics or prApe1 complexes in combination with purified autophagy proteins and vesicles to reconstitute the process and so determine which factors are both necessary and sufficient for autophagosome formation, as well as elucidating their mechanism of action.
In parallel we will study selective autophagosome formation in human cells. This will reveal common principles and special adaptations. In particular, we will use cell lysates from genome-edited cells in combination with purified autophagy proteins to reconstitute selective autophagosome formation around ubiquitin-positive cargo material. The insights and hypotheses obtained from these reconstituted systems will be validated using cell biological approaches.
Taken together, our experiments will allow us to delineate the major steps of autophagosome formation during selective autophagy. Our results will yield detailed insights into how cells form and shape organelles in a de novo manner, which is major question in cell- and developmental biology.
Max ERC Funding
1 999 640 €
Duration
Start date: 2016-03-01, End date: 2021-02-28