Project acronym COMPASS
Project Colloids with complex interactions: from model atoms to colloidal recognition and bio-inspired self assembly
Researcher (PI) Peter Schurtenberger
Host Institution (HI) LUNDS UNIVERSITET
Call Details Advanced Grant (AdG), PE3, ERC-2013-ADG
Summary Self-assembly is the key construction principle that nature uses so successfully to fabricate its molecular machinery and highly elaborate structures. In this project we will follow nature’s strategies and make a concerted experimental and theoretical effort to study, understand and control self-assembly for a new generation of colloidal building blocks. Starting point will be recent advances in colloid synthesis strategies that have led to a spectacular array of colloids of different shapes, compositions, patterns and functionalities. These allow us to investigate the influence of anisotropy in shape and interactions on aggregation and self-assembly in colloidal suspensions and mixtures. Using responsive particles we will implement colloidal lock-and-key mechanisms and then assemble a library of “colloidal molecules” with well-defined and externally tunable binding sites using microfluidics-based and externally controlled fabrication and sorting principles. We will use them to explore the equilibrium phase behavior of particle systems interacting through a finite number of binding sites. In parallel, we will exploit them and investigate colloid self-assembly into well-defined nanostructures. Here we aim at achieving much more refined control than currently possible by implementing a protein-inspired approach to controlled self-assembly. We combine molecule-like colloidal building blocks that possess directional interactions and externally triggerable specific recognition sites with directed self-assembly where external fields not only facilitate assembly, but also allow fabricating novel structures. We will use the tunable combination of different contributions to the interaction potential between the colloidal building blocks and the ability to create chirality in the assembly to establish the requirements for the controlled formation of tubular shells and thus create a colloid-based minimal model of synthetic virus capsid proteins.
Summary
Self-assembly is the key construction principle that nature uses so successfully to fabricate its molecular machinery and highly elaborate structures. In this project we will follow nature’s strategies and make a concerted experimental and theoretical effort to study, understand and control self-assembly for a new generation of colloidal building blocks. Starting point will be recent advances in colloid synthesis strategies that have led to a spectacular array of colloids of different shapes, compositions, patterns and functionalities. These allow us to investigate the influence of anisotropy in shape and interactions on aggregation and self-assembly in colloidal suspensions and mixtures. Using responsive particles we will implement colloidal lock-and-key mechanisms and then assemble a library of “colloidal molecules” with well-defined and externally tunable binding sites using microfluidics-based and externally controlled fabrication and sorting principles. We will use them to explore the equilibrium phase behavior of particle systems interacting through a finite number of binding sites. In parallel, we will exploit them and investigate colloid self-assembly into well-defined nanostructures. Here we aim at achieving much more refined control than currently possible by implementing a protein-inspired approach to controlled self-assembly. We combine molecule-like colloidal building blocks that possess directional interactions and externally triggerable specific recognition sites with directed self-assembly where external fields not only facilitate assembly, but also allow fabricating novel structures. We will use the tunable combination of different contributions to the interaction potential between the colloidal building blocks and the ability to create chirality in the assembly to establish the requirements for the controlled formation of tubular shells and thus create a colloid-based minimal model of synthetic virus capsid proteins.
Max ERC Funding
2 498 040 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym INTEGRAL
Project Integrable Systems in Gauge and String Theory
Researcher (PI) Konstantin Zarembo
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary The project is aimed at uncovering new links between integrable systems, string theory and quantum field theory. The goal is to study non-perturbative phenomena in strongly-coupled field theories, and to understand relationship between gauge fields and strings at a deeper level.
Summary
The project is aimed at uncovering new links between integrable systems, string theory and quantum field theory. The goal is to study non-perturbative phenomena in strongly-coupled field theories, and to understand relationship between gauge fields and strings at a deeper level.
Max ERC Funding
1 693 692 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym MECCA
Project Meeting Challenges in Computer Architecture
Researcher (PI) Per Orvar Stenström
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Call Details Advanced Grant (AdG), PE6, ERC-2013-ADG
Summary "Computer technology has doubled computational performance every 24 months, over the past several decades. This performance growth rate has been an enabler for the dramatic innovation in information technology that now embraces our society. Before 2004, application developers could exploit this performance growth rate with no effort. However, since 2004 power consumption of computer chips exceeded the allowable limits and from that point and onwards, parallel computer architectures became the norm. Currently, parallelism is completely exposed to application developers and managing it is difficult and time-consuming. This has a serious impact on software productivity that may stall progress in information technology.
Technology forecasts predict that by 2020 there will be hundreds of processors on a computer chip. Apart from managing parallelism, keeping power consumption within allowable limits will remain a key roadblock for maintaining historical performance growth rates. Power efficiency must increase by an order of magnitude in the next ten years to not limit the growth rate. Finally, computer chips are also key components in embedded controllers, where stringent timing responses are mandatory. Delivering predictable and tight response times using parallel architectures is a challenging and unsolved problem.
MECCA takes a novel, interdisciplinary and unconventional approach to address three important challenges facing computer architecture – the three Ps: Parallelism, Power, and Predictability in a unified framework. Unlike earlier, predominantly disciplinary approaches, MECCA bridges layers in computing systems from the programming language/model, to the compiler, to the run-time/OS, down to the architecture layer. This opens up for exchanging information across layers to manage parallelism and architectural resources in a
transparent way to application developers to meet challenging performance, power, and predictability requirements for future computers."
Summary
"Computer technology has doubled computational performance every 24 months, over the past several decades. This performance growth rate has been an enabler for the dramatic innovation in information technology that now embraces our society. Before 2004, application developers could exploit this performance growth rate with no effort. However, since 2004 power consumption of computer chips exceeded the allowable limits and from that point and onwards, parallel computer architectures became the norm. Currently, parallelism is completely exposed to application developers and managing it is difficult and time-consuming. This has a serious impact on software productivity that may stall progress in information technology.
Technology forecasts predict that by 2020 there will be hundreds of processors on a computer chip. Apart from managing parallelism, keeping power consumption within allowable limits will remain a key roadblock for maintaining historical performance growth rates. Power efficiency must increase by an order of magnitude in the next ten years to not limit the growth rate. Finally, computer chips are also key components in embedded controllers, where stringent timing responses are mandatory. Delivering predictable and tight response times using parallel architectures is a challenging and unsolved problem.
MECCA takes a novel, interdisciplinary and unconventional approach to address three important challenges facing computer architecture – the three Ps: Parallelism, Power, and Predictability in a unified framework. Unlike earlier, predominantly disciplinary approaches, MECCA bridges layers in computing systems from the programming language/model, to the compiler, to the run-time/OS, down to the architecture layer. This opens up for exchanging information across layers to manage parallelism and architectural resources in a
transparent way to application developers to meet challenging performance, power, and predictability requirements for future computers."
Max ERC Funding
2 379 822 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym PALP
Project Physics of Atoms with Attosecond Light Pulses
Researcher (PI) Anne L'huillier Wahlström
Host Institution (HI) LUNDS UNIVERSITET
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary "The field of attosecond science is now entering the second decade of its existence, with good prospects for breakthroughs in a number of areas. We want to take the next step in this development: from mastering the generation and control of attosecond pulses to breaking new marks starting with the simplest systems, atoms. The aim of the present application is to advance the emerging new research field “Ultrafast Atomic Physics”, where one- or two-electron wave packets are created by absorption of attosecond pulse(s) and analyzed or controlled by another short pulse. Our project can be divided into three parts:
1. Interferometric measurements using tunable attosecond pulses
How long time does it take for an electron to escape its potential?
We will measure photoemission time delays for several atomic systems, using a tunable attosecond pulse source. This type of measurements will be extended to multiple ionization and excitation processes, using coincidence measurements to disentangle the different channels and infrared ionization for analysis.
2. XUV pump/XUV probe experiments using intense attosecond pulses
How long does it take for an atom to become an ion once a hole has been created?
Using intense attosecond pulses and the possibility to do XUV pump/ XUV probe experiments, we will study the transition between nonsequential double ionization, where the photons are absorbed simultaneously and all electrons emitted at the same time and sequential ionization where electrons are emitted one at a time.
3. ""Complete"" attosecond experiments using high-repetition rate attosecond pulses
We foresee a paradigm shift in attosecond science with the new high repetition rate systems based on optical parametric chirped pulse amplification which are coming to age. We want to combine coincidence measurement with angular detection, allowing us to characterize (two-particle) electronic wave packets both in time and in momentum and to study their quantum-mechanical properties."
Summary
"The field of attosecond science is now entering the second decade of its existence, with good prospects for breakthroughs in a number of areas. We want to take the next step in this development: from mastering the generation and control of attosecond pulses to breaking new marks starting with the simplest systems, atoms. The aim of the present application is to advance the emerging new research field “Ultrafast Atomic Physics”, where one- or two-electron wave packets are created by absorption of attosecond pulse(s) and analyzed or controlled by another short pulse. Our project can be divided into three parts:
1. Interferometric measurements using tunable attosecond pulses
How long time does it take for an electron to escape its potential?
We will measure photoemission time delays for several atomic systems, using a tunable attosecond pulse source. This type of measurements will be extended to multiple ionization and excitation processes, using coincidence measurements to disentangle the different channels and infrared ionization for analysis.
2. XUV pump/XUV probe experiments using intense attosecond pulses
How long does it take for an atom to become an ion once a hole has been created?
Using intense attosecond pulses and the possibility to do XUV pump/ XUV probe experiments, we will study the transition between nonsequential double ionization, where the photons are absorbed simultaneously and all electrons emitted at the same time and sequential ionization where electrons are emitted one at a time.
3. ""Complete"" attosecond experiments using high-repetition rate attosecond pulses
We foresee a paradigm shift in attosecond science with the new high repetition rate systems based on optical parametric chirped pulse amplification which are coming to age. We want to combine coincidence measurement with angular detection, allowing us to characterize (two-particle) electronic wave packets both in time and in momentum and to study their quantum-mechanical properties."
Max ERC Funding
2 047 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28