Project acronym WINDMIL
Project Smart Monitoring, Inspection and Life-Cycle Assessment of Wind Turbines
Researcher (PI) Eleni Chatzi
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE8, ERC-2015-STG
Summary The excessive energy consumption that Europe is faced with, calls for sustainable resource management and policy-making. Amongst renewable sources of the global energy pool, wind energy holds the lead. Nonetheless, wind turbine (WT) facilities are conjoined with a number of shortcomings relating to their short life-span and the lack of efficient management schemes. With a number of WTs currently reaching their design span, stakeholders and policy makers are convinced of the necessity for reliable life-cycle assessment methodologies. However, existing tools have not yet caught up with the maturity of the WT technology, leaving visual inspection and offline non-destructive evaluation methods as the norm.
This proposal aims to establish a smart framework for the monitoring, inspection and life-cycle assessment of WTs, able to guide WT operators in the management of these assets from cradle-to-grave. Our project is founded on a minimal intervention principle, coupling easily deployed and affordable sensor technology with state-of-the-art numerical modeling and data processing tools. An integrated approach is proposed comprising: (i) a new monitoring paradigm for WTs relying on fusion of structural response information, (ii) simulation of influential, yet little explored, factors affecting structural response, such as structure-foundation-soil interaction and fatigue (ii) a stochastic framework for detecting anomalies in both a short- (damage) and long-term (deterioration) scale.
Our end goal is to deliver a “protection-suit” for WTs comprising a hardware (sensor) solution and a modular readily implementable software package, titled ETH-WINDMIL. The suggested kit aims to completely redefine the status quo in current Supervisory Control And Data Acquisition systems. This pursuit is well founded on background work of the PI within the area of structural monitoring, with a focus in translating the value of information into quantifiable terms and engineering practice.
Summary
The excessive energy consumption that Europe is faced with, calls for sustainable resource management and policy-making. Amongst renewable sources of the global energy pool, wind energy holds the lead. Nonetheless, wind turbine (WT) facilities are conjoined with a number of shortcomings relating to their short life-span and the lack of efficient management schemes. With a number of WTs currently reaching their design span, stakeholders and policy makers are convinced of the necessity for reliable life-cycle assessment methodologies. However, existing tools have not yet caught up with the maturity of the WT technology, leaving visual inspection and offline non-destructive evaluation methods as the norm.
This proposal aims to establish a smart framework for the monitoring, inspection and life-cycle assessment of WTs, able to guide WT operators in the management of these assets from cradle-to-grave. Our project is founded on a minimal intervention principle, coupling easily deployed and affordable sensor technology with state-of-the-art numerical modeling and data processing tools. An integrated approach is proposed comprising: (i) a new monitoring paradigm for WTs relying on fusion of structural response information, (ii) simulation of influential, yet little explored, factors affecting structural response, such as structure-foundation-soil interaction and fatigue (ii) a stochastic framework for detecting anomalies in both a short- (damage) and long-term (deterioration) scale.
Our end goal is to deliver a “protection-suit” for WTs comprising a hardware (sensor) solution and a modular readily implementable software package, titled ETH-WINDMIL. The suggested kit aims to completely redefine the status quo in current Supervisory Control And Data Acquisition systems. This pursuit is well founded on background work of the PI within the area of structural monitoring, with a focus in translating the value of information into quantifiable terms and engineering practice.
Max ERC Funding
1 486 224 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym WINDMIL RT-DT
Project An autonomous Real-Time Decision Tree framework for monitoring and diagnostics on wind turbines
Researcher (PI) Eleni CHATZI
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Operation & Maintenance (O&M) costs may account for 30 % of the total cost of energy for offshore wind power. Alarmingly, only after a few years of installation, offshore wind turbines (WT) may need emergency repairs. They also feature an extremely short lifespan hindering investments to green energy, effectively designed to reduce CO2 emissions.
We have designed real-time monitoring and diagnostics platform in the context of operation and maintenance scheduling of WT components. Using this architecture, we can quantify the risk of future failure of a given component and trace back the root-cause of the failure. This is business-critical information for Energy Companies and Wind Farm Operators.
The platform consists of an autonomous software-hardware solution, implementing an Object Oriented Real-Time Decision Tree learning algorithm for smart monitoring and diagnostics of structural and mechanical WT components. The innovative concept lies in running WT telemetry data through a machine learning based decision tree classification algorithm in real-time for detecting faults, errors, damage patterns, anomalies and abnormal operation. We believe our innovation creates evident value and will raise great interest as decision-support tool for WT manufacturers, Wind Farm Operators, Service Companies and Insurers.
In this project, we will carry out pre-commercialisation actions to position ourselves in the market, provide unique selling proposition for future customers as well as raise interest among potential R&D collaborators and pilot customers. We will also establish technology proof of concept for the platform. For the first time, we are applying our design in difficult-to-access energy infrastructure installations and deploying it on a real-world prototype wind turbine. The project will be carried out with technical and commercialisation support from key players within the wind energy industry.
Summary
Operation & Maintenance (O&M) costs may account for 30 % of the total cost of energy for offshore wind power. Alarmingly, only after a few years of installation, offshore wind turbines (WT) may need emergency repairs. They also feature an extremely short lifespan hindering investments to green energy, effectively designed to reduce CO2 emissions.
We have designed real-time monitoring and diagnostics platform in the context of operation and maintenance scheduling of WT components. Using this architecture, we can quantify the risk of future failure of a given component and trace back the root-cause of the failure. This is business-critical information for Energy Companies and Wind Farm Operators.
The platform consists of an autonomous software-hardware solution, implementing an Object Oriented Real-Time Decision Tree learning algorithm for smart monitoring and diagnostics of structural and mechanical WT components. The innovative concept lies in running WT telemetry data through a machine learning based decision tree classification algorithm in real-time for detecting faults, errors, damage patterns, anomalies and abnormal operation. We believe our innovation creates evident value and will raise great interest as decision-support tool for WT manufacturers, Wind Farm Operators, Service Companies and Insurers.
In this project, we will carry out pre-commercialisation actions to position ourselves in the market, provide unique selling proposition for future customers as well as raise interest among potential R&D collaborators and pilot customers. We will also establish technology proof of concept for the platform. For the first time, we are applying our design in difficult-to-access energy infrastructure installations and deploying it on a real-world prototype wind turbine. The project will be carried out with technical and commercialisation support from key players within the wind energy industry.
Max ERC Funding
148 890 €
Duration
Start date: 2018-11-01, End date: 2020-04-30
Project acronym X-CITED!
Project Electronic transitions and bistability: states, switches, transitions and dynamics studied with high-resolution X-ray spectroscopy
Researcher (PI) György Albert Vankó
Host Institution (HI) MAGYAR TUDOMANYOS AKADEMIA WIGNER FIZIKAI KUTATOKOZPONT
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary We propose to study transition metal compounds of uncommon transport properties and excitation characteristics applying emerging high-resolution X-ray spectroscopy. The objective is to determine the microscopic origin of the unconventional behaviour of systems with strong electron correlation through systematic investigations, as well as to reveal bistability conditions and excitation characteristics of switchable molecular systems. The main techniques involved are synchrotron radiation (SR)-based spectroscopies, which can explore the fine details of the electronic structure. Besides using existing end stations of SR facilities, we plan to build a portable spectrometer that can be advantageously used both in a laboratory (e.g., with a radioactive source) and at specially dedicated beamlines of SR facilities, in order to benefit from their specializations in extreme conditions and advanced sample environments, in particular unconventional experiments. This spectrometer should also be able to work in a time-resolved mode so that it could address the dynamics of electronic excitations on the attosecond to nanosecond time scale. The suggested work is expected to push high-resolution X-ray spectroscopies toward maturity, which should open up new horizons in electronic structure and dynamics studies of condensed matter research.
Summary
We propose to study transition metal compounds of uncommon transport properties and excitation characteristics applying emerging high-resolution X-ray spectroscopy. The objective is to determine the microscopic origin of the unconventional behaviour of systems with strong electron correlation through systematic investigations, as well as to reveal bistability conditions and excitation characteristics of switchable molecular systems. The main techniques involved are synchrotron radiation (SR)-based spectroscopies, which can explore the fine details of the electronic structure. Besides using existing end stations of SR facilities, we plan to build a portable spectrometer that can be advantageously used both in a laboratory (e.g., with a radioactive source) and at specially dedicated beamlines of SR facilities, in order to benefit from their specializations in extreme conditions and advanced sample environments, in particular unconventional experiments. This spectrometer should also be able to work in a time-resolved mode so that it could address the dynamics of electronic excitations on the attosecond to nanosecond time scale. The suggested work is expected to push high-resolution X-ray spectroscopies toward maturity, which should open up new horizons in electronic structure and dynamics studies of condensed matter research.
Max ERC Funding
1 125 960 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym Xenoscope
Project Towards a multi-ton xenon observatory for astroparticle physics
Researcher (PI) Laura BAUDIS
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), PE2, ERC-2016-ADG
Summary Dark matter is one of the greatest mysteries in the Cosmos, as its intrinsic nature is largely unknown. The identification and characterization of dark matter particles is a major endeavor in physics. XENOSCOPE will be a unique project focussed on essential, cutting-edge research towards a multi-ton dark matter detector using liquid xenon (LXe) as target material. With its low energy threshold, ultra-low backgrounds and excellent energy resolution, a LXe observatory will be highly sensitive to other rare interactions, such as from solar and supernova neutrinos, double beta decays of 136Xe, as well as from axions and axion-like particles. To design and construct a 50 t (40 t in the time projection chamber, TPC) detector, a number of critical technological challenges must first be addressed. Fundamental aspects are related to the design of the TPC, including the identification of new photosensors, the optimization of the light and charge collection (hence the energy threshold and resolution), and the minimization of radioactive backgrounds. XENOSCOPE will address all these aspects through a number of small, medium-size and a full-scale (in the z-coordinate of the TPC) prototypes. The goal is to specify the required input for the technical design of the 50 t detector, to be realized by the DARWIN consortium which the PI leads. Arrays of VUV-sensitive SiPMs will be studied as novel light sensors, and a 4-π photosensor coverage TPC will be constructed for the first time. Signal detection will be optimized for both low and high-energy readout, thus drastically increasing the dynamic range of a LXe-TPC. Low-background materials will be identified and characterized not only for the photosensors and their read-out, but for all the components of the detector. Finally, a full scale TPC in the z-dimension, 2.6 m in height, will be designed, built and operated and electron drift and extraction into the vapor phase over such large distances for the first time demonstrated.
Summary
Dark matter is one of the greatest mysteries in the Cosmos, as its intrinsic nature is largely unknown. The identification and characterization of dark matter particles is a major endeavor in physics. XENOSCOPE will be a unique project focussed on essential, cutting-edge research towards a multi-ton dark matter detector using liquid xenon (LXe) as target material. With its low energy threshold, ultra-low backgrounds and excellent energy resolution, a LXe observatory will be highly sensitive to other rare interactions, such as from solar and supernova neutrinos, double beta decays of 136Xe, as well as from axions and axion-like particles. To design and construct a 50 t (40 t in the time projection chamber, TPC) detector, a number of critical technological challenges must first be addressed. Fundamental aspects are related to the design of the TPC, including the identification of new photosensors, the optimization of the light and charge collection (hence the energy threshold and resolution), and the minimization of radioactive backgrounds. XENOSCOPE will address all these aspects through a number of small, medium-size and a full-scale (in the z-coordinate of the TPC) prototypes. The goal is to specify the required input for the technical design of the 50 t detector, to be realized by the DARWIN consortium which the PI leads. Arrays of VUV-sensitive SiPMs will be studied as novel light sensors, and a 4-π photosensor coverage TPC will be constructed for the first time. Signal detection will be optimized for both low and high-energy readout, thus drastically increasing the dynamic range of a LXe-TPC. Low-background materials will be identified and characterized not only for the photosensors and their read-out, but for all the components of the detector. Finally, a full scale TPC in the z-dimension, 2.6 m in height, will be designed, built and operated and electron drift and extraction into the vapor phase over such large distances for the first time demonstrated.
Max ERC Funding
3 344 108 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym YEAST-TRANS
Project Deciphering the transport mechanisms of small xenobiotic molecules in synthetic yeast cell factories
Researcher (PI) Irina BORODINA
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2017-STG
Summary Industrial biotechnology employs synthetic cell factories to create bulk and fine chemicals and fuels from renewable resources, laying the basis for the future bio-based economy. The major part of the wanted bio-based chemicals are not native to the host cell, such as yeast, i.e. they are xenobiotic. Some xenobiotic compounds are readily secreted by synthetic cells, some are poorly secreted and some are not secreted at all, but how does this transport occur? Or why does it not occur? These fundamental questions remain to be answered and this will have great implications on industrial biotechnology, because improved secretion would bring down the production costs and enable the emergence of novel bio-based products.
YEAST-TRANS will fill in this knowledge gap by carrying out the first systematic genome-scale transporter study to uncover the transport mechanisms of small xenobiotic molecules by synthetic yeast cells and to apply this knowledge for engineering more efficient cell factories for bio-based production of fuels and chemicals.
Summary
Industrial biotechnology employs synthetic cell factories to create bulk and fine chemicals and fuels from renewable resources, laying the basis for the future bio-based economy. The major part of the wanted bio-based chemicals are not native to the host cell, such as yeast, i.e. they are xenobiotic. Some xenobiotic compounds are readily secreted by synthetic cells, some are poorly secreted and some are not secreted at all, but how does this transport occur? Or why does it not occur? These fundamental questions remain to be answered and this will have great implications on industrial biotechnology, because improved secretion would bring down the production costs and enable the emergence of novel bio-based products.
YEAST-TRANS will fill in this knowledge gap by carrying out the first systematic genome-scale transporter study to uncover the transport mechanisms of small xenobiotic molecules by synthetic yeast cells and to apply this knowledge for engineering more efficient cell factories for bio-based production of fuels and chemicals.
Max ERC Funding
1 423 358 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym ZARAH
Project Women’s labour activism in Eastern Europe and transnationally, from the age of empires to the late 20th century
Researcher (PI) Susan Carin Zimmermann
Host Institution (HI) KOZEP-EUROPAI EGYETEM
Call Details Advanced Grant (AdG), SH6, ERC-2018-ADG
Summary ZARAH explores the history of women’s labour activism and organizing to improve labour conditions and life circumstances of lower and working class women and their communities—moving these women from the margins of labour, gender, and European history to the centre of historical study.
ZARAH’s research rationale is rooted in the interest in the interaction of gender, class, and other dimensions of difference (e.g. ethnicity and religion) as forces that shaped women’s activism. It addresses the gender bias in labour history, the class bias in gender history, and the regional bias in European history. ZARAH conceives of women’s labour activism as emerging from the confluence of local, nation-wide, border-crossing and international initiatives, interactions and networking. It studies this activism in the Austro-Hungarian and Ottoman Empires, the post-imperial nation states, and during the Cold War and the years thereafter. Employing a long-term and trans-regional perspective, ZARAH highlights how a history of numerous social upheavals, and changing borders and political systems shaped the agency of the women studied, and examines their contribution to the struggle for socio-economic inclusion and the making of gender-, labour-, and social policies.
ZARAH comprises, in addition to the PI, an international group of nine post-doctoral and doctoral researchers at CEU, distinguished by their excellent command of the history and languages of the region. Research rationale, research questions, and methodological framework were developed through an intensive exploratory research phase (2016–2017). ZARAH is a pioneering project that consists of a web of component and collaborative studies, which include all relevant groups of activists and activisms, span the whole region, and cover the period between the 1880s and the 1990s. It will generate key research resources that are available to all students and scholars, and will set the stage for research for a long time to come.
Summary
ZARAH explores the history of women’s labour activism and organizing to improve labour conditions and life circumstances of lower and working class women and their communities—moving these women from the margins of labour, gender, and European history to the centre of historical study.
ZARAH’s research rationale is rooted in the interest in the interaction of gender, class, and other dimensions of difference (e.g. ethnicity and religion) as forces that shaped women’s activism. It addresses the gender bias in labour history, the class bias in gender history, and the regional bias in European history. ZARAH conceives of women’s labour activism as emerging from the confluence of local, nation-wide, border-crossing and international initiatives, interactions and networking. It studies this activism in the Austro-Hungarian and Ottoman Empires, the post-imperial nation states, and during the Cold War and the years thereafter. Employing a long-term and trans-regional perspective, ZARAH highlights how a history of numerous social upheavals, and changing borders and political systems shaped the agency of the women studied, and examines their contribution to the struggle for socio-economic inclusion and the making of gender-, labour-, and social policies.
ZARAH comprises, in addition to the PI, an international group of nine post-doctoral and doctoral researchers at CEU, distinguished by their excellent command of the history and languages of the region. Research rationale, research questions, and methodological framework were developed through an intensive exploratory research phase (2016–2017). ZARAH is a pioneering project that consists of a web of component and collaborative studies, which include all relevant groups of activists and activisms, span the whole region, and cover the period between the 1880s and the 1990s. It will generate key research resources that are available to all students and scholars, and will set the stage for research for a long time to come.
Max ERC Funding
2 499 947 €
Duration
Start date: 2020-02-01, End date: 2025-01-31
Project acronym ZAUBERKUGEL
Project Fulfilling Paul Ehrlich’s Dream: therapeutics with activity on demand
Researcher (PI) Dario Antonio Ansano Neri
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS7, ERC-2014-ADG
Summary "Paul Ehrlich was the first scientist to postulate that if a compound could be made that selectively targeted disease-causing cells, then this agent could be used for the delivery of a toxin, which would enable a pharmacotherapy of unprecedented potency and selectivity. With this procedure, a ""magic bullet"" (Zauberkugel, his term for an ideal therapeutic agent) would be created, that killed diseased cells while sparing normal tissues.
The concept of a ""magic bullet"" was to some extent realized by the invention of monoclonal antibodies, as these molecules provide a very specific binding affinity to their cognate target. However, monoclonal antibodies used as single agents are typically not able to induce cures for cancer or chronic inflammatory diseases. More recently, intense academic and industrial research activities have aimed at “arming” monoclonal antibodies with drugs or cytokines, in order to preferentially deliver these therapeutic payloads to the site of disease. Unfortunately, in most cases, ""armed"" antibody products still cause unacceptable toxicities, which prevent escalation to potentially curative dose regimens.
In this Project, I outline a therapeutic strategy, which relies on the use of extremely specific tumor targeting agents, for the selective delivery of payloads, which can be conditionally activated at the site of disease. Methodologies for the conditional generation of active payloads include the stepwise non-covalent assembly of cytokines and the controlled release of cytotoxic drugs at suitable time points after injection, when the concentration of therapeutic agent in normal organs is acceptably low. Response to therapy will be profiled using innovative proteomic methodologies, based on HLA-peptidome analysis.
Pharmaceutical agents with “activity on demand” hold a considerable potential not only for the therapy of cancer, but also for the treatment of other serious diseases, including certain highly debilitating chronic inflammatory condition"
Summary
"Paul Ehrlich was the first scientist to postulate that if a compound could be made that selectively targeted disease-causing cells, then this agent could be used for the delivery of a toxin, which would enable a pharmacotherapy of unprecedented potency and selectivity. With this procedure, a ""magic bullet"" (Zauberkugel, his term for an ideal therapeutic agent) would be created, that killed diseased cells while sparing normal tissues.
The concept of a ""magic bullet"" was to some extent realized by the invention of monoclonal antibodies, as these molecules provide a very specific binding affinity to their cognate target. However, monoclonal antibodies used as single agents are typically not able to induce cures for cancer or chronic inflammatory diseases. More recently, intense academic and industrial research activities have aimed at “arming” monoclonal antibodies with drugs or cytokines, in order to preferentially deliver these therapeutic payloads to the site of disease. Unfortunately, in most cases, ""armed"" antibody products still cause unacceptable toxicities, which prevent escalation to potentially curative dose regimens.
In this Project, I outline a therapeutic strategy, which relies on the use of extremely specific tumor targeting agents, for the selective delivery of payloads, which can be conditionally activated at the site of disease. Methodologies for the conditional generation of active payloads include the stepwise non-covalent assembly of cytokines and the controlled release of cytotoxic drugs at suitable time points after injection, when the concentration of therapeutic agent in normal organs is acceptably low. Response to therapy will be profiled using innovative proteomic methodologies, based on HLA-peptidome analysis.
Pharmaceutical agents with “activity on demand” hold a considerable potential not only for the therapy of cancer, but also for the treatment of other serious diseases, including certain highly debilitating chronic inflammatory condition"
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym zebraHeart
Project Novel insights into cardiac regeneration through studies in the zebrafish
Researcher (PI) Nadia Isabel Mercader Huber
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary Myocardial infarction (MI) leads to cardiomyocyte death and accumulation of myofibroblasts (MFs) at the site of injury, which produce large amounts of extracellular matrix (ECM), generating a scar. Initially, cardiac fibrosis protects from ventricular wall rupture, but subsequent myocardial remodelling causes heart failure, representing a leading cause of death in Europe. While MFs play a central role in cardiac fibrosis, there is confusion on their origin, a lack of specific markers and the existence of a unique MF type is debatable. Different MF might reveal distinct characteristics regarding ECM production, contractility, and autophagy, making them more or less pernicious. While in humans cardiac fibrosis is irreversible, other vertebrates have a remarkable capacity to regenerate damaged tissue. We recently established a zebrafish MI model and found that cardiac fibrosis is reversible and occurs as an intermediate step during regeneration. Here, the endogenous mechanisms of MFs and ECM regression will be explored. In addition, MF origin, types and fate will be characterized and manipulated to improve regeneration. As in mammals, cardiac injury elicits an inflammatory response in the zebrafish. The regenerative capacity of a species has been directly linked to features of its immune system, but surprisingly little is known on zebrafish leukocyte subtypes. We will study the role of macrophages and particularly analyse a subtype, which accumulates in the outer mesothelial layer of the heart, the epicardium. Epicardial derived cells play a key role as a trophic factor and progenitor cell source, and a first step towards regeneration includes the reestablishment of the epicardial layer. The zebrafish will offer a screening platform for small molecules triggering its activation. In sum, the project will increase the knowledge on the molecular and cellular basis of fibrosis regression, provide novel MF markers and identify new drugs to enhance cardiac regeneration.
Summary
Myocardial infarction (MI) leads to cardiomyocyte death and accumulation of myofibroblasts (MFs) at the site of injury, which produce large amounts of extracellular matrix (ECM), generating a scar. Initially, cardiac fibrosis protects from ventricular wall rupture, but subsequent myocardial remodelling causes heart failure, representing a leading cause of death in Europe. While MFs play a central role in cardiac fibrosis, there is confusion on their origin, a lack of specific markers and the existence of a unique MF type is debatable. Different MF might reveal distinct characteristics regarding ECM production, contractility, and autophagy, making them more or less pernicious. While in humans cardiac fibrosis is irreversible, other vertebrates have a remarkable capacity to regenerate damaged tissue. We recently established a zebrafish MI model and found that cardiac fibrosis is reversible and occurs as an intermediate step during regeneration. Here, the endogenous mechanisms of MFs and ECM regression will be explored. In addition, MF origin, types and fate will be characterized and manipulated to improve regeneration. As in mammals, cardiac injury elicits an inflammatory response in the zebrafish. The regenerative capacity of a species has been directly linked to features of its immune system, but surprisingly little is known on zebrafish leukocyte subtypes. We will study the role of macrophages and particularly analyse a subtype, which accumulates in the outer mesothelial layer of the heart, the epicardium. Epicardial derived cells play a key role as a trophic factor and progenitor cell source, and a first step towards regeneration includes the reestablishment of the epicardial layer. The zebrafish will offer a screening platform for small molecules triggering its activation. In sum, the project will increase the knowledge on the molecular and cellular basis of fibrosis regression, provide novel MF markers and identify new drugs to enhance cardiac regeneration.
Max ERC Funding
1 499 215 €
Duration
Start date: 2014-02-01, End date: 2019-01-31