Project acronym ADAPT
Project Origins and factors governing adaptation: Insights from experimental evolution and population genomic data
Researcher (PI) Thomas, Martin Jean Bataillon
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary "I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Summary
"I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Max ERC Funding
1 159 857 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym ANTS
Project Attine ANT SymbiomeS
Researcher (PI) Jacobus Jan Boomsma
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), LS8, ERC-2012-ADG_20120314
Summary "The attine fungus-growing ants are prime models for understanding phenotypic adaptations in social evolution and symbiosis. The mutualism has many hallmarks of advanced cooperation in its mating system commitments and functional complementarity between multiple symbiont partners, but potential conflicts between sexes and castes over reproductive priorities, and between hosts and symbionts over symbiont mixing have also been documented. With collaborators at BGI-Shenzhen and the Smithsonian Institution my group has obtained six reference genomes representing all genus-level branches of the higher attine ants and a lower attine outgroup. With collaborators in Denmark and Australia we have pioneered proteomic approaches to understand the preservation of sperm viability in spite of sperm competition and the enzymatic decomposition of plant substrates that the ants use to make their fungus gardens grow.
Here, I propose an integrated study focusing on four major areas of attine ant biology that are particularly inviting for in depth molecular approaches: 1. The protein-level networks that secure life-time (up to 20 years) sperm storage in specialized ant-queen organs and the genetic mechanisms that shape and adjust these “sexual symbiome” networks. 2. The ant-fungal symbiome, i.e. the dynamics of fungal enzyme production for plant substrate degradation and the redistribution of these enzymes in fungus gardens through fecal deposition after they are ingested but not digested by the ants. 3. The microbial symbiome of ant guts and other tissues with obligate bacterial mutualists, of which we have identified some and will characterize a wider collection across the different branches of the attine ant phylogeny. 4. The genome-wide frequency of genomic imprinting and the significance of these imprints for the expression of caste phenotypes and the regulation of potential reproductive conflicts."
Summary
"The attine fungus-growing ants are prime models for understanding phenotypic adaptations in social evolution and symbiosis. The mutualism has many hallmarks of advanced cooperation in its mating system commitments and functional complementarity between multiple symbiont partners, but potential conflicts between sexes and castes over reproductive priorities, and between hosts and symbionts over symbiont mixing have also been documented. With collaborators at BGI-Shenzhen and the Smithsonian Institution my group has obtained six reference genomes representing all genus-level branches of the higher attine ants and a lower attine outgroup. With collaborators in Denmark and Australia we have pioneered proteomic approaches to understand the preservation of sperm viability in spite of sperm competition and the enzymatic decomposition of plant substrates that the ants use to make their fungus gardens grow.
Here, I propose an integrated study focusing on four major areas of attine ant biology that are particularly inviting for in depth molecular approaches: 1. The protein-level networks that secure life-time (up to 20 years) sperm storage in specialized ant-queen organs and the genetic mechanisms that shape and adjust these “sexual symbiome” networks. 2. The ant-fungal symbiome, i.e. the dynamics of fungal enzyme production for plant substrate degradation and the redistribution of these enzymes in fungus gardens through fecal deposition after they are ingested but not digested by the ants. 3. The microbial symbiome of ant guts and other tissues with obligate bacterial mutualists, of which we have identified some and will characterize a wider collection across the different branches of the attine ant phylogeny. 4. The genome-wide frequency of genomic imprinting and the significance of these imprints for the expression of caste phenotypes and the regulation of potential reproductive conflicts."
Max ERC Funding
2 290 102 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym BactInd
Project Bacterial cooperation at the individual cell level
Researcher (PI) Rolf Kümmerli
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), LS8, ERC-2015-CoG
Summary All levels of life entail cooperation and conflict. Genes cooperate to build up a functional genome, which can yet be undermined by selfish genetic elements. Humans and animals cooperate to build up societies, which can yet be subverted by cheats. There is a long-standing interest among biologists to comprehend the tug-of-war between cooperation and conflict. Recently, research on bacteria was successful in identifying key factors that can tip the balance in favour or against cooperation. Bacteria cooperate through the formation of protective biofilms, cell-to-cell communication, and the secretion of shareable public goods. However, the advantage of bacteria being fast replicating units, easily cultivatable in high numbers, is also their disadvantage: they are small and imperceptible, such that measures of cooperation typically rely on averaged responses across millions of cells. Thus, we still know very little about bacterial cooperation at the biological relevant scale: the individual cell level. Here, I present research using the secretion of public goods in the opportunistic human pathogen Pseudomonas aeruginosa, to tackle this issue. I will explore new dimensions of bacterial cooperation by asking whether bacteria engage in collective-decision making to find optimal group-level solutions; whether bacteria show division of labour to split up work efficiently; and whether bacteria can distinguish between trustworthy and cheating partners. The proposed research will make two significant contributions. First, it will reveal whether bacteria engage in complex forms of cooperation (collective decision-making, division of labour, partner recognition), which have traditionally been associated with higher organisms. Second, it will provide insights into the evolutionary stability of cooperation – key knowledge for designing therapies that interfere with virulence-inducing public goods in infections, and the design of stable public-good based remediation processes.
Summary
All levels of life entail cooperation and conflict. Genes cooperate to build up a functional genome, which can yet be undermined by selfish genetic elements. Humans and animals cooperate to build up societies, which can yet be subverted by cheats. There is a long-standing interest among biologists to comprehend the tug-of-war between cooperation and conflict. Recently, research on bacteria was successful in identifying key factors that can tip the balance in favour or against cooperation. Bacteria cooperate through the formation of protective biofilms, cell-to-cell communication, and the secretion of shareable public goods. However, the advantage of bacteria being fast replicating units, easily cultivatable in high numbers, is also their disadvantage: they are small and imperceptible, such that measures of cooperation typically rely on averaged responses across millions of cells. Thus, we still know very little about bacterial cooperation at the biological relevant scale: the individual cell level. Here, I present research using the secretion of public goods in the opportunistic human pathogen Pseudomonas aeruginosa, to tackle this issue. I will explore new dimensions of bacterial cooperation by asking whether bacteria engage in collective-decision making to find optimal group-level solutions; whether bacteria show division of labour to split up work efficiently; and whether bacteria can distinguish between trustworthy and cheating partners. The proposed research will make two significant contributions. First, it will reveal whether bacteria engage in complex forms of cooperation (collective decision-making, division of labour, partner recognition), which have traditionally been associated with higher organisms. Second, it will provide insights into the evolutionary stability of cooperation – key knowledge for designing therapies that interfere with virulence-inducing public goods in infections, and the design of stable public-good based remediation processes.
Max ERC Funding
1 994 981 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CAMERA
Project Characterizing Adaptation and Migration Events with Modern and Ancient Genomes
Researcher (PI) Anna-Sapfo Malaspinas
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), LS8, ERC-2015-STG
Summary BACKGROUND Ancient DNA research has recently entered the genomics era. Performing “ancient population genomics” is now technically possible. Utilizing the temporal aspect of this new data, we can address fundamental evolutionary questions such as the amount of selection acting on the genome or the mode and tempo of the colonization of the world. AIMS The overall goal of the proposed research is to (i) generate and analyse data to answer two long standing questions in human evolution: understanding the molecular basis of human adaptation to high altitude and investigating the timing of the Polynesian-South American contact, (ii) develop statistical approaches that combine ancient and modern genetic data to estimate the timing and the intensity of a selective sweep and an admixture event. METHODOLOGY Application: We will collect, date and DNA sequence human remains. Combining the ancient genetic data, 14C dates with existing modern genomic data will allow us to increase the resolution as to the timing of the adaptive and the admixture event, respectively, while generating unique datasets. Theory: We will build on existing methods based on one-locus classical population genetic models to develop tools to analyse whole genome time serial data. RELEVANCE Ecological: The results will address the fundamental question of how much of the human genome is undergoing selection, better characterize one of the textbook examples of adaptation in humans and contribute to our understanding of the peopling of the Americas. Medical: We will gain insights into the fundamental stress physiology experienced at high altitude and therefore into altitude-related illnesses. Methodological: The methods developed in this project will not only benefit the growing field of ancient genomics but also other fields where data is collected in a temporal manner, such as experimental evolution and epidemiology
Summary
BACKGROUND Ancient DNA research has recently entered the genomics era. Performing “ancient population genomics” is now technically possible. Utilizing the temporal aspect of this new data, we can address fundamental evolutionary questions such as the amount of selection acting on the genome or the mode and tempo of the colonization of the world. AIMS The overall goal of the proposed research is to (i) generate and analyse data to answer two long standing questions in human evolution: understanding the molecular basis of human adaptation to high altitude and investigating the timing of the Polynesian-South American contact, (ii) develop statistical approaches that combine ancient and modern genetic data to estimate the timing and the intensity of a selective sweep and an admixture event. METHODOLOGY Application: We will collect, date and DNA sequence human remains. Combining the ancient genetic data, 14C dates with existing modern genomic data will allow us to increase the resolution as to the timing of the adaptive and the admixture event, respectively, while generating unique datasets. Theory: We will build on existing methods based on one-locus classical population genetic models to develop tools to analyse whole genome time serial data. RELEVANCE Ecological: The results will address the fundamental question of how much of the human genome is undergoing selection, better characterize one of the textbook examples of adaptation in humans and contribute to our understanding of the peopling of the Americas. Medical: We will gain insights into the fundamental stress physiology experienced at high altitude and therefore into altitude-related illnesses. Methodological: The methods developed in this project will not only benefit the growing field of ancient genomics but also other fields where data is collected in a temporal manner, such as experimental evolution and epidemiology
Max ERC Funding
1 498 478 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym CICHLIDX
Project An integrative approach towards the understanding of an adaptive radiation of East African cichlid fishes
Researcher (PI) Walter Salzburger
Host Institution (HI) UNIVERSITAT BASEL
Call Details Consolidator Grant (CoG), LS8, ERC-2013-CoG
Summary "More than 150 years after the publication of Charles Darwin’s The Origin of Species, the identification of the processes that govern the emergence of novel species remains a fundamental problem to biology. Why is it that some groups have diversified in a seemingly explosive manner, while others have lingered unvaried over millions of years? What are the external factors and environmental conditions that promote organismal diversity? And what is the molecular basis of adaptation and diversification? A key to these and related questions is the comparative study of exceptionally diverse yet relatively recent species assemblages such as Darwin’s finches, the Caribbean anole lizards, or the hundreds of endemic species of cichlid fishes in the East African Great Lakes, which are at the center of this proposal. More specifically, I intend to conduct the so far most thorough examination of a large adaptive radiation, combining in-depth eco-morphological assessments and whole genome sequencing of all members of a cichlid species flock. To this end, I plan to (i) sequence the genomes and transcriptomes of several specimens of each cichlid species from Lake Tanganyika to examine genetic and transcriptional diversity; (ii) apply stable-isotope and stomach-content analyses in combination with underwater transplant experiments and transect surveys to quantitate feeding performances, habitat preferences and natural-history parameters; (iii) use X-ray computed tomography to study phenotypic variation in 3D; and (iv) examine fossils from existing and forthcoming drilling cores to implement a time line of diversification in a cichlid adaptive radiation. This project, thus, offers the unique opportunity to test recent theory- and data-based predictions on speciation and adaptive radiation within an entire biological system – in this case the adaptive radiation of cichlid fishes in Lake Tanganyika."
Summary
"More than 150 years after the publication of Charles Darwin’s The Origin of Species, the identification of the processes that govern the emergence of novel species remains a fundamental problem to biology. Why is it that some groups have diversified in a seemingly explosive manner, while others have lingered unvaried over millions of years? What are the external factors and environmental conditions that promote organismal diversity? And what is the molecular basis of adaptation and diversification? A key to these and related questions is the comparative study of exceptionally diverse yet relatively recent species assemblages such as Darwin’s finches, the Caribbean anole lizards, or the hundreds of endemic species of cichlid fishes in the East African Great Lakes, which are at the center of this proposal. More specifically, I intend to conduct the so far most thorough examination of a large adaptive radiation, combining in-depth eco-morphological assessments and whole genome sequencing of all members of a cichlid species flock. To this end, I plan to (i) sequence the genomes and transcriptomes of several specimens of each cichlid species from Lake Tanganyika to examine genetic and transcriptional diversity; (ii) apply stable-isotope and stomach-content analyses in combination with underwater transplant experiments and transect surveys to quantitate feeding performances, habitat preferences and natural-history parameters; (iii) use X-ray computed tomography to study phenotypic variation in 3D; and (iv) examine fossils from existing and forthcoming drilling cores to implement a time line of diversification in a cichlid adaptive radiation. This project, thus, offers the unique opportunity to test recent theory- and data-based predictions on speciation and adaptive radiation within an entire biological system – in this case the adaptive radiation of cichlid fishes in Lake Tanganyika."
Max ERC Funding
1 999 238 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym DEFEAT
Project DiseasE-FreE social life without Antibiotics resisTance
Researcher (PI) Michael THOMAS-POULSEN
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Consolidator Grant (CoG), LS8, ERC-2017-COG
Summary The application of antimicrobial compounds produced by hosts or defensive symbionts to counter the effects of diseases has been identified in a number of organisms, but despite extensive studies on their presence, we know essentially nothing about why antimicrobials do not trigger rampant resistance evolution in target parasites. In stark contrast to virtually any other organism, fungus-farming termites have evolved a sophisticated agricultural symbiosis that pre-dates human farming by 30 million years without suffering from specialised diseases. I will capitalise on recent pioneering work in my group on proximate evidence for antimicrobial defences in the termites, their fungal crops, and their complex gut bacterial communities, by proposing to develop the farming symbiosis as a major model to test three novel concepts that may account for the evasion of resistance evolution. First, the antimicrobial compounds may have properties and evolve in ways that preclude resistance evolution in pathogens. Second, resistance is only possible towards individual compounds and not natural antimicrobial cocktails. Third, pathogens can only successfully invade and proliferate if they bypass several consecutive lines of defence, analogous to the six hallmarks of metazoan defence against cancer development. Addressing these concepts will allow fundamental insights into the remarkable success of complementary symbiont contributions to defence, and they will clarify the forces of multilevel natural selection that have allowed long-lived insect societies to evolve sustainability. Documenting and understanding these disease management principles is fundamentally important for several branches of evolutionary biology, and strategically important for adjusting human practices for future antimicrobial stewardship.
Summary
The application of antimicrobial compounds produced by hosts or defensive symbionts to counter the effects of diseases has been identified in a number of organisms, but despite extensive studies on their presence, we know essentially nothing about why antimicrobials do not trigger rampant resistance evolution in target parasites. In stark contrast to virtually any other organism, fungus-farming termites have evolved a sophisticated agricultural symbiosis that pre-dates human farming by 30 million years without suffering from specialised diseases. I will capitalise on recent pioneering work in my group on proximate evidence for antimicrobial defences in the termites, their fungal crops, and their complex gut bacterial communities, by proposing to develop the farming symbiosis as a major model to test three novel concepts that may account for the evasion of resistance evolution. First, the antimicrobial compounds may have properties and evolve in ways that preclude resistance evolution in pathogens. Second, resistance is only possible towards individual compounds and not natural antimicrobial cocktails. Third, pathogens can only successfully invade and proliferate if they bypass several consecutive lines of defence, analogous to the six hallmarks of metazoan defence against cancer development. Addressing these concepts will allow fundamental insights into the remarkable success of complementary symbiont contributions to defence, and they will clarify the forces of multilevel natural selection that have allowed long-lived insect societies to evolve sustainability. Documenting and understanding these disease management principles is fundamentally important for several branches of evolutionary biology, and strategically important for adjusting human practices for future antimicrobial stewardship.
Max ERC Funding
1 998 809 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym DETECT
Project Describing Evolution with Theoretical, Empirical, and Computational Tools
Researcher (PI) Jeffrey Jensen
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary As evolutionary biologists we are of course motivated by the desire to gain further insight in to the evolution of natural populations. The main goals of this proposal are to (i) develop theory and methodology that will enable the identification of adaptively evolving genomic regions using polymorphism data, (ii) develop theory and methodology for the estimation of whole-genome rates of adaptive evolution, and (iii) apply the developed theory in two strategic collaborative applications. Capitalizing on recently available and soon-to-be available whole genome polymorphism data across multiple taxa, these approaches are expected to significantly improve the identification and localization of recent selective events, as well as provide long sought after information regarding the genomic distributions of selective effects. Additionally, through these on-going collaborations with empirical and experimental labs, this methodology will allow for specific hypothesis testing that will further illuminate classical examples of adaptation. Together, this proposal seeks to Describe Evolution with Theoretical, Empirical and Computational Tools (DETECT), seeking to accurately describe the very mode and tempo of Darwinian adaptation.
Summary
As evolutionary biologists we are of course motivated by the desire to gain further insight in to the evolution of natural populations. The main goals of this proposal are to (i) develop theory and methodology that will enable the identification of adaptively evolving genomic regions using polymorphism data, (ii) develop theory and methodology for the estimation of whole-genome rates of adaptive evolution, and (iii) apply the developed theory in two strategic collaborative applications. Capitalizing on recently available and soon-to-be available whole genome polymorphism data across multiple taxa, these approaches are expected to significantly improve the identification and localization of recent selective events, as well as provide long sought after information regarding the genomic distributions of selective effects. Additionally, through these on-going collaborations with empirical and experimental labs, this methodology will allow for specific hypothesis testing that will further illuminate classical examples of adaptation. Together, this proposal seeks to Describe Evolution with Theoretical, Empirical and Computational Tools (DETECT), seeking to accurately describe the very mode and tempo of Darwinian adaptation.
Max ERC Funding
1 071 729 €
Duration
Start date: 2013-01-01, End date: 2017-08-31
Project acronym DIPLOFACE
Project Diplomatic Face-Work - between confidential negotiations and public display
Researcher (PI) Rebecca Adler-Nissen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), SH2, ERC-2015-STG
Summary The rise of social media, coupled with intensifying demands for more transparency and democracy in world politics, brings new challenges to international diplomacy. State leaders and diplomats continue to react to traditional media, but now also attempt to present themselves proactively through tweets, public diplomacy and nation branding. These efforts often take place simultaneously and sometimes interfere directly with closed-door negotiations and its culture of restraint and secrecy. Yet the relationship between confidential diplomacy and public representation remains understudied.
DIPLOFACE will develop a sociologically and anthropologically informed approach to studying how state leaders and diplomats manage their nation’s ‘faces’ in the information age. The project will explore the relationship and tensions between confidential diplomatic negotiations and publicly displayed interventions in various media, applying the micro-sociological concept of ‘face-work’. DIPLOFACE will analyse the complex interactional dynamics that shape the diplomatic techniques and strategies used to convey a nation’s ‘face’ or ‘image of self’. Such face-work is increasingly important for national leaders and diplomats who perform simultaneously on the ‘back-stage’ and the ‘front-stage’ of international relations. DIPLOFACE will identify, theorize and analyse the repertoire of face-saving, face-honouring and face-threatening practices that are employed in confidential negotiations and in public.
DIPLOFACE advances our theoretical understanding of diplomacy in the 21st century significantly beyond existing International Relations and diplomatic theory. Combining participant observation, interviews and media analysis, DIPLOFACE will generate important new knowledge about the relationship between public and confidential multilateral negotiation, how state leaders and diplomats handle new media, and the role of face-saving and face-threatening strategies in international relations.
Summary
The rise of social media, coupled with intensifying demands for more transparency and democracy in world politics, brings new challenges to international diplomacy. State leaders and diplomats continue to react to traditional media, but now also attempt to present themselves proactively through tweets, public diplomacy and nation branding. These efforts often take place simultaneously and sometimes interfere directly with closed-door negotiations and its culture of restraint and secrecy. Yet the relationship between confidential diplomacy and public representation remains understudied.
DIPLOFACE will develop a sociologically and anthropologically informed approach to studying how state leaders and diplomats manage their nation’s ‘faces’ in the information age. The project will explore the relationship and tensions between confidential diplomatic negotiations and publicly displayed interventions in various media, applying the micro-sociological concept of ‘face-work’. DIPLOFACE will analyse the complex interactional dynamics that shape the diplomatic techniques and strategies used to convey a nation’s ‘face’ or ‘image of self’. Such face-work is increasingly important for national leaders and diplomats who perform simultaneously on the ‘back-stage’ and the ‘front-stage’ of international relations. DIPLOFACE will identify, theorize and analyse the repertoire of face-saving, face-honouring and face-threatening practices that are employed in confidential negotiations and in public.
DIPLOFACE advances our theoretical understanding of diplomacy in the 21st century significantly beyond existing International Relations and diplomatic theory. Combining participant observation, interviews and media analysis, DIPLOFACE will generate important new knowledge about the relationship between public and confidential multilateral negotiation, how state leaders and diplomats handle new media, and the role of face-saving and face-threatening strategies in international relations.
Max ERC Funding
1 493 062 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym DISINTEGRATION
Project The Mass Politics of Disintegration
Researcher (PI) Stefanie Walter
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), SH2, ERC-2018-COG
Summary In the past few years, there has been a growing popular backlash against international institutions. Examples include the 2015 Greek bailout referendum, the 2016 Brexit referendum, or the 2016 election of a US President seemingly determined to withdraw US support from various international treaties. The implications of these mass-based disintegration efforts reach far beyond the countries in which they originate. First, the disintegration process is shaped by how remaining member states respond to one member’s bid to unilaterally change or terminate the terms of an existing international agreement. Second, mass-based disintegration bids pose considerable political contagion risks by encouraging disintegrative tendencies in other countries. Unfortunately, our theoretical tools to understand such international disintegration processes are underdeveloped. DISINTEGRATION therefore conducts a broad, systematic, and comparative inquiry into the mass politics of disintegration that pays particular attention to reactions in the remaining member states. It explores when and how one country’s mass-based disintegration experience encourages or deters demands for disintegration in other countries, how these contagion effects are transmitted through domestic elites and domestic discourse, and how the remaining member states ultimately respond during disintegration negotiations. It undertakes large-scale multi-method data collection that exploits the research opportunities offered by two ongoing mass-based disintegration processes: the Brexit negotiations and an upcoming Swiss referendum aimed at terminating a Swiss-EU bilateral treaty. DISINTEGRATION’s main objective is to develop a much-needed theory of mass-based disintegration that helps us understand the transnational dynamics that unfold between governments, political elites and the mass public when one member state attempts to unilaterally withdraw from an international agreement on the basis of widespread popular support.
Summary
In the past few years, there has been a growing popular backlash against international institutions. Examples include the 2015 Greek bailout referendum, the 2016 Brexit referendum, or the 2016 election of a US President seemingly determined to withdraw US support from various international treaties. The implications of these mass-based disintegration efforts reach far beyond the countries in which they originate. First, the disintegration process is shaped by how remaining member states respond to one member’s bid to unilaterally change or terminate the terms of an existing international agreement. Second, mass-based disintegration bids pose considerable political contagion risks by encouraging disintegrative tendencies in other countries. Unfortunately, our theoretical tools to understand such international disintegration processes are underdeveloped. DISINTEGRATION therefore conducts a broad, systematic, and comparative inquiry into the mass politics of disintegration that pays particular attention to reactions in the remaining member states. It explores when and how one country’s mass-based disintegration experience encourages or deters demands for disintegration in other countries, how these contagion effects are transmitted through domestic elites and domestic discourse, and how the remaining member states ultimately respond during disintegration negotiations. It undertakes large-scale multi-method data collection that exploits the research opportunities offered by two ongoing mass-based disintegration processes: the Brexit negotiations and an upcoming Swiss referendum aimed at terminating a Swiss-EU bilateral treaty. DISINTEGRATION’s main objective is to develop a much-needed theory of mass-based disintegration that helps us understand the transnational dynamics that unfold between governments, political elites and the mass public when one member state attempts to unilaterally withdraw from an international agreement on the basis of widespread popular support.
Max ERC Funding
1 998 626 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym DrosoSpiro
Project The Drosophila-Spiroplasma interaction as a model to dissect the molecular mechanisms underlying insect endosymbiosis
Researcher (PI) Bruno Lemaitre
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS8, ERC-2013-ADG
Summary Virtually every species of insect harbors facultative bacterial endosymbionts that are transmitted from females to their offspring, often in the egg cytoplasm. These symbionts play crucial roles in the biology of their hosts. Many manipulate host reproduction in order to spread within host populations. Others increase the fitness of their hosts under certain conditions. For example, increasing tolerance to heat or protecting their hosts against natural enemies. Over the past decade, our understanding of insect endosymbionts has shifted from seeing them as fascinating oddities to being ubiquitous and central to the biology of their hosts, including many of high economic and medical importance. However, in spite of growing interest in endosymbionts, very little is known about the molecular mechanisms underlying most endosymbiont-insect interactions. For instance, the basis of the main phenotypes caused by endosymbionts, including diverse reproductive manipulations or symbiont-protective immunity, remains largely enigmatic. The goal of the present application is to fill this gap by dissecting the interaction between Drosophila and its native endosymbiont Spiroplasma poulsonii. This project will use a broad range of approaches ranging from molecular genetic to genomics to dissect the molecular mechanisms underlying key features of the symbiosis, including vertical transmission, male killing, regulation of symbiont growth, and symbiont-mediated protection against parasitic wasps. We believe that the fundamental knowledge generated on the Drosophila-Spiroplasma interaction will serve as a paradigm for other endosymbiont-insect interactions that are less amenable to genetic studies.
Summary
Virtually every species of insect harbors facultative bacterial endosymbionts that are transmitted from females to their offspring, often in the egg cytoplasm. These symbionts play crucial roles in the biology of their hosts. Many manipulate host reproduction in order to spread within host populations. Others increase the fitness of their hosts under certain conditions. For example, increasing tolerance to heat or protecting their hosts against natural enemies. Over the past decade, our understanding of insect endosymbionts has shifted from seeing them as fascinating oddities to being ubiquitous and central to the biology of their hosts, including many of high economic and medical importance. However, in spite of growing interest in endosymbionts, very little is known about the molecular mechanisms underlying most endosymbiont-insect interactions. For instance, the basis of the main phenotypes caused by endosymbionts, including diverse reproductive manipulations or symbiont-protective immunity, remains largely enigmatic. The goal of the present application is to fill this gap by dissecting the interaction between Drosophila and its native endosymbiont Spiroplasma poulsonii. This project will use a broad range of approaches ranging from molecular genetic to genomics to dissect the molecular mechanisms underlying key features of the symbiosis, including vertical transmission, male killing, regulation of symbiont growth, and symbiont-mediated protection against parasitic wasps. We believe that the fundamental knowledge generated on the Drosophila-Spiroplasma interaction will serve as a paradigm for other endosymbiont-insect interactions that are less amenable to genetic studies.
Max ERC Funding
1 963 926 €
Duration
Start date: 2014-05-01, End date: 2019-04-30