Project acronym 3DSPIN
Project 3-Dimensional Maps of the Spinning Nucleon
Researcher (PI) Alessandro Bacchetta
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PAVIA
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary How does the inside of the proton look like? What generates its spin?
3DSPIN will deliver essential information to answer these questions at the frontier of subnuclear physics.
At present, we have detailed maps of the distribution of quarks and gluons in the nucleon in 1D (as a function of their momentum in a single direction). We also know that quark spins account for only about 1/3 of the spin of the nucleon.
3DSPIN will lead the way into a new stage of nucleon mapping, explore the distribution of quarks in full 3D momentum space and obtain unprecedented information on orbital angular momentum.
Goals
1. extract from experimental data the 3D distribution of quarks (in momentum space), as described by Transverse-Momentum Distributions (TMDs);
2. obtain from TMDs information on quark Orbital Angular Momentum (OAM).
Methodology
3DSPIN will implement state-of-the-art fitting procedures to analyze relevant experimental data and extract quark TMDs, similarly to global fits of standard parton distribution functions. Information about quark angular momentum will be obtained through assumptions based on theoretical considerations. The next five years represent an ideal time window to accomplish our goals, thanks to the wealth of expected data from deep-inelastic scattering experiments (COMPASS, Jefferson Lab), hadronic colliders (Fermilab, BNL, LHC), and electron-positron colliders (BELLE, BABAR). The PI has a strong reputation in this field. The group will operate in partnership with the Italian National Institute of Nuclear Physics and in close interaction with leading experts and experimental collaborations worldwide.
Impact
Mapping the 3D structure of chemical compounds has revolutionized chemistry. Similarly, mapping the 3D structure of the nucleon will have a deep impact on our understanding of the fundamental constituents of matter. We will open new perspectives on the dynamics of quarks and gluons and sharpen our view of high-energy processes involving nucleons.
Summary
How does the inside of the proton look like? What generates its spin?
3DSPIN will deliver essential information to answer these questions at the frontier of subnuclear physics.
At present, we have detailed maps of the distribution of quarks and gluons in the nucleon in 1D (as a function of their momentum in a single direction). We also know that quark spins account for only about 1/3 of the spin of the nucleon.
3DSPIN will lead the way into a new stage of nucleon mapping, explore the distribution of quarks in full 3D momentum space and obtain unprecedented information on orbital angular momentum.
Goals
1. extract from experimental data the 3D distribution of quarks (in momentum space), as described by Transverse-Momentum Distributions (TMDs);
2. obtain from TMDs information on quark Orbital Angular Momentum (OAM).
Methodology
3DSPIN will implement state-of-the-art fitting procedures to analyze relevant experimental data and extract quark TMDs, similarly to global fits of standard parton distribution functions. Information about quark angular momentum will be obtained through assumptions based on theoretical considerations. The next five years represent an ideal time window to accomplish our goals, thanks to the wealth of expected data from deep-inelastic scattering experiments (COMPASS, Jefferson Lab), hadronic colliders (Fermilab, BNL, LHC), and electron-positron colliders (BELLE, BABAR). The PI has a strong reputation in this field. The group will operate in partnership with the Italian National Institute of Nuclear Physics and in close interaction with leading experts and experimental collaborations worldwide.
Impact
Mapping the 3D structure of chemical compounds has revolutionized chemistry. Similarly, mapping the 3D structure of the nucleon will have a deep impact on our understanding of the fundamental constituents of matter. We will open new perspectives on the dynamics of quarks and gluons and sharpen our view of high-energy processes involving nucleons.
Max ERC Funding
1 509 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym A CACTUS
Project Antibody-free method for Counting All Circulating TUmour cellS while maintaining them alive and intact
Researcher (PI) Giacinto Scoles
Host Institution (HI) UNIVERSITA DEGLI STUDI DI UDINE
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary The problem: Cancer metastases are responsible for 90% of cancer-associated deaths. Circulating tumour cells (CTCs) that enter the blood stream on their way to potential metastatic sites are of obvious interest to evaluate correctly patient treatment and therefore influence outcome. CTCs have been identified in bladder, gastric, prostate, lung, breast and colon cancer. The only FDA approved CTCs detection system is Veridex’ CellSearch, which detects only epithelial cancer cells using antibody labelling. Recent evidence showed that non-epithelial cancer cells, which are not detected by CellSearch, are of critical importance in cancer progression.
The idea: Our CTC detection method is based, instead of on antibody labelling, on metabolic features of cancer cells, thus providing potential for detecting both epithelial and mesenchymal cancer cells. Cancer cells induce environmental changes; e.g. in aerobic conditions most cancer cells display a high rate of glycolysis with lactate production in the cytosol, known as the Warburg effect. By separating cells into micro-droplets of pico-liter volume using micro-fluidic water-in-oil emulsions and by characterising the microenvironment surrounding them, CTCs are detected by probing for environmental changes using pH sensitive dyes or enzymatic lactate assays. Our inexpensive diagnostic method provides a way to count and isolate CTCs without any labelling while maintaining cells alive and intact for further studies.
The project: “A CACTUS” is meant to assess the feasibility of commercialising the developed method for counting and sorting CTCs and develop a proper commercialisation strategy. The final goal of this project is to develop a proposition package consisting of technical proof of concept, the business proposition and strategy and an IP portfolio and strategy. This information will be presented in an attractive business plan that will be proposed to potential investors.
Summary
The problem: Cancer metastases are responsible for 90% of cancer-associated deaths. Circulating tumour cells (CTCs) that enter the blood stream on their way to potential metastatic sites are of obvious interest to evaluate correctly patient treatment and therefore influence outcome. CTCs have been identified in bladder, gastric, prostate, lung, breast and colon cancer. The only FDA approved CTCs detection system is Veridex’ CellSearch, which detects only epithelial cancer cells using antibody labelling. Recent evidence showed that non-epithelial cancer cells, which are not detected by CellSearch, are of critical importance in cancer progression.
The idea: Our CTC detection method is based, instead of on antibody labelling, on metabolic features of cancer cells, thus providing potential for detecting both epithelial and mesenchymal cancer cells. Cancer cells induce environmental changes; e.g. in aerobic conditions most cancer cells display a high rate of glycolysis with lactate production in the cytosol, known as the Warburg effect. By separating cells into micro-droplets of pico-liter volume using micro-fluidic water-in-oil emulsions and by characterising the microenvironment surrounding them, CTCs are detected by probing for environmental changes using pH sensitive dyes or enzymatic lactate assays. Our inexpensive diagnostic method provides a way to count and isolate CTCs without any labelling while maintaining cells alive and intact for further studies.
The project: “A CACTUS” is meant to assess the feasibility of commercialising the developed method for counting and sorting CTCs and develop a proper commercialisation strategy. The final goal of this project is to develop a proposition package consisting of technical proof of concept, the business proposition and strategy and an IP portfolio and strategy. This information will be presented in an attractive business plan that will be proposed to potential investors.
Max ERC Funding
149 875 €
Duration
Start date: 2015-04-01, End date: 2016-09-30
Project acronym ABC
Project Targeting Multidrug Resistant Cancer
Researcher (PI) Gergely Szakacs
Host Institution (HI) MAGYAR TUDOMANYOS AKADEMIA TERMESZETTUDOMANYI KUTATOKOZPONT
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Despite considerable advances in drug discovery, resistance to anticancer chemotherapy confounds the effective treatment of patients. Cancer cells can acquire broad cross-resistance to mechanistically and structurally unrelated drugs. P-glycoprotein (Pgp) actively extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. The central tenet of my work is that Pgp, a universally accepted biomarker of drug resistance, should in addition be considered as a molecular target of multidrug-resistant (MDR) cancer cells. Successful targeting of MDR cells would reduce the tumor burden and would also enable the elimination of ABC transporter-overexpressing cancer stem cells that are responsible for the replenishment of tumors. The proposed project is based on the following observations:
- First, by using a pharmacogenomic approach, I have revealed the hidden vulnerability of MDRcells (Szakács et al. 2004, Cancer Cell 6, 129-37);
- Second, I have identified a series of MDR-selective compounds with increased toxicity toPgp-expressing cells
(Turk et al.,Cancer Res, 2009. 69(21));
- Third, I have shown that MDR-selective compounds can be used to prevent theemergence of MDR (Ludwig, Szakács et al. 2006, Cancer Res 66, 4808-15);
- Fourth, we have generated initial pharmacophore models for cytotoxicity and MDR-selectivity (Hall et al. 2009, J Med Chem 52, 3191-3204).
I propose a comprehensive series of studies that will address thefollowing critical questions:
- First, what is the scope of MDR-selective compounds?
- Second, what is their mechanism of action?
- Third, what is the optimal therapeutic modality?
Extensive biological, pharmacological and bioinformatic analyses will be utilized to address four major specific aims. These aims address basic questions concerning the physiology of MDR ABC transporters in determining the mechanism of action of MDR-selective compounds, setting the stage for a fresh therapeutic approach that may eventually translate into improved patient care.
Summary
Despite considerable advances in drug discovery, resistance to anticancer chemotherapy confounds the effective treatment of patients. Cancer cells can acquire broad cross-resistance to mechanistically and structurally unrelated drugs. P-glycoprotein (Pgp) actively extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. The central tenet of my work is that Pgp, a universally accepted biomarker of drug resistance, should in addition be considered as a molecular target of multidrug-resistant (MDR) cancer cells. Successful targeting of MDR cells would reduce the tumor burden and would also enable the elimination of ABC transporter-overexpressing cancer stem cells that are responsible for the replenishment of tumors. The proposed project is based on the following observations:
- First, by using a pharmacogenomic approach, I have revealed the hidden vulnerability of MDRcells (Szakács et al. 2004, Cancer Cell 6, 129-37);
- Second, I have identified a series of MDR-selective compounds with increased toxicity toPgp-expressing cells
(Turk et al.,Cancer Res, 2009. 69(21));
- Third, I have shown that MDR-selective compounds can be used to prevent theemergence of MDR (Ludwig, Szakács et al. 2006, Cancer Res 66, 4808-15);
- Fourth, we have generated initial pharmacophore models for cytotoxicity and MDR-selectivity (Hall et al. 2009, J Med Chem 52, 3191-3204).
I propose a comprehensive series of studies that will address thefollowing critical questions:
- First, what is the scope of MDR-selective compounds?
- Second, what is their mechanism of action?
- Third, what is the optimal therapeutic modality?
Extensive biological, pharmacological and bioinformatic analyses will be utilized to address four major specific aims. These aims address basic questions concerning the physiology of MDR ABC transporters in determining the mechanism of action of MDR-selective compounds, setting the stage for a fresh therapeutic approach that may eventually translate into improved patient care.
Max ERC Funding
1 499 640 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym AIDA
Project An Illumination of the Dark Ages: modeling reionization and interpreting observations
Researcher (PI) Andrei Albert Mesinger
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Call Details Starting Grant (StG), PE9, ERC-2014-STG
Summary "Understanding the dawn of the first galaxies and how their light permeated the early Universe is at the very frontier of modern astrophysical cosmology. Generous resources, including ambitions observational programs, are being devoted to studying these epochs of Cosmic Dawn (CD) and Reionization (EoR). In order to interpret these observations, we propose to build on our widely-used, semi-numeric simulation tool, 21cmFAST, and apply it to observations. Using sub-grid, semi-analytic models, we will incorporate additional physical processes governing the evolution of sources and sinks of ionizing photons. The resulting state-of-the-art simulations will be well poised to interpret topical observations of quasar spectra and the cosmic 21cm signal. They would be both physically-motivated and fast, allowing us to rapidly explore astrophysical parameter space. We will statistically quantify the resulting degeneracies and constraints, providing a robust answer to the question, ""What can we learn from EoR/CD observations?"" As an end goal, these investigations will help us understand when the first generations of galaxies formed, how they drove the EoR, and what are the associated large-scale observational signatures."
Summary
"Understanding the dawn of the first galaxies and how their light permeated the early Universe is at the very frontier of modern astrophysical cosmology. Generous resources, including ambitions observational programs, are being devoted to studying these epochs of Cosmic Dawn (CD) and Reionization (EoR). In order to interpret these observations, we propose to build on our widely-used, semi-numeric simulation tool, 21cmFAST, and apply it to observations. Using sub-grid, semi-analytic models, we will incorporate additional physical processes governing the evolution of sources and sinks of ionizing photons. The resulting state-of-the-art simulations will be well poised to interpret topical observations of quasar spectra and the cosmic 21cm signal. They would be both physically-motivated and fast, allowing us to rapidly explore astrophysical parameter space. We will statistically quantify the resulting degeneracies and constraints, providing a robust answer to the question, ""What can we learn from EoR/CD observations?"" As an end goal, these investigations will help us understand when the first generations of galaxies formed, how they drove the EoR, and what are the associated large-scale observational signatures."
Max ERC Funding
1 468 750 €
Duration
Start date: 2015-05-01, End date: 2021-01-31
Project acronym AISENS
Project New generation of high sensitive atom interferometers
Researcher (PI) Marco Fattori
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary Interferometers are fundamental tools for the study of nature laws and for the precise measurement and control of the physical world. In the last century, the scientific and technological progress has proceeded in parallel with a constant improvement of interferometric performances. For this reason, the challenge of conceiving and realizing new generations of interferometers with broader ranges of operation and with higher sensitivities is always open and actual.
Despite the introduction of laser devices has deeply improved the way of developing and performing interferometric measurements with light, the atomic matter wave analogous, i.e. the Bose-Einstein condensate (BEC), has not yet triggered any revolution in precision interferometry. However, thanks to recent improvements on the control of the quantum properties of ultra-cold atomic gases, and new original ideas on the creation and manipulation of quantum entangled particles, the field of atom interferometry is now mature to experience a big step forward.
The system I want to realize is a Mach-Zehnder spatial interferometer operating with trapped BECs. Undesired decoherence sources will be suppressed by implementing BECs with tunable interactions in ultra-stable optical potentials. Entangled states will be used to improve the sensitivity of the sensor beyond the standard quantum limit to ideally reach the ultimate, Heisenberg, limit set by quantum mechanics. The resulting apparatus will show unprecedented spatial resolution and will overcome state-of-the-art interferometers with cold (non condensed) atomic gases.
A successful completion of this project will lead to a new generation of interferometers for the immediate application to local inertial measurements with unprecedented resolution. In addition, we expect to develop experimental capabilities which might find application well beyond quantum interferometry and crucially contribute to the broader emerging field of quantum-enhanced technologies.
Summary
Interferometers are fundamental tools for the study of nature laws and for the precise measurement and control of the physical world. In the last century, the scientific and technological progress has proceeded in parallel with a constant improvement of interferometric performances. For this reason, the challenge of conceiving and realizing new generations of interferometers with broader ranges of operation and with higher sensitivities is always open and actual.
Despite the introduction of laser devices has deeply improved the way of developing and performing interferometric measurements with light, the atomic matter wave analogous, i.e. the Bose-Einstein condensate (BEC), has not yet triggered any revolution in precision interferometry. However, thanks to recent improvements on the control of the quantum properties of ultra-cold atomic gases, and new original ideas on the creation and manipulation of quantum entangled particles, the field of atom interferometry is now mature to experience a big step forward.
The system I want to realize is a Mach-Zehnder spatial interferometer operating with trapped BECs. Undesired decoherence sources will be suppressed by implementing BECs with tunable interactions in ultra-stable optical potentials. Entangled states will be used to improve the sensitivity of the sensor beyond the standard quantum limit to ideally reach the ultimate, Heisenberg, limit set by quantum mechanics. The resulting apparatus will show unprecedented spatial resolution and will overcome state-of-the-art interferometers with cold (non condensed) atomic gases.
A successful completion of this project will lead to a new generation of interferometers for the immediate application to local inertial measurements with unprecedented resolution. In addition, we expect to develop experimental capabilities which might find application well beyond quantum interferometry and crucially contribute to the broader emerging field of quantum-enhanced technologies.
Max ERC Funding
1 068 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ANOREP
Project Targeting the reproductive biology of the malaria mosquito Anopheles gambiae: from laboratory studies to field applications
Researcher (PI) Flaminia Catteruccia
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Summary
Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym BIFLOW
Project Bilingualism in Florentine and Tuscan Works (ca. 1260 - ca. 1416)
Researcher (PI) Antonio Montefusco
Host Institution (HI) UNIVERSITA CA' FOSCARI VENEZIA
Call Details Starting Grant (StG), SH5, ERC-2014-STG
Summary This project will undertake the first systematic investigation of the various literary documents that circulated simultaneously in more than one language in Tuscany, and especially Florence, between the mid-13th Century and the beginning of 15th Century.
During that period, Florence was both a prominent literary centre in the vernacular, and home to a renewal of classical Latin eloquence. While both fields are well studied, their interaction remains largely unexplored. This research, at the convergence of several disciplines (literature, philology, linguistics and medieval history), has a strong pioneering character. It aims at changing the perception of medieval Italian culture and interpretation of the break between medieval Culture and Humanism.
For this reason, the project will develop research in varying degrees of depth. First, it will provide the first catalogue of bilingual texts and manuscripts of medieval Tuscany. Organized as a database, this tool of analysis will stir innovative research in this field, some of which will be immediately promoted during the project.
Secondly, two case studies, considered as important and methodologically exemplary, will be researched in detail, through the publication of two important set of texts, of secular and religious nature : 1. The vernacular translation of the Latin Epistles of Dante Alighieri; 2. A collection of polemical, historiographical, devotional and prophetical documents produced by the Tuscan dissident Franciscans in last decades of the 14th Century.
Finally, the entire team, led by the PI, will be involved in the preparation of a synthesis volume on Tuscan culture in the fourteenth century viewed through bilingualism, entitled Cartography of bilingual culture in Fourteenth-Century Tuscany. From this general map of the Italian culture of the time, no literary genre nor field (be it religious or lay) shall be excluded.
Summary
This project will undertake the first systematic investigation of the various literary documents that circulated simultaneously in more than one language in Tuscany, and especially Florence, between the mid-13th Century and the beginning of 15th Century.
During that period, Florence was both a prominent literary centre in the vernacular, and home to a renewal of classical Latin eloquence. While both fields are well studied, their interaction remains largely unexplored. This research, at the convergence of several disciplines (literature, philology, linguistics and medieval history), has a strong pioneering character. It aims at changing the perception of medieval Italian culture and interpretation of the break between medieval Culture and Humanism.
For this reason, the project will develop research in varying degrees of depth. First, it will provide the first catalogue of bilingual texts and manuscripts of medieval Tuscany. Organized as a database, this tool of analysis will stir innovative research in this field, some of which will be immediately promoted during the project.
Secondly, two case studies, considered as important and methodologically exemplary, will be researched in detail, through the publication of two important set of texts, of secular and religious nature : 1. The vernacular translation of the Latin Epistles of Dante Alighieri; 2. A collection of polemical, historiographical, devotional and prophetical documents produced by the Tuscan dissident Franciscans in last decades of the 14th Century.
Finally, the entire team, led by the PI, will be involved in the preparation of a synthesis volume on Tuscan culture in the fourteenth century viewed through bilingualism, entitled Cartography of bilingual culture in Fourteenth-Century Tuscany. From this general map of the Italian culture of the time, no literary genre nor field (be it religious or lay) shall be excluded.
Max ERC Funding
1 480 625 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym BIOINOHYB
Project Smart Bioinorganic Hybrids for Nanomedicine
Researcher (PI) Cristiana Di Valentin
Host Institution (HI) UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA
Call Details Consolidator Grant (CoG), PE5, ERC-2014-CoG
Summary The use of bioinorganic nanohybrids (nanoscaled systems based on an inorganic and a biological component) has already resulted in several innovative medical breakthroughs for drug delivery, therapeutics, imaging, diagnosis and biocompatibility. However, researchers still know relatively little about the structure, function and mechanism of these nanodevices. Theoretical investigations of bioinorganic interfaces are mostly limited to force-field approaches which cannot grasp the details of the physicochemical mechanisms. The BIOINOHYB project proposes to capitalize on recent massively parallelized codes to investigate bioinorganic nanohybrids by advanced quantum chemical methods. This approach will allow to master the chemical and electronic interplay between the bio and the inorganic components in the first part of the project, and the interaction of the hybrid systems with light in the second part. The ultimate goal is to provide the design principles for novel, unconventional assemblies with unprecedented functionalities and strong impact potential in nanomedicine.
More specifically, in this project the traditional metallic nanoparticle will be substituted by emerging semiconducting metal oxide nanostructures with photocatalytic or magnetic properties capable of opening totally new horizons in nanomedicine (e.g. photocatalytic therapy, a new class of contrast agents, magnetically guided drug delivery). Potentially efficient linkers will be screened regarding their ability both to anchor surfaces and to bind biomolecules. Different kinds of biomolecules (from oligopeptides and oligonucleotides to small drugs) will be tethered to the activated surface according to the desired functionality. The key computational challenge, requiring the recourse to more sophisticated methods, will be the investigation of the photo-response to light of the assembled bioinorganic systems, also with specific reference to their labelling with fluorescent markers and contrast agents.
Summary
The use of bioinorganic nanohybrids (nanoscaled systems based on an inorganic and a biological component) has already resulted in several innovative medical breakthroughs for drug delivery, therapeutics, imaging, diagnosis and biocompatibility. However, researchers still know relatively little about the structure, function and mechanism of these nanodevices. Theoretical investigations of bioinorganic interfaces are mostly limited to force-field approaches which cannot grasp the details of the physicochemical mechanisms. The BIOINOHYB project proposes to capitalize on recent massively parallelized codes to investigate bioinorganic nanohybrids by advanced quantum chemical methods. This approach will allow to master the chemical and electronic interplay between the bio and the inorganic components in the first part of the project, and the interaction of the hybrid systems with light in the second part. The ultimate goal is to provide the design principles for novel, unconventional assemblies with unprecedented functionalities and strong impact potential in nanomedicine.
More specifically, in this project the traditional metallic nanoparticle will be substituted by emerging semiconducting metal oxide nanostructures with photocatalytic or magnetic properties capable of opening totally new horizons in nanomedicine (e.g. photocatalytic therapy, a new class of contrast agents, magnetically guided drug delivery). Potentially efficient linkers will be screened regarding their ability both to anchor surfaces and to bind biomolecules. Different kinds of biomolecules (from oligopeptides and oligonucleotides to small drugs) will be tethered to the activated surface according to the desired functionality. The key computational challenge, requiring the recourse to more sophisticated methods, will be the investigation of the photo-response to light of the assembled bioinorganic systems, also with specific reference to their labelling with fluorescent markers and contrast agents.
Max ERC Funding
1 748 125 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym BORDERLANDS
Project Borderlands: Expanding Boundaries, Governance, and Power in the European Union's Relations with North Africa and the Middle East
Researcher (PI) Raffaella Alessandra Del Sarto
Host Institution (HI) EUROPEAN UNIVERSITY INSTITUTE
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary Challenging the notion of Fortress Europe , the research investigates relations between the European Union and its southern periphery through the concept of borderlands . The concept emphasises the disaggregation of the triple function of borders demarcating state territory, authority, and national identity inherent in the Westphalian model of statehood. This process is most visible in (although not limited to) Europe, where integration has led to supranational areas of sovereignty, an internal market, a common currency, and a zone of free movement of people, each with a different territorial span. The project explores the complex and differentiated process by which the EU extends its unbundled functional and legal borders to the so-called southern Mediterranean (North Africa and parts of the Middle East), thereby transforming it into borderlands . They connect the European core with the periphery through various legal and functional border regimes, governance patterns, and the selective outsourcing of some EU border control duties. The overarching questions informing this research is whether, first, the borderland policies of the EU, described by some as a neo-medieval empire, is a functional consequence of the specific integration model pursued inside the EU, a matter of foreign policy choice or a local manifestation of a broader global phenomenon. Second, the project addresses the question of power dynamics that underwrite borderland governance, presuming a growing leverage of third country governments resulting from their co-optation as gatekeepers. Thus, while adopting an innovative approach, the project will enhance our understanding of EU-Mediterranean relations while also addressing crucial theoretical questions in international relations.
Summary
Challenging the notion of Fortress Europe , the research investigates relations between the European Union and its southern periphery through the concept of borderlands . The concept emphasises the disaggregation of the triple function of borders demarcating state territory, authority, and national identity inherent in the Westphalian model of statehood. This process is most visible in (although not limited to) Europe, where integration has led to supranational areas of sovereignty, an internal market, a common currency, and a zone of free movement of people, each with a different territorial span. The project explores the complex and differentiated process by which the EU extends its unbundled functional and legal borders to the so-called southern Mediterranean (North Africa and parts of the Middle East), thereby transforming it into borderlands . They connect the European core with the periphery through various legal and functional border regimes, governance patterns, and the selective outsourcing of some EU border control duties. The overarching questions informing this research is whether, first, the borderland policies of the EU, described by some as a neo-medieval empire, is a functional consequence of the specific integration model pursued inside the EU, a matter of foreign policy choice or a local manifestation of a broader global phenomenon. Second, the project addresses the question of power dynamics that underwrite borderland governance, presuming a growing leverage of third country governments resulting from their co-optation as gatekeepers. Thus, while adopting an innovative approach, the project will enhance our understanding of EU-Mediterranean relations while also addressing crucial theoretical questions in international relations.
Max ERC Funding
1 353 920 €
Duration
Start date: 2011-10-01, End date: 2017-03-31
Project acronym CBCD
Project Understanding the basis of cerebellar and brainstem congenital defects: from clinical and molecular characterisation to the development of a novel neuroembryonic in vitro model
Researcher (PI) Enza Maria Valente
Host Institution (HI) FONDAZIONE SANTA LUCIA
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Cerebellar and brainstem congenital defects (CBCDs) are heterogeneous disorders with high pre-and post-natal mortality and morbidity. Their genetic basis and pathogenetic mechanisms are largely unknown, hampering patients’ diagnosis and management and family counselling. This project aims at improve current understanding of primary CBCDs through a multidisciplinary approach combining innovative clinical, neuroimaging, molecular and functional studies, that will be articulated in four workpackages:
WP1- Clinical and neuroimaging studies: collection of detailed data and biological samples from a large cohort of patients covering a broad spectrum of CBCDs, neuroimaging classification based on magnetic resonance imaging and tractography, genotype-phenotype correlates and follow-up studies.
WP2 - Molecular studies on mendelian CBCDs: high-throughput resequencing of ciliary genes to identify pathogenic mutations and genetic modifiers in patients with ciliopathies, identification of novel disease genes, mutation analysis of genes causative of other mendelian CBCDs.
WP3 - Molecular studies on sporadic CBCDs: identification of cryptic chromosomal rearrangements by high resolution SNP-array analysis, selection and mutation analysis of candidate genes mapping to the rearranged regions.
WP4 - Functional studies: optimisation of a novel neuroembryonic in vitro model derived from mouse embryonic stem cells, to test the role of known and candidate disease genes (from WP2 and 3) on cerebellar and brainstem development, define the pathways in which they are involved and the effect of disease-causative mutations.
This project is expected to improve the current CBCD nosology, identify novel genes and mechanisms involved in cerebellar and brainstem development that are responsible for mendelian or sporadic defects, expand the available tools for pre- and post-natal diagnosis and identify clinical-genetic correlates and prognostic indexes.
Summary
Cerebellar and brainstem congenital defects (CBCDs) are heterogeneous disorders with high pre-and post-natal mortality and morbidity. Their genetic basis and pathogenetic mechanisms are largely unknown, hampering patients’ diagnosis and management and family counselling. This project aims at improve current understanding of primary CBCDs through a multidisciplinary approach combining innovative clinical, neuroimaging, molecular and functional studies, that will be articulated in four workpackages:
WP1- Clinical and neuroimaging studies: collection of detailed data and biological samples from a large cohort of patients covering a broad spectrum of CBCDs, neuroimaging classification based on magnetic resonance imaging and tractography, genotype-phenotype correlates and follow-up studies.
WP2 - Molecular studies on mendelian CBCDs: high-throughput resequencing of ciliary genes to identify pathogenic mutations and genetic modifiers in patients with ciliopathies, identification of novel disease genes, mutation analysis of genes causative of other mendelian CBCDs.
WP3 - Molecular studies on sporadic CBCDs: identification of cryptic chromosomal rearrangements by high resolution SNP-array analysis, selection and mutation analysis of candidate genes mapping to the rearranged regions.
WP4 - Functional studies: optimisation of a novel neuroembryonic in vitro model derived from mouse embryonic stem cells, to test the role of known and candidate disease genes (from WP2 and 3) on cerebellar and brainstem development, define the pathways in which they are involved and the effect of disease-causative mutations.
This project is expected to improve the current CBCD nosology, identify novel genes and mechanisms involved in cerebellar and brainstem development that are responsible for mendelian or sporadic defects, expand the available tools for pre- and post-natal diagnosis and identify clinical-genetic correlates and prognostic indexes.
Max ERC Funding
1 367 960 €
Duration
Start date: 2011-08-01, End date: 2018-03-31