Project acronym EVOLOR
Project Cognitive Ageing in Dogs
Researcher (PI) Eniko Kubinyi
Host Institution (HI) EOTVOS LORAND TUDOMANYEGYETEM
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary The aim of this project is to understand the causal factors contributing to the cognitive decline during senescence and to develop sensitive and standardized behaviour tests for early detection in order to increase the welfare of affected species. With the rapidly ageing population of Europe, related research is a priority in the European Union.
We will focus both on characterising the ageing phenotype and the underlying biological processes in dogs as a well-established natural animal model. We develop a reliable and valid test battery applying innovative multidisciplinary methods (e.g. eye-tracking, motion path analysis, identification of behaviour using inertial sensors, EEG, fMRI, candidate gene, and epigenetics) in both longitudinal and cross-sectional studies. We expect to reveal specific environmental risk factors which hasten ageing and also protective factors which may postpone it. We aim to provide objective criteria (behavioural, physiological and genetic biomarkers) to assess and predict the ageing trajectory for specific individual dogs. This would help veterinarians to recognise the symptoms early, and initiate necessary counter actions.
This approach establishes the framework for answering the broad question that how we can extend the healthy life of ageing dogs which indirectly also contributes to the welfare of the owner and decreases veterinary expenses. The detailed description of the ageing phenotype may also facilitate the use of dogs as a natural model for human senescence, including the development and application of pharmaceutical interventions.
We expect that our approach offers the scientific foundation to delay the onset of cognitive ageing in dog populations by 1-2 years, and also increase the proportion of dogs that enjoy healthy ageing.
Summary
The aim of this project is to understand the causal factors contributing to the cognitive decline during senescence and to develop sensitive and standardized behaviour tests for early detection in order to increase the welfare of affected species. With the rapidly ageing population of Europe, related research is a priority in the European Union.
We will focus both on characterising the ageing phenotype and the underlying biological processes in dogs as a well-established natural animal model. We develop a reliable and valid test battery applying innovative multidisciplinary methods (e.g. eye-tracking, motion path analysis, identification of behaviour using inertial sensors, EEG, fMRI, candidate gene, and epigenetics) in both longitudinal and cross-sectional studies. We expect to reveal specific environmental risk factors which hasten ageing and also protective factors which may postpone it. We aim to provide objective criteria (behavioural, physiological and genetic biomarkers) to assess and predict the ageing trajectory for specific individual dogs. This would help veterinarians to recognise the symptoms early, and initiate necessary counter actions.
This approach establishes the framework for answering the broad question that how we can extend the healthy life of ageing dogs which indirectly also contributes to the welfare of the owner and decreases veterinary expenses. The detailed description of the ageing phenotype may also facilitate the use of dogs as a natural model for human senescence, including the development and application of pharmaceutical interventions.
We expect that our approach offers the scientific foundation to delay the onset of cognitive ageing in dog populations by 1-2 years, and also increase the proportion of dogs that enjoy healthy ageing.
Max ERC Funding
1 202 500 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym noMAGIC
Project Noninvasive Manipulation of Gating in Ion Channels
Researcher (PI) ANNA MORONI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Advanced Grant (AdG), LS9, ERC-2015-AdG
Summary noMAGIC has the visionary goal of engineering genetically encoded ion channels, which can be remotely controlled (gated) by stimuli that penetrate deep into human tissue without negative side effects. The control over ion channel activity by deep penetrating stimuli will revolutionize research in neurobiology and physiology as it paves the way for remote and genuine non-invasive control of cell activity in vivo. Synthetic channels, which can be gated by magnetic fields (MF), near infrared (NIR) radiation or ultrasound (US) will be engineered in the frame of noMAGIC by three complementary work packages (WP1-3). Design and engineering of the channels will be performed in WP1 by reiterated steps of rational and irrational design, high throughput screening and in vitro and in vivo functional testing. We have identified two sensor modules for MF and NIR radiation, respectively, which will be functionally connected to a channel pore for a remote control of gating. For the US-gated channel we will engineer a channel pore that is maximally responding to local changes in the lipid environment induced by US. Design and engineering of channels will be complemented by a computational approach (WP2), which analyses, from elastic network models, the mechanical connections in the channel pore and which extracts information on the forces, which are required to gate a channel by the three stimuli. The outcome of WP2 will provide general design rules for synthetic channels with implications much beyond the present project. WP3 also contributes to the engineering effort in WP1 by a spectrum of avant-garde spectroscopic methods, which resolve structural changes of the channel proteins under the influence of remote stimuli. These structural insights will greatly advance our understanding of structure/function correlates in composite ion channels and it will inspire the design and engineering of channels, which respond to remote stimuli.
Summary
noMAGIC has the visionary goal of engineering genetically encoded ion channels, which can be remotely controlled (gated) by stimuli that penetrate deep into human tissue without negative side effects. The control over ion channel activity by deep penetrating stimuli will revolutionize research in neurobiology and physiology as it paves the way for remote and genuine non-invasive control of cell activity in vivo. Synthetic channels, which can be gated by magnetic fields (MF), near infrared (NIR) radiation or ultrasound (US) will be engineered in the frame of noMAGIC by three complementary work packages (WP1-3). Design and engineering of the channels will be performed in WP1 by reiterated steps of rational and irrational design, high throughput screening and in vitro and in vivo functional testing. We have identified two sensor modules for MF and NIR radiation, respectively, which will be functionally connected to a channel pore for a remote control of gating. For the US-gated channel we will engineer a channel pore that is maximally responding to local changes in the lipid environment induced by US. Design and engineering of channels will be complemented by a computational approach (WP2), which analyses, from elastic network models, the mechanical connections in the channel pore and which extracts information on the forces, which are required to gate a channel by the three stimuli. The outcome of WP2 will provide general design rules for synthetic channels with implications much beyond the present project. WP3 also contributes to the engineering effort in WP1 by a spectrum of avant-garde spectroscopic methods, which resolve structural changes of the channel proteins under the influence of remote stimuli. These structural insights will greatly advance our understanding of structure/function correlates in composite ion channels and it will inspire the design and engineering of channels, which respond to remote stimuli.
Max ERC Funding
2 409 209 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym SOLENALGAE
Project IMPROVING PHOTOSYNTHETIC SOLAR ENERGY CONVERSION IN MICROALGAL CULTURES FOR THE PRODUCTION OF BIOFUELS AND HIGH VALUE PRODUCTS
Researcher (PI) Matteo Ballottari
Host Institution (HI) UNIVERSITA DEGLI STUDI DI VERONA
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Solar Energy is the most abundant renewable energy source available for our Planet. Light energy conversion into chemical energy by photosynthetic organisms is indeed the main conversion energy step, which originated high energy containing fossil deposits, now being depleted. By the way, plant or algae biomass may still be used to produce biofuels, as bio-ethanol, bio-diesel and bio-hydrogen. Microalgae exploitation for biofuels production have the considerable advantages of being sustainable and not in competition with food production, since not-arable lands, waste water and industrial gasses can be used for algae cultivation. Considering that only 45% of the sunlight covers the range of wavelengths that can be absorbed and used for photosynthesis, the maximum photosynthetic efficiency achievable in microalgae is 10%. On these bases, a photobioreactor carrying 600 l/m-2 would produce 294 Tons/ha/year of biomass of which 30% to 80%, depending on strain and growth conditions, being oil. However this potential has not been exploited yet, since biomass and biofuels yield on industrial scale obtained up to now were relatively low and with high costs of production. The main limitation encountered for sustained biomass production in microalgae by sunlight conversion is low light use efficiency, reduced from the theoretical value of 10% to 1-3%. This low light use efficiency is mainly due to a combined effect of reduced light penetration to deeper layers in highly pigmented cultures, where light available is almost completely absorbed by the outer layers, and an extremely high (up to 80%) thermal dissipation of the light absorbed. This project aims to investigate the molecular basis for efficient light energy conversion into chemical energy, in order to significantly increase the biomass production in microalgae combining a solid investigation of the principles of light energy conversion with biotechnological engineering of algal strains.
Summary
Solar Energy is the most abundant renewable energy source available for our Planet. Light energy conversion into chemical energy by photosynthetic organisms is indeed the main conversion energy step, which originated high energy containing fossil deposits, now being depleted. By the way, plant or algae biomass may still be used to produce biofuels, as bio-ethanol, bio-diesel and bio-hydrogen. Microalgae exploitation for biofuels production have the considerable advantages of being sustainable and not in competition with food production, since not-arable lands, waste water and industrial gasses can be used for algae cultivation. Considering that only 45% of the sunlight covers the range of wavelengths that can be absorbed and used for photosynthesis, the maximum photosynthetic efficiency achievable in microalgae is 10%. On these bases, a photobioreactor carrying 600 l/m-2 would produce 294 Tons/ha/year of biomass of which 30% to 80%, depending on strain and growth conditions, being oil. However this potential has not been exploited yet, since biomass and biofuels yield on industrial scale obtained up to now were relatively low and with high costs of production. The main limitation encountered for sustained biomass production in microalgae by sunlight conversion is low light use efficiency, reduced from the theoretical value of 10% to 1-3%. This low light use efficiency is mainly due to a combined effect of reduced light penetration to deeper layers in highly pigmented cultures, where light available is almost completely absorbed by the outer layers, and an extremely high (up to 80%) thermal dissipation of the light absorbed. This project aims to investigate the molecular basis for efficient light energy conversion into chemical energy, in order to significantly increase the biomass production in microalgae combining a solid investigation of the principles of light energy conversion with biotechnological engineering of algal strains.
Max ERC Funding
1 441 875 €
Duration
Start date: 2016-03-01, End date: 2021-02-28